1
|
McNeil BL, Ramogida CF. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Chem Soc Rev 2024; 53:10409-10449. [PMID: 39360601 DOI: 10.1039/d4cs00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
2
|
Lee D, Li M, Liu D, Baumhover NJ, Sagastume EA, Marks BM, Rastogi P, Pigge FC, Menda Y, Johnson FL, Schultz MK. Structural modifications toward improved lead-203/lead-212 peptide-based image-guided alpha-particle radiopharmaceutical therapies for neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2024; 51:1147-1162. [PMID: 37955792 PMCID: PMC10881741 DOI: 10.1007/s00259-023-06494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The lead-203 (203Pb)/lead-212 (212Pb) elementally identical radionuclide pair has gained significant interest in the field of image-guided targeted alpha-particle therapy for cancer. Emerging evidence suggests that 212Pb-labeled peptide-based radiopharmaceuticals targeting somatostatin receptor subtype 2 (SSTR2) may provide improved effectiveness compared to beta-particle-based therapies for neuroendocrine tumors (NETs). This study aims to improve the performance of SSTR2-targeted radionuclide imaging and therapy through structural modifications to Tyr3-octreotide (TOC)-based radiopharmaceuticals. METHODS New SSTR2-targeted peptides were designed and synthesized with the goal of optimizing the incorporation of Pb isotopes through the use of a modified cyclization technique; the introduction of a Pb-specific chelator (PSC); and the insertion of polyethylene glycol (PEG) linkers. The binding affinity of the peptides and the cellular uptake of 203Pb-labeled peptides were evaluated using pancreatic AR42J (SSTR2+) tumor cells and the biodistribution and imaging of the 203Pb-labeled peptides were assessed in an AR42J tumor xenograft mouse model. A lead peptide was identified (i.e., PSC-PEG2-TOC), which was then further evaluated for efficacy in 212Pb therapy studies. RESULTS The lead radiopeptide drug conjugate (RPDC) - [203Pb]Pb-PSC-PEG2-TOC - significantly improved the tumor-targeting properties, including receptor binding and tumor accumulation and retention as compared to [203Pb]Pb-DOTA0-Tyr3-octreotide (DOTATOC). Additionally, the modified RPDC exhibited faster renal clearance than the DOTATOC counterpart. These advantageous characteristics of [212Pb]Pb-PSC-PEG2-TOC resulted in a dose-dependent therapeutic effect with minimal signs of toxicity in the AR42J xenograft model. Fractionated administrations of 3.7 MBq [212Pb]Pb-PSC-PEG2-TOC over three doses further improved anti-tumor effectiveness, resulting in 80% survival (70% complete response) over 120 days in the mouse model. CONCLUSION Structural modifications to chelator and linker compositions improved tumor targeting and pharmacokinetics (PK) of 203/212Pb peptide-based radiopharmaceuticals for NET theranostics. These findings suggest that PSC-PEG2-TOC is a promising candidate for Pb-based targeted radionuclide therapy for NETs and other types of cancers that express SSTR2.
Collapse
Affiliation(s)
- Dongyoul Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul, Republic of Korea
| | - Mengshi Li
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | - Dijie Liu
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | | | | | | | - Prerna Rastogi
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - F Christopher Pigge
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA
| | - Yusuf Menda
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Michael K Schultz
- Perspective Therapeutics, Inc., Coralville, IA, USA.
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA.
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
- Department of Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
3
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
4
|
Price T, Wagner L, Rosecker V, Havlíčková J, Prior TJ, Kubíček V, Hermann P, Stasiuk GJ. Inorganic Chemistry of the Tripodal Picolinate Ligand Tpaa with Gallium(III) and Radiolabeling with Gallium-68. Inorg Chem 2023; 62:20769-20776. [PMID: 37793007 PMCID: PMC10731648 DOI: 10.1021/acs.inorgchem.3c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 10/06/2023]
Abstract
We report here the improved synthesis of the tripodal picolinate chelator Tpaa, with an overall yield of 41% over five steps, in comparison to the previously reported 6% yield. Tpaa was investigated for its coordination chemistry with Ga(III) and radiolabeling properties with gallium-68 (68Ga). The obtained crystal structure for [Ga(Tpaa)] shows that the three picolinate arms coordinate to the Ga(III) ion, fully occupying the octahedral coordination geometry. This is supported by 1H NMR which shows that the three arms are symmetrical when coordinated to Ga(III). Assessment of the thermodynamic stability through potentiometry gives log KGa-Tpaa = 21.32, with a single species being produced across the range of pH 3.5-7.5. Tpaa achieved >99% radiochemical conversion with 68Ga under mild conditions ([Tpaa] = 6.6 μM, pH 7.4, 37 °C) with a molar activity of 3.1 GBq μmol-1. The resulting complex, [68Ga][Ga(Tpaa)], showed improved stability over the previously reported [68Ga][Ga(Dpaa)(H2O)] in a serum challenge, with 32% of [68Ga][Ga(Tpaa)] remaining intact after 30 min of incubation with fetal bovine serum.
