1
|
Ganai AM, Vrettos EI, Kyrkou SG, Zoi V, Khan Pathan T, Karpoormath R, Bouziotis P, Alexiou GA, Kastis GA, Protonotarios NE, Tzakos AG. Design Principles and Applications of Fluorescent Kinase Inhibitors for Simultaneous Cancer Bioimaging and Therapy. Cancers (Basel) 2024; 16:3667. [PMID: 39518106 PMCID: PMC11545566 DOI: 10.3390/cancers16213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Kinase inhibitors are potent therapeutic agents in cancer treatment, but their effectiveness is frequently restricted by the inability to image the tumor microenvironment. To address this constraint, kinase inhibitor-fluorophore conjugates have emerged as promising theranostic agents, allowing for simultaneous cancer diagnosis and treatment. These conjugates are gaining attention for their ability to visualize malignant tissues and concurrently enhance therapeutic interventions. This review explores the design principles governing the development of multimodal inhibitors, highlighting their potential as platforms for kinase tracking and inhibition via bioimaging. The structural aspects of constructing such theranostic agents are critically analyzed. This work could shed light on this intriguing field and provide adequate impetus for developing novel theranostic compounds based on small molecule inhibitors and fluorophores.
Collapse
Affiliation(s)
- Ab Majeed Ganai
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
| | - Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece; (V.Z.); (G.A.A.)
| | - Tabasum Khan Pathan
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa;
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa;
| | - Penelope Bouziotis
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
| | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece; (V.Z.); (G.A.A.)
| | - George A. Kastis
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
- Mathematics Research Center, Academy of Athens, 11527 Athens, Greece
| | - Nicholas E. Protonotarios
- Institute of Nuclear and Radiological Science and Technology, Energy and Safety (INRASTES), National Center for Scientific Research “Demokritos”, 15310 Athens, Greece; (P.B.); (G.A.K.); (N.E.P.)
- Mathematics Research Center, Academy of Athens, 11527 Athens, Greece
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.G.); (E.I.V.); (S.G.K.); (T.K.P.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece
| |
Collapse
|
2
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Chan MH, Huang WT, Satpathy A, Su TY, Hsiao M, Liu RS. Progress and Viewpoints of Multifunctional Composite Nanomaterials for Glioblastoma Theranostics. Pharmaceutics 2022; 14:pharmaceutics14020456. [PMID: 35214188 PMCID: PMC8875488 DOI: 10.3390/pharmaceutics14020456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
The most common malignant tumor of the brain is glioblastoma multiforme (GBM) in adults. Many patients die shortly after diagnosis, and only 6% of patients survive more than 5 years. Moreover, the current average survival of malignant brain tumors is only about 15 months, and the recurrence rate within 2 years is almost 100%. Brain diseases are complicated to treat. The reason for this is that drugs are challenging to deliver to the brain because there is a blood–brain barrier (BBB) protection mechanism in the brain, which only allows water, oxygen, and blood sugar to enter the brain through blood vessels. Other chemicals cannot enter the brain due to their large size or are considered harmful substances. As a result, the efficacy of drugs for treating brain diseases is only about 30%, which cannot satisfy treatment expectations. Therefore, researchers have designed many types of nanoparticles and nanocomposites to fight against the most common malignant tumors in the brain, and they have been successful in animal experiments. This review will discuss the application of various nanocomposites in diagnosing and treating GBM. The topics include (1) the efficient and long-term tracking of brain images (magnetic resonance imaging, MRI, and near-infrared light (NIR)); (2) breaking through BBB for drug delivery; and (3) natural and chemical drugs equipped with nanomaterials. These multifunctional nanoparticles can overcome current difficulties and achieve progressive GBM treatment and diagnosis results.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Aishwarya Satpathy
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| |
Collapse
|
4
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
5
|
Bolcaen J, Kleynhans J, Nair S, Verhoeven J, Goethals I, Sathekge M, Vandevoorde C, Ebenhan T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021; 11:7911-7947. [PMID: 34335972 PMCID: PMC8315062 DOI: 10.7150/thno.56639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Janke Kleynhans
