1
|
Liu J, Wang C, Qiu S, Sun W, Yang G, Yuan L. Toward Ultrasound Molecular Imaging of Endothelial Dysfunction in Diabetes: Targets, Strategies, and Challenges. ACS APPLIED BIO MATERIALS 2024; 7:1416-1428. [PMID: 38391247 DOI: 10.1021/acsabm.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Diabetes vasculopathy is a significant complication of diabetes mellitus (DM), and early identification and timely intervention can effectively slow the progression. Accumulating studies have shown that diabetes causes vascular complications directly or indirectly through a variety of mechanisms. Direct imaging of the endothelial molecular changes not only identifies the early stage of diabetes vasculopathy but also sheds light on the precise treatment. Targeted ultrasound contrast agent (UCA)-based ultrasound molecular imaging (UMI) can noninvasively detect the expression status of molecular biomarkers overexpressed in the vasculature, thereby being a potential strategy for the diagnosis and treatment response evaluation of DM. Amounts of efforts have been focused on identification of the molecular targets expressed in the vasculature, manufacturing strategies of the targeted UCA, and the clinical translation for the diagnosis and evaluation of therapeutic efficacy in both micro- and macrovasculopathy in DM. This review summarizes the latest research progress on endothelium-targeted UCA and discusses their promising future and challenges in diabetes vasculopathy theranostics.
Collapse
Affiliation(s)
- Jiahan Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Chen Wang
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Shuo Qiu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Wenqi Sun
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University Xi'an, Shaanxi 710032, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| |
Collapse
|
2
|
Song HW, Lee HS, Kim SJ, Kim HY, Choi YH, Kang B, Kim CS, Park JO, Choi E. Sonazoid-Conjugated Natural Killer Cells for Tumor Therapy and Real-Time Visualization by Ultrasound Imaging. Pharmaceutics 2021; 13:pharmaceutics13101689. [PMID: 34683982 PMCID: PMC8537855 DOI: 10.3390/pharmaceutics13101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Various cell therapy strategies, including chimeric antigen receptor-expressing T or natural killer (NK) cells and cell-mediated drug delivery, have been developed for tumor eradication. However, the efficiency of these strategies against solid tumors remains unclear. We hypothesized that real-time control and visualization of therapeutic cells, such as NK cells, would improve their therapeutic efficacy against solid tumors. In this study, we engineered Sonazoid microbubble-conjugated NK (NK_Sona) cells and demonstrated that they were detectable by ultrasound imaging in real-time and maintained their functions. The Sonazoid microbubbles on the cell membrane did not affect the cytotoxicity and viability of the NK cells in vitro. Additionally, the NK_Sona cells could be visualized by ultrasound imaging and inhibited tumor growth in vivo. Taken together, our findings demonstrate the feasibility of this new approach in the use of therapeutic cells, such as NK cells, against solid tumors.
Collapse
Affiliation(s)
- Hyeong-Woo Song
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Han-Sol Lee
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Seok-Jae Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
| | - Chang-Sei Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| |
Collapse
|
3
|
Li X, Wu R, Chen H, Li T, Jiang H, Xu X, Tang X, Wan M, Mao C, Shi D. Near-Infrared Light-Driven Multifunctional Tubular Micromotors for Treatment of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30930-30940. [PMID: 34156244 DOI: 10.1021/acsami.1c03600] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the difficulties in atherosclerosis treatment is that the ablation of inflammatory macrophages, repair of vascular endothelial injury, and anti-tissue proliferation should be considered. However, there are few studies that can solve the abovementioned problems simultaneously. Herein, we present a kind of near-infrared (NIR) light-driven multifunctional mesoporous/macroporous tubular micromotor which can rapidly target the damaged blood vessels and release different drugs. Their motion effect can promote themselves to penetrate into the plaque site, and the generated heat effect caused by NIR irradiation can realize the photothermal ablation of inflammatory macrophages. Furthermore, these micromotors can rapidly release the vascular endothelial growth factor for endothelialization and slowly release paclitaxel for antiproliferation to achieve synergistic treatment of atherosclerosis. In vivo results demonstrated that the micromotors can achieve a good therapeutic effect for atherosclerosis. This kind of micro/nanomotor technology with a complex porous structure for drug loading will bring a more potential treatment platform for the disease.