Collapse
Affiliation(s)
- Thomas
W. Price
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, United
Kingdom
| | - Laurène Wagner
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, United
Kingdom
| | - Veronika Rosecker
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, United
Kingdom
| | - Jana Havlíčková
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Timothy J. Prior
- Chemistry,
School of Natural Sciences, University of
Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Vojtěch Kubíček
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Petr Hermann
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Graeme J. Stasiuk
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, United
Kingdom
| |
Collapse
|
5
|
Wang Y, Yuan H, Tang S, Liu Y, Cai P, Liu N, Chen Y, Zhou Z. The effects of novel macrocyclic chelates on the targeting properties of the 68Ga-labeled Gastrin releasing peptide receptor antagonist RM2. EJNMMI Res 2023; 13:56. [PMID: 37285007 PMCID: PMC10247930 DOI: 10.1186/s13550-023-01005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPr) is a molecular target for the visualization of prostate cancer. Bombesin (BN) analogs are short peptides with a high affinity for GRPr. RM2 is a bombesin-based antagonist. It has been demonstrated that RM2 have superior in vivo biodistribution and targeting properties than high-affinity receptor agonists. This study developed new RM2-like antagonists by introducing the novel bifunctional chelators AAZTA5 and DATA5m to RM2. RESULTS The effects of different macrocyclic chelating groups on drug targeting properties and the possibility of preparing 68Ga-radiopharmaceuticals in a kit-based protocol were investigated using 68Ga-labeled entities. Both new RM2 variants were labelled with 68Ga3+ resulting in high yields, stability, and low molarity of the ligand. DATA5m-RM2 and AAZTA5-RM2 incorporated 68Ga3+ nearly quantitatively at room temperature within 3-5 min, and the labelling yield for 68Ga-DOTA-RM2 was approximately 10% under the same conditions. 68Ga-AAZTA5-RM2 showed stronger hydrophilicity according to partition coefficient. Although the maximal cellular uptake values of the three compounds were similar, 68Ga-AAZTA5-RM2 and 68Ga-DATA5m-RM2 peaked more rapidly. Biodistribution studies showed high and specific tumor uptake, with a maximum of 9.12 ± 0.81 percentage injected activity per gram of tissue (%ID/g) for 68Ga-DATA5m-RM2 and 7.82 ± 0.61%ID/g for 68Ga-AAZTA5-RM2 at 30 min after injection. CONCLUSIONS The conditions for complexation of DATA5m-RM2 and AAZTA5-RM2 with gallium-68 are milder, faster and require less amount of precursors than DOTA-RM2. Chelators had an evident influence on the pharmacokinetics and targeting properties of 68Ga-X-RM2 derivatives. Positively charged 68Ga-DATA5m-RM2 provided a high tumor uptake, high image contrast and good capability of targeting GRPr.
Collapse
Affiliation(s)
- Yinwen Wang
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Hongmei Yuan
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Sufan Tang
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Yang Liu
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Ping Cai
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China
| | - Nan Liu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yue Chen
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China.
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
| | - Zhijun Zhou
- The Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan, China.
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan, China.