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
7
|
Neuber C, Belter B, Mamat C, Pietzsch J. Radiopharmacologist's and Radiochemist's View on Targeting the Eph/Ephrin Receptor Tyrosine Kinase System. ACS OMEGA 2020; 5:16318-16331. [PMID: 32685795 PMCID: PMC7364440 DOI: 10.1021/acsomega.0c01058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/25/2020] [Indexed: 05/06/2023]
Abstract
In the past decade, there have been extensive efforts to open up the Eph/ephrin subfamily of the receptor tyrosine kinase family for diagnostic and therapeutic applications. Besides classical pharmaceutical developments, which focus either on drugs targeting the extracellular ligand binding domains or on the intracellular tyrosine kinase domains of these receptors, there also have been first radiopharmaceutical approaches. Here the focus is on the development of specific and selective probes for molecular imaging, particularly by means of positron emission tomography, and the functional characterization of the Eph/ephrin subfamily in certain target tissues. The aim of this mini-review is to summarize the different approaches toward Eph-targeting radiotracers by using antibodies, peptides, and small molecules and to discuss their radiopharmacological characterization. With regard to the small molecules, further considerations will focus on the design and synthesis of nonradioactive reference compounds and precursors as well as on radiolabeling strategies.
Collapse
Affiliation(s)
- Christin Neuber
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer
Research, Department of Radiopharmaceutical
and Chemical Biology, 01328 Dresden, Germany
| | - Birgit Belter
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer
Research, Department of Radiopharmaceutical
and Chemical Biology, 01328 Dresden, Germany
| | - Constantin Mamat
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer
Research, Department of Radionuclide Theragnostics, 01328 Dresden, Germany
- Technische
Universität Dresden, School of Science,
Faculty of Chemistry and Food Chemistry, 01062 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer
Research, Department of Radiopharmaceutical
and Chemical Biology, 01328 Dresden, Germany
- Technische
Universität Dresden, School of Science,
Faculty of Chemistry and Food Chemistry, 01062 Dresden, Germany
- E-mail:
| |
Collapse
|
8
|
Targeting MMP-14 for dual PET and fluorescence imaging of glioma in preclinical models. Eur J Nucl Med Mol Imaging 2019; 47:1412-1426. [PMID: 31773232 DOI: 10.1007/s00259-019-04607-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE There is a clinical need for agents that target glioma cells for non-invasive and intraoperative imaging to guide therapeutic intervention and improve the prognosis of glioma. Matrix metalloproteinase (MMP)-14 is overexpressed in glioma with negligible expression in normal brain, presenting MMP-14 as an attractive biomarker for imaging glioma. In this study, we designed a peptide probe containing a near-infrared fluorescence (NIRF) dye/quencher pair, a positron emission tomography (PET) radionuclide, and a moiety with high affinity to MMP-14. This novel substrate-binding peptide allows dual modality imaging of glioma only after cleavage by MMP-14 to activate the quenched NIRF signal, enhancing probe specificity and imaging contrast. METHODS MMP-14 expression and activity in human glioma tissues and cells were measured in vitro by immunofluorescence and gel zymography. Cleavage of the novel substrate and substrate-binding peptides by glioma cells in vitro and glioma xenograft tumors in vivo was determined by NIRF imaging. Biodistribution of the radiolabeled MMP-14-binding peptide or substrate-binding peptide was determined in mice bearing orthotopic patient-derived xenograft (PDX) glioma tumors by PET imaging. RESULTS Glioma cells with MMP-14 activity showed activation and retention of NIRF signal from the cleaved peptides. Resected mouse brains with PDX glioma tumors showed tumor-to-background NIRF ratios of 7.6-11.1 at 4 h after i.v. injection of the peptides. PET/CT images showed localization of activity in orthotopic PDX tumors after i.v. injection of 68Ga-binding peptide or 64Cu-substrate-binding peptide; uptake of the radiolabeled peptides in tumors was significantly reduced (p < 0.05) by blocking with the non-labeled-binding peptide. PET and NIRF signals correlated linearly in the orthotopic PDX tumors. Immunohistochemistry showed co-localization of MMP-14 expression and NIRF signal in the resected tumors. CONCLUSIONS The novel MMP-14 substrate-binding peptide enabled PET/NIRF imaging of glioma models in mice, warranting future image-guided resection studies with the probe in preclinical glioma models.