Collapse
Affiliation(s)
- Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Rui Wu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huiming Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xueting Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
4
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
5
|
Huang Y, Li T, Gao W, Wang Q, Li X, Mao C, Zhou M, Wan M, Shen J. Platelet-derived nanomotor coated balloon for atherosclerosis combination therapy. J Mater Chem B 2020; 8:5765-5775. [DOI: 10.1039/d0tb00789g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A nanorobot is used to realize deep penetration of drugs in atherosclerotic plaque, photothermal ablation of inflammatory macrophages and long-term anti-proliferation effects.
Collapse
Affiliation(s)
- Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Wentao Gao
- Department of Vascular Surgery
- Nanjing Drum Tower Hospital
- The Affiliated Hospital of Nanjing University Medical School
- P. R. China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Min Zhou
- Department of Vascular Surgery
- Nanjing Drum Tower Hospital
- The Affiliated Hospital of Nanjing University Medical School
- P. R. China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| |
Collapse
|
6
|
Wu M, Shu J. Multimodal Molecular Imaging: Current Status and Future Directions. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1382183. [PMID: 29967571 PMCID: PMC6008764 DOI: 10.1155/2018/1382183] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Molecular imaging has emerged at the end of the last century as an interdisciplinary method involving in vivo imaging and molecular biology aiming at identifying living biological processes at a cellular and molecular level in a noninvasive manner. It has a profound role in determining disease changes and facilitating drug research and development, thus creating new medical modalities to monitor human health. At present, a variety of different molecular imaging techniques have their advantages, disadvantages, and limitations. In order to overcome these shortcomings, researchers combine two or more detection techniques to create a new imaging mode, such as multimodal molecular imaging, to obtain a better result and more information regarding monitoring, diagnosis, and treatment. In this review, we first describe the classic molecular imaging technology and its key advantages, and then, we offer some of the latest multimodal molecular imaging modes. Finally, we summarize the great challenges, the future development, and the great potential in this field.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Otani K, Nishimura H, Kamiya A, Harada-Shiba M. Simplified Preparation of α vβ 3 Integrin-Targeted Microbubbles Based on a Clinically Available Ultrasound Contrast Agent: Validation in a Tumor-Bearing Mouse Model. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1063-1073. [PMID: 29501282 DOI: 10.1016/j.ultrasmedbio.2018.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/14/2018] [Accepted: 01/20/2018] [Indexed: 05/11/2023]
Abstract
The usefulness of ultrasound molecular imaging with αvβ3 integrin-targeted microbubbles for detecting tumor angiogenesis has been demonstrated. Recently, we developed αvβ3 integrin-targeted microbubbles by modifying clinically available microbubbles (Sonazoid, Daiichi-Sankyo Pharmaceuticals, Tokyo, Japan) with a secreted glycoprotein (lactadherin). The aims of our present study were to simplify the preparation of lactadherin-bearing Sonazoid and to examine the diagnostic utility of lactadherin-bearing Sonazoid for αvβ3 integrin-expressing tumor vessels by using SK-OV-3-tumor-bearing mice. By incubating 1.2 × 107 Sonazoid microbubbles with 1.0 µg lactadherin, the complicated washing and centrifugation steps during the microbubble preparation could be omitted with no significant reduction in labeling ratio of lactadherin-bearing Sonazoid. In addition, the number of Sonazoid microbubbles accumulated in the SK-OV-3 tumor was significantly increased by modifying Sonazoid with lactadherin. Our data suggest that the lactadherin-bearing Sonazoid is an easily prepared and potentially clinically translatable targeted microbubble for αvβ3 integrin-expressing vessels.