| |
Collapse
|
6
|
Deyev SM, Xu T, Liu Y, Schulga A, Konovalova E, Garousi J, Rinne SS, Larkina M, Ding H, Gräslund T, Orlova A, Tolmachev V, Vorobyeva A. Influence of the Position and Composition of Radiometals and Radioiodine Labels on Imaging of Epcam Expression in Prostate Cancer Model Using the DARPin Ec1. Cancers (Basel) 2021; 13:cancers13143589. [PMID: 34298801 PMCID: PMC8304184 DOI: 10.3390/cancers13143589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Metastasis-targeting therapy might improve outcomes in oligometastatic prostate cancer. Epithelial cell adhesion molecule (EpCAM) is overexpressed in 40–60% of prostate cancer cases and might be used as a target for specific delivery of toxins and drugs. Radionuclide molecular imaging could enable non-invasive detection of EpCAM and stratification of patients for targeted therapy. Designed ankyrin repeat proteins (DARPins) are scaffold proteins, which can be selected for specific binding to different targets. The DARPin Ec1 binds strongly to EpCAM. To determine an optimal design of Ec1-based probes, we labeled Ec1 at two different positions with four different nuclides (68Ga, 111In, 57Co and 125I) and investigated the impact on Ec1 biodistribution. We found that the C-terminus is the best position for labeling and that 111In and 125I provide the best imaging contrast. This study might be helpful for scientists developing imaging probes based on scaffold proteins. Abstract The epithelial cell adhesion molecule (EpCAM) is intensively overexpressed in 40–60% of prostate cancer (PCa) cases and can be used as a target for the delivery of drugs and toxins. The designed ankyrin repeat protein (DARPin) Ec1 has a high affinity to EpCAM (68 pM) and a small size (18 kDa). Radiolabeled Ec1 might be used as a companion diagnostic for the selection of PCa patients for therapy. The study aimed to investigate the influence of radiolabel position (N- or C-terminal) and composition on the targeting and imaging properties of Ec1. Two variants, having an N- or C-terminal cysteine, were produced, site-specifically conjugated to a DOTA chelator and labeled with cobalt-57, gallium-68 or indium-111. Site-specific radioiodination was performed using ((4-hydroxyphenyl)-ethyl)maleimide (HPEM). Biodistribution of eight radiolabeled Ec1-probes was measured in nude mice bearing PCa DU145 xenografts. In all cases, positioning of a label at the C-terminus provided the best tumor-to-organ ratios. The non-residualizing [125I]I-HPEM label provided the highest tumor-to-muscle and tumor-to-bone ratios and is more suitable for EpCAM imaging in early-stage PCa. Among the radiometals, indium-111 provided the highest tumor-to-blood, tumor-to-lung and tumor-to-liver ratios and could be used at late-stage PCa. In conclusion, label position and composition are important for the DARPin Ec1.
Collapse
Affiliation(s)
- Sergey M. Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (S.M.D.); (A.S.); (M.L.); (A.O.); (A.V.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Bio-Nanophotonic Lab., Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (J.G.)
| | - Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (J.G.)
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (S.M.D.); (A.S.); (M.L.); (A.O.); (A.V.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (J.G.)
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden; (H.D.); (T.G.)
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Maria Larkina
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (S.M.D.); (A.S.); (M.L.); (A.O.); (A.V.)
- Department of Pharmaceutical Analysis, Siberian State Medical University (SSMU), 2, Moscow Trakt, 634050 Tomsk, Russia
| | - Haozhong Ding
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden; (H.D.); (T.G.)
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden; (H.D.); (T.G.)
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (S.M.D.); (A.S.); (M.L.); (A.O.); (A.V.)
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (S.M.D.); (A.S.); (M.L.); (A.O.); (A.V.)
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (J.G.)
- Correspondence:
| | - Anzhelika Vorobyeva
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (S.M.D.); (A.S.); (M.L.); (A.O.); (A.V.)
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (J.G.)
| |
Collapse
|
7
|
Renard E, Moreau M, Bellaye PS, Guillemin M, Collin B, Prignon A, Denat F, Goncalves V. Positron Emission Tomography Imaging of Neurotensin Receptor-Positive Tumors with 68Ga-Labeled Antagonists: The Chelate Makes the Difference Again. J Med Chem 2021; 64:8564-8578. [PMID: 34107209 DOI: 10.1021/acs.jmedchem.1c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotensin receptor 1 (NTS1) is involved in the development and progression of numerous cancers, which makes it an interesting target for the development of diagnostic and therapeutic agents. A small molecule NTS1 antagonist, named [177Lu]Lu-IPN01087, is currently evaluated in phase I/II clinical trials for the targeted therapy of neurotensin receptor-positive cancers. In this study, we synthesized seven compounds based on the structure of NTS1 antagonists, bearing different chelating agents, and radiolabeled them with gallium-68 for PET imaging. These compounds were evaluated in vitro and in vivo in mice bearing a HT-29 xenograft. The compound [68Ga]Ga-bisNODAGA-16 showed a promising biodistribution profile with mainly signal in tumor (4.917 ± 0.776%ID/g, 2 h post-injection). Its rapid clearance from healthy tissues led to high tumor-to-organ ratios, resulting in highly contrasted PET images. These results were confirmed on subcutaneous xenografts of AsPC-1 tumor cells, a model of NTS1-positive human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Emma Renard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | | | - Mélanie Guillemin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Bertrand Collin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Aurélie Prignon
- UMS28 Laboratoire d'Imagerie Moléculaire Positonique (LIMP), Sorbonne Université, Paris 75020, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
8
|
Li L, Kuo HT, Wang X, Merkens H, Colpo N, Radchenko V, Schaffer P, Lin KS, Bénard F, Orvig C. tBu 4octapa-alkyl-NHS for metalloradiopeptide preparation. Dalton Trans 2020; 49:7605-7619. [PMID: 32459231 DOI: 10.1039/d0dt00845a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The peptide is an important class of biological targeting molecule; herein, a new bifunctional octadentate non-macrocyclic H4octapa, tBu4octapa-alkyl-NHS, which is compatible with solid-phase peptide synthesis and thus useful for radiopeptide preparation, has been synthesized. To preserve denticity, the alkyl-N-hydroxylsuccinimide linker was covalently attached to the methylene-carbon on one of the acetate arms, yielding a chiral carbon center. According to density-functional theory (DFT) calculations using [Lu(octapa-alkyl-benzyl-ester)]- as a simulation model, the chirality has minimal effects on the complex geometry; regardless of the S-/R-stereochemistry, DFT calculations revealed two possible geometric isomers, distorted bicapped trigonal antiprism (DBTA) and distorted square antiprism (DSA), due to the asymmetry in the chelator. To evaluate the biological behavior of the new bifunctionalization, two well-studied PSMA (prostate-specific membrane antigen)-targeting peptidomimetics of varying hydrophobicity were chosen as proof-of-principle targeting vector molecules. Radiolabeling both bioconjugates with lutetium-177 was highly efficient at room temperature in 15 min at micromolar chelator concentration pH = 7. Both the in vitro serum challenge and the lanthanum(iii) challenge studies revealed complex lability, and notably, progressive bone accumulation was only observed with the more hydrophobic linker (i.e. H4octapa-alkyl-PSMA617). This in vivo result informs potential alterations exerted by the linker on the complex geometry and stability, with an appropriate biological targeting vector adopted for such evaluations.
Collapse
Affiliation(s)
- Lily Li
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada. and Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6 T 1Z1, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
9
|
Aleshin GY, Egorova BV, Priselkova AB, Zamurueva LS, Khabirova SY, Zubenko AD, Karnoukhova VA, Fedorova OA, Kalmykov SN. Zinc and copper complexes with azacrown ethers and their comparative stability in vitro and in vivo. Dalton Trans 2020; 49:6249-6258. [PMID: 32329503 DOI: 10.1039/d0dt00645a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper-based radiopharmaceuticals are of high interest these days owing to the decay properties of copper radioisotopes. In contrast, labeled zinc compounds have been less studied for applications in nuclear medicine. In this study, the stability of labeled zinc and copper complexes with two azacrown ether ligands was investigated and compared. Then, the in vitro and in vivo stability of the studied zinc complexes was demonstrated, with the complexes showing promise for biomedical applications. In contrast, analogous copper complexes quickly dissociated in the presence of serum proteins. Furthermore, a simple method for the production of radiochemically pure 65Zn was proposed, and the opportunity for its use as a surrogate radionuclide for research into potential zinc-containing radiopharmaceuticals was demonstrated.
Collapse
Affiliation(s)
- Gleb Yu Aleshin
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| | - Bayirta V Egorova
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| | - Anna B Priselkova
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| | - Lyubov S Zamurueva