Collapse
Affiliation(s)
- Kentaro Otani
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | - Hirohito Nishimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Atsunori Kamiya
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mariko Harada-Shiba
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
8
|
Wang T, Yuan C, Dai B, Liu Y, Li M, Feng Z, Jiang Q, Xu Z, Zhao N, Gu N, Yang F. Click-Chemistry-Mediated Rapid Microbubble Capture for Acute Thrombus Ultrasound Molecular Imaging. Chembiochem 2017; 18:1364-1368. [PMID: 28426149 DOI: 10.1002/cbic.201700068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Tuantuan Wang
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Chuxiao Yuan
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Bingyang Dai
- Department of Sports Medicine and Adult Reconstructive Surgery; Drum Tower Hospital; School of Medical; Nanjing University; Zhongshan Road 321 Nanjing Jiangsu 210008 China
| | - Yang Liu
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Mingxi Li
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Zhenqiang Feng
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery; Drum Tower Hospital; School of Medical; Nanjing University; Zhongshan Road 321 Nanjing Jiangsu 210008 China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstructive Surgery; Drum Tower Hospital; School of Medical; Nanjing University; Zhongshan Road 321 Nanjing Jiangsu 210008 China
| | - Ningwei Zhao
- Shimadzu Biomedical Research Laboratory; West Huaihai Road 570 Shanghai 200052 China
| | - Ning Gu
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Fang Yang
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| |
Collapse
|
9
|
Ren WX, Han J, Uhm S, Jang YJ, Kang C, Kim JH, Kim JS. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem Commun (Camb) 2016; 51:10403-18. [PMID: 26021457 DOI: 10.1039/c5cc03075g] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite encouraging results from preliminary studies of anticancer therapies, the lack of tumor specificity remains an important issue in the modern pharmaceutical industry. New findings indicate that biotin or biotin-conjugates could be favorably assimilated by tumor cells that over-express biotin-selective transporters. Furthermore, biotin can form stable complexes with avidin and its bacterial counterpart streptavidin. The strong bridging between avidin and biotin moieties on other molecules is a proven adaptable tool with broad biological applications. Under these circumstances, a biotin moiety is certainly an attractive choice for live-cell imaging, biosensing, and target delivery.
Collapse
Affiliation(s)
- Wen Xiu Ren
- Department of Chemistry, Korea University, Seoul 136-701, South Korea.
| | | | | | | | | | | | | |
Collapse
|
10
|
Feasibility of lactadherin-bearing clinically available microbubbles as ultrasound contrast agent for angiogenesis. Mol Imaging Biol 2014; 15:534-41. [PMID: 23539172 DOI: 10.1007/s11307-013-0630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Phagocytosis of apoptotic cells is carried out through bridging of phosphatidylserine (PS)-expressing apoptotic cells and integrin αvβ3-expressing phagocytes with lactadherin. The objective of this study was to examine whether microbubbles targeted to integrin αvβ3 could be produced by conjugating a PS-containing clinically available ultrasound contrast agent with lactadherin. MATERIALS AND METHODS PS-containing perfluorobutane-filled microbubbles were incubated with R-phycoerythrin (PE)-labeled lactadherin, and the presence of PE-positive bubbles was examined by FACS analysis. Secondly, the attachment of lactadherin to integrin αvβ3-expressing cells (human umbilical vein endothelial cells (HUVEC)) was also examined by FACS analysis. Finally, the adhesion of PS-containing bubbles to HUVEC was examined using a parallel plate flow chamber. The number of adherent bubbles with or without the intermediation of lactadherin was compared. RESULTS The more lactadherin was added to the bubble suspension, the more PE-positive bubbles were detected. The size of bubbles was not increased even after conjugation with lactadherin (2.90 ± 0.04 vs. 2.81 ± 0.02 μm). Binding between lactadherin and HUVEC was also confirmed by FACS analysis. The parallel plate flow chamber study revealed that the number of PS-containing bubbles adherent to HUVEC was increased about five times by the intermediation of lactadherin (12.1 ± 6.0 to 58.7 ± 33.1 bubbles). CONCLUSION Because integrin αvβ3 is well-known to play a key role in angiogenesis, the complex of PS-containing bubbles and lactadherin has feasibility as a clinically translatable targeted ultrasound contrast agent for angiogenesis.
Collapse
|
11
|
Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen en Henegouwen PM. Targeting tumors with nanobodies for cancer imaging and therapy. J Control Release 2013; 172:607-17. [DOI: 10.1016/j.jconrel.2013.08.298] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|