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| | - Sofia Yu Khabirova
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| | - Anastasia D Zubenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Vavilova, 28, GSP-1, Moscow, Russian Federation
| | - Valentina A Karnoukhova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Vavilova, 28, GSP-1, Moscow, Russian Federation
| | - Olga A Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Vavilova, 28, GSP-1, Moscow, Russian Federation
| | - Stepan N Kalmykov
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation. and National Research Center "Kurchatov Institute", 123098 Akademika Kurchatova sqr., 1, Moscow, Russian Federation
| |
Collapse
|
10
|
Renard I, Archibald SJ. CXCR4-targeted metal complexes for molecular imaging. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Compatibility of [99mTc]Tc-EDDA/HYNIC-TOC and [68Ga] Ga-DOTA-TOC in a syringe for intravenous administration. Nucl Med Commun 2020; 41:11-17. [DOI: 10.1097/mnm.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Makris G, Kuchuk M, Gallazzi F, Jurisson SS, Smith CJ, Hennkens HM. Somatostatin receptor targeting with hydrophilic [99mTc/186Re]Tc/Re-tricarbonyl NODAGA and NOTA complexes. Nucl Med Biol 2019; 71:39-46. [DOI: 10.1016/j.nucmedbio.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/26/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
|
13
|
Preliminary PET/CT Imaging with Somatostatin Analogs [ 68Ga]DOTAGA-TATE and [ 68Ga]DOTAGA-TOC. Mol Imaging Biol 2018; 19:878-884. [PMID: 28349291 DOI: 10.1007/s11307-017-1072-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Somatostatin receptor positron emission tomography/X-ray computed tomography (SSTR-PET/CT) is a well-established technique for staging and detection of neuroendocrine tumors (NETs). Ga-68-labeled DOTA-conjugated octreotide analogs are the privileged radiotracers for diagnosis and therapeutic monitoring of NETs. Hence, we were interested in assessing the influence of promising, newer variant DOTAGA on the hydrophilicity, pharmacokinetics, and lesion pick-up of somatostatin analogs. Herein, the potential of ([68Ga]DOTAGA, Tyr3, Thr8) octreotide ([68Ga]DOTAGA-TATE) and ([68Ga]DOTAGA, Tyr3) octreotide ([68Ga]DOTAGA-TOC) as NET imaging agents has been investigated. PROCEDURES Amenability of [68Ga]DOTAGA-(TATE/TOC) to kit-type formulation has been demonstrated. Biodistribution studies were carried out in normal rats at 1 h post-injection (p.i.). [68Ga]DOTAGA-(TATE/TOC) PET/CT scans were carried out in patients (70-170 MBq, 1 h p.i.) with histologically confirmed well-differentiated NETs. RESULTS [68Ga]DOTAGA-TATE exhibited hydrophilicity similar to [68Ga]DOTA-TATE (log P = -3.51 vs -3.69) whereas [68Ga]DOTAGA-TOC was more hydrophilic than [68Ga]DOTA-TOC (log P = -3.27 vs -2.93). [68Ga]DOTAGA-TATE and [68Ga]DOTA-TATE showed almost identical blood and kidney uptake in normal rats whereas significantly fast clearance (p < 0.05) of [68Ga]DOTAGA-TATE was observed from other non-specific organs (liver, lungs, spleen, intestine). [68Ga]DOTAGA-TOC also demonstrated rapid clearance from blood and kidneys (p < 0.05) in comparison to [68Ga]DOTA-TOC. The metastatic lesions in NET patients were well identified by [68Ga]DOTAGA-TATE and [68Ga]DOTAGA-TOC. CONCLUSION The phenomenal analogy was observed between [68Ga]DOTAGA-TATE and [68Ga]DOTA-TATE as well as between [68Ga]DOTAGA-TOC and [68Ga]DOTA-TOC in biodistribution studies in rats. The good lesion detection ability of the two radiotracers indicates their potential as NET imaging radiotracers.
Collapse
|
14
|
Cheng S, Lang L, Wang Z, Jacobson O, Yung B, Zhu G, Gu D, Ma Y, Zhu X, Niu G, Chen X. Positron Emission Tomography Imaging of Prostate Cancer with Ga-68-Labeled Gastrin-Releasing Peptide Receptor Agonist BBN 7-14 and Antagonist RM26. Bioconjug Chem 2018; 29:410-419. [PMID: 29254329 PMCID: PMC5824342 DOI: 10.1021/acs.bioconjchem.7b00726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Radiolabeled
bombesin (BBN) analogs have long been used for developing
gastrin-releasing peptide receptor (GRPR) targeted imaging probes,
and tracers with excellent in vivo performance including high tumor
uptake, high contrast, and favorable pharmacokinetics are highly desired.
In this study, we compared the 68Ga-labeled GRPR agonist
(Gln–Trp–Ala–Val–Gly–His–Leu–Met–NH2, BBN7–14) and antagonist (d-Phe–Gln–Trp–Ala–Val–Gly–His–Sta–Leu–NH2, RM26) for the positron emission tomography (PET) imaging
of prostate cancer. The in vitro stabilities, receptor binding, cell
uptake, internalization, and efflux properties of the probes 68Ga–1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)–Aca–BBN7–14 and 68Ga–NOTA–poly(ethylene
glycol)3 (PEG3)–RM26 were studied in
PC-3 cells, and the in vivo GRPR targeting abilities and kinetics
were investigated using PC-3 tumor xenografted mice. BBN7–14, PEG3-RM26, NOTA–Aca–BBN7–14, and NOTA–PEG3–RM26 showed similar binding
affinity to GRPR. In PC-3 tumor-bearing mice, the tumor uptake of 68Ga–NOTA–PEG3–RM26 remained
at around 3.00 percentage of injected dose per gram of tissue within
1 h after injection, in contrast with 68Ga–NOTA–Aca–BBN7–14, which demonstrated rapid elimination and high
background signal. Additionally, the majority of the 68Ga–NOTA–PEG3–RM26 remained intact
in mouse serum at 5 min after injection, while almost all of the 68Ga–NOTA–Aca–BBN7–14 was degraded under the same conditions, demonstrating more-favorable
in vivo pharmacokinetic properties and metabolic stabilities of the
antagonist probe relative to its agonist counterpart. Overall, the
antagonistic GRPR targeted probe 68Ga–NOTA–PEG3–RM26 is a more-promising candidate than the agonist 68Ga–NOTA–Aca–BBN7–14 for the PET imaging of prostate cancer patients.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430000, PR China.,Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Dongyu Gu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430000, PR China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
15
|
Bandara N, Zheleznyak A, Cherukuri K, Griffith DA, Limberakis C, Tess DA, Jianqing C, Waterhouse R, Lapi SE. Evaluation of Cu-64 and Ga-68 Radiolabeled Glucagon-Like Peptide-1 Receptor Agonists as PET Tracers for Pancreatic β cell Imaging. Mol Imaging Biol 2016; 18:90-8. [PMID: 25987465 DOI: 10.1007/s11307-015-0861-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Copper-64 (Cu-64) and Galium-68 (Ga-68) radiolabeled DO3A and NODA conjugates of exendin-4 were used for preclinical imaging of pancreatic β cells via targeting of glucagon-like peptide-1 receptor (GLP-1R). PROCEDURES DO3A-VS- and NODA-VS-tagged Cys(40)exendin-4 (DO3A-VS-Cys(40)-exendin-4 and NODA-VS-Cys(40)-exendin-4, respectively) were labeled with Cu-64 and Ga-68 using standard techniques. Biodistribution and dynamic positron emission tomography (PET) were carried out in normal Sprague-Dawley (SD) rats. Ex vivo autoradiography imaging was conducted with freshly frozen pancreatic thin sections. RESULTS DO3A-VS- and NODA-VS-Cys(40)-exendin-4 analogues were labeled with Cu-64 and Ga-68 to a specific activity of 518.7 ± 3.7 Ci/mmol (19.19 ± 0.14 TBq/mmol) and radiochemical yield above 98 %. Biodistribution data demonstrated pancreatic uptake of 0.11 ± 0.02 %ID/g for [(64)Cu]DO3A-VS-, 0.14 ± 0.02 %ID/g for [(64)Cu]NODA-VS-, 0.11 ± 0.03 for [(68)Ga]DO3A-VS-, and 0.26 ± 0.03 for [(68)Ga]NODA-VS-Cys(40)-exendin-4. Excess exendin-4 and exendin-(9-39)-amide displaced all four Cu-64 and Ga-68 labeled exendin-4 derivatives in blocking studies. CONCLUSIONS [(64)Cu]/[(68)Ga]DO3A-VS-Cys(40)- and [(64)Cu]/[(68)Ga]NODA-VS-Cys(40)-exendin-4 can be used as PET imaging agents specific for GLP-1R expressed on β cells. Here, we report the first evidence of pancreatic uptake visualized with exendin-4 derivative in a rat animal model via in vivo dynamic PET imaging.
Collapse
Affiliation(s)
- Nilantha Bandara
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alex Zheleznyak
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kaavya Cherukuri
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David A Griffith
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Chris Limberakis
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - David A Tess
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Chen Jianqing
- Clinical and Translational Imaging, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Rikki Waterhouse
- Clinical and Translational Imaging, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Suzanne E Lapi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Zhang C, Pan J, Lin KS, Dude I, Lau J, Zeisler J, Merkens H, Jenni S, Guérin B, Bénard F. Targeting the Neuropeptide Y1 Receptor for Cancer Imaging by Positron Emission Tomography Using Novel Truncated Peptides. Mol Pharm 2016; 13:3657-3664. [DOI: 10.1021/acs.molpharmaceut.6b00464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengcheng Zhang
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jinhe Pan
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Iulia Dude
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Joseph Lau
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jutta Zeisler
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Helen Merkens
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Silvia Jenni
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Brigitte Guérin
- Département
de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
17
|
Poschenrieder A, Schottelius M, Schwaiger M, Wester HJ. Preclinical evaluation of [(68)Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo - a comparison to [(68)Ga]pentixafor. EJNMMI Res 2016; 6:70. [PMID: 27655427 PMCID: PMC5031577 DOI: 10.1186/s13550-016-0227-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/17/2016] [Indexed: 01/20/2023] Open
Abstract
Background Due to its overexpression in a variety of tumor types, the chemokine receptor 4 (CXCR4) represents a highly relevant diagnostic and therapeutic target in nuclear oncology. Recently, [68Ga]pentixafor has emerged as an excellent imaging agent for positron emission tomography (PET) of CXCR4 expression in vivo. In this study, the corresponding [68Ga]-1,4,7-triazacyclononane-triacetic acid (NOTA) analog was preclinically evaluated and compared to the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) parent compound [68Ga]pentixafor. Methods NOTA-pentixafor was synthesized by combining solid and solution-phase peptide synthesis. The CXCR4 receptor affinities of [68Ga]pentixafor and [68Ga]NOTA-pentixafor were determined in competitive binding assays using the leukemic CXCR4-expressing Jurkat T-cell line and [125I]FC131 as the radioligand. Internalization and cell efflux assays were performed using CXCR4-transfected Chem-1 cells. Small-animal PET and biodistribution studies were carried out using Daudi-tumor bearing SCID mice. Results [68Ga]NOTA-pentixafor showed a 1.4-fold improved affinity towards CXCR4 (IC50). However, internalization efficiency into CXCR4+-Chem-1 cells was substantially decreased compared to [68Ga]pentixafor. Accordingly, small-animal PET imaging and biodistribution studies revealed a 9.5-fold decreased uptake of [68Ga]NOTA-pentixafor in Daudi lymphoma xenografts (1.7 ± 0.4 % vs 16.2 ± 3.8 % ID/g at 90 min p.i.) and higher levels of non-specific accumulation, primarily in the excretory organs such as the liver, intestines, and kidneys (2.3 ± 0.9 % vs 2.0 ± 0.3 % ID/g, 1.9 ± 0.8 % vs 0.7 ± 0.2 % ID/g, and 2.7 ± 1.1 % vs 1.7 ± 0.9 % ID/g, respectively). Conclusions Despite enhanced CXCR4-affinity in vitro, the [68Ga]NOTA-analog of pentixafor showed reduced CXCR4 targeting efficiency in vivo. In combination with enhanced background accumulation, this resulted in significantly inferior PET imaging contrast, and thus, [68Ga]NOTA-pentixafor offers no advantages over [68Ga]pentixafor.
Collapse
Affiliation(s)
- Andreas Poschenrieder
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748, Garching, Germany.
| | - Margret Schottelius
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748, Garching, Germany
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, München, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748, Garching, Germany
| |
Collapse
|
18
|
Seemann J, Waldron B, Parker D, Roesch F. DATATOC: a novel conjugate for kit-type 68Ga labelling of TOC at ambient temperature. EJNMMI Radiopharm Chem 2016; 1:4. [PMID: 29564381 PMCID: PMC5843802 DOI: 10.1186/s41181-016-0007-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background The widespread acceptance and application of 68Ga-PET depends on our ability to develop radiopharmaceuticals that can be prepared in a convenient and suitable manner. A kit-type labelling protocol provides such characteristics and requires chelators that can be radiolabelled under exceptionally mild conditions. Recently the DATA chelators have been introduced that fulfil these requirements. In continuing their development, the synthesis and radiolabelling of the first DATA bifunctional chelator (BFC) and peptide conjugate are described. Results A BFC derived from the DATA ligand (2,2'-(6-((carboxymethyl)amino)-1,4-diazepane-1,4-diyl)diacetic acid) has been synthesised in five steps from simple building blocks, with an overall yield of 8 %. DATAM5-3tBu (5-[1,4-Bis-tert-butoxycarbonylmethyl-6-(tert-butoxycarbonylmethyl-methyl-amino)-[1, 4]diazepan-6-yl]-pentanoic acid) has been coupled to [DPhe1][Tyr3]-octreotide (TOC) and the resulting peptide conjugate (DATATOC) radiolabelled with purified 68Ga derived via four different 68Ge/68Ga generator post-processing (PP) methods. The stability and lipophilicity of the radiotracer have been assessed and a kit-type formulation for radiolabelling evaluated. 68Ga-DATATOC has been prepared with a > 95 % radiochemical yield (RCY) within 1 (fractionated and acetone-PP) and 10 min (ethanol- and NaCl-PP) at 23 °C (pH 4.2-4.9, 13 nmol). The radiolabelled peptide is stable in the presence of human serum. Lipophilicity of 68Ga-DATATOC was calculated as logP = -3.2 ± 0.3, with a HPLC retention time (tR = 10.4 min) similar to 68Ga-DOTATOC (logP = -2.9 ± 0.4, tR = 10.3 min). Kit-type labelling from a lyophilised solid using acetone-PP based labelling achieves > 95 % RCY in 10 min at 23 °C. Conclusions The favourable labelling properties of the DATA chelators have been retained for DATATOC. High radiochemical purity can be achieved at 23 °C in less than 1 min and from a kit formulation. The speed, reliability, ease, flexibility and simplicity with which 68Ga-DATATOC can be prepared makes it a very attractive alternative to current standards.
Collapse
Affiliation(s)
- Johanna Seemann
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - Bradley Waldron
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE UK
| | - Frank Roesch
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| |
Collapse
|
19
|
Varasteh Z, Mitran B, Rosenström U, Velikyan I, Rosestedt M, Lindeberg G, Sörensen J, Larhed M, Tolmachev V, Orlova A. The effect of macrocyclic chelators on the targeting properties of the 68 Ga-labeled gastrin releasing peptide receptor antagonist PEG 2 -RM26. Nucl Med Biol 2015; 42:446-454. [DOI: 10.1016/j.nucmedbio.2014.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/26/2014] [Accepted: 12/07/2014] [Indexed: 11/30/2022]
|
20
|
Nedrow JR, White AG, Modi J, Nguyen K, Chang AJ, Anderson CJ. Positron emission tomographic imaging of copper 64- and gallium 68-labeled chelator conjugates of the somatostatin agonist tyr3-octreotate. Mol Imaging 2015; 13. [PMID: 25060207 DOI: 10.2310/7290.2014.00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The bifunctional chelator and radiometal have been shown to have a direct effect on the pharmacokinetics of somatostatin receptor (SSTR)-targeted imaging agents. We evaluated three Y3-TATE analogues conjugated to NOTA-based chelators for radiolabeling with 64Cu and 68Ga for small-animal positron emission tomographic/computed tomographic (PET/CT) imaging. Two commercially available NOTA analogues, p-SCN-Bn-NOTA and NODAGA, were evaluated. The p-SCN-Bn-NOTA analogues were conjugated to Y3-TATE through β-Ala and PEG8 linkages. The NODAGA chelator was directly conjugated to Y3-TATE. The analogues labeled with 64Cu or 68Ga were analyzed in vitro for binding affinity and internalization and in vivo by PET/CT imaging, biodistribution, and Cerenkov imaging (68Ga analogues). We evaluated the effects of the radiometals, chelators, and linkers on the performance of the SSTR subtype 2--targeted imaging agents and also compared them to a previously reported agent, 64Cu-CB-TE2A-Y3-TATE. We found that the method of conjugation, particularly the length of the linkage between the chelator and the peptide, significantly impacted tumor and nontarget tissue uptake and clearance. Among the 64Cu- and 68Ga-labeled NOTA analogues, NODAGA-Y3-TATE had the most optimal in vivo behavior and was comparable to 64Cu-CB-TE2A-Y3-TATE. An advantage of NODAGA-Y3-TATE is that it allows labeling with 64Cu and 68Ga, providing a versatile PET probe for imaging SSTr subtype 2-positive tumors.
Collapse
|
21
|
Velikyan I. Continued rapid growth in68Ga applications: update 2013 to June 2014. J Labelled Comp Radiopharm 2015; 58:99-121. [DOI: 10.1002/jlcr.3250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Irina Velikyan
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; SE-75183 Uppsala Sweden
- Department of Radiology, Oncology and Radiation Science; Uppsala University; SE-75285 Uppsala Sweden
- PET-Centre, Centre for Medical Imaging; Uppsala University Hospital; SE-75185 Uppsala Sweden
| |
Collapse
|
22
|
Lin KS, Pan J, Amouroux G, Turashvili G, Mesak F, Hundal-Jabal N, Pourghiasian M, Lau J, Jenni S, Aparicio S, Bénard F. In Vivo Radioimaging of Bradykinin Receptor B1, a Widely Overexpressed Molecule in Human Cancer. Cancer Res 2014; 75:387-93. [DOI: 10.1158/0008-5472.can-14-1603] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Zeglis BM, Houghton JL, Evans MJ, Viola-Villegas N, Lewis JS. Underscoring the influence of inorganic chemistry on nuclear imaging with radiometals. Inorg Chem 2014; 53:1880-99. [PMID: 24313747 PMCID: PMC4151561 DOI: 10.1021/ic401607z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past several decades, radionuclides have matured from largely esoteric and experimental technologies to indispensible components of medical diagnostics. Driving this transition, in part, have been mutually necessary advances in biomedical engineering, nuclear medicine, and cancer biology. Somewhat unsung has been the seminal role of inorganic chemistry in fostering the development of new radiotracers. In this regard, the purpose of this Forum Article is to more visibly highlight the significant contributions of inorganic chemistry to nuclear imaging by detailing the development of five metal-based imaging agents: (64)Cu-ATSM, (68)Ga-DOTATOC, (89)Zr-transferrin, (99m)Tc-sestamibi, and (99m)Tc-colloids. In a concluding section, several unmet needs both in and out of the laboratory will be discussed to stimulate conversation between inorganic chemists and the imaging community.
Collapse
Affiliation(s)
- Brian M. Zeglis
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Jacob L. Houghton
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Michael J. Evans
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Nerissa Viola-Villegas
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Jason S. Lewis
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| |
Collapse
|