Collapse
|
9
|
Uhl C, Markel M, Broggini T, Nieminen M, Kremenetskaia I, Vajkoczy P, Czabanka M. EphB4 mediates resistance to antiangiogenic therapy in experimental glioma. Angiogenesis 2018; 21:873-881. [PMID: 29987450 PMCID: PMC6208883 DOI: 10.1007/s10456-018-9633-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Alterations in vascular morphogenesis are hallmarks of antiangiogenesis-resistant tumor vessels. Vascular morphogenesis is regulated by ephrinB2-EphB4 system which may induce different biological effects depending on the oncological and molecular contexts. It was the aim of the current study to characterize the influence of EphB4 on tumor microcirculation after antiangiogenic treatment using different SF126 glioma models. MATERIALS AND METHODS Using an ecotropic transfection system, empty vector (pLXSN) or EphB4 (EphB4OE) overexpressing Phoenix-ECO cells were coimplanted with SF126 glioma cells subcutaneously (dorsal skinfold chamber, DSC) and orthotopically (cranial window, CW). Tumor volume was assessed by MRI. Intravital microscopy (IVM) allowed microcirculatory analysis (total {TVD} and functional vessel density {FVD}, diameter {D}, and permeability index {PI}) before and after antiangiogenic treatment (Sunitinib: DSC: 40 mg/kg BW, 6 days; CW: 80 mg/kg BW, 4 days). Immunohistochemistry included Pecam-Desmin, Ki67, TUNEL, and Caspase 3 stainings. RESULTS EphB4OE induced large and treatment-resistant tumor vessels (FVD: Control/Su: 110 ± 23 cm/cm2 vs. EphB4OE/Su: 103 ± 42 cm/cm2). Maintenance of pericyte-endothelial cell interactions (Control: 80 ± 12 vs. Control/Su: 47 ± 26%; EphB4OE: 88 ± 9 vs. EphB4OE/Su: 74 ± 25%) and reduced antiproliferative (Control: 637 ± 80 vs. Control/Su: 110 ± 22; EphB4OE: 298 ± 108 vs. EphB4OE/Su: 213 ± 80) and proapoptotic responses (Control: 196 ± 25 vs. Control / Su: 404 ± 60; EphB4OE: 183 ± 20 vs. EphB4OE/Su: 270 ± 66) were observed under EphB4 overexpression. CONCLUSION EphB4 overexpression leads to vascular resistance by altering vascular morphogenesis, pericyte coverage, and cellular proliferation/apoptosis in experimental SF126 glioma models.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/genetics
- Glioma/blood supply
- Glioma/drug therapy
- Glioma/genetics
- Glioma/pathology
- Humans
- Mice
- Mice, Nude
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Receptor, EphB4/genetics
- Receptor, EphB4/metabolism
Collapse
Affiliation(s)
- Christian Uhl
- Department of Neurosurgery, Universitätsmedizin Charite - Campus Mitte, Luisenstrasse 46, 10117, Berlin, Germany
| | - Moritz Markel
- Department of Neurosurgery, Universitätsmedizin Charite - Campus Mitte, Luisenstrasse 46, 10117, Berlin, Germany
| | - Thomas Broggini
- Department of Neurosurgery, Universitätsmedizin Charite - Campus Mitte, Luisenstrasse 46, 10117, Berlin, Germany
| | - Melina Nieminen
- Department of Neurosurgery, Universitätsmedizin Charite - Campus Mitte, Luisenstrasse 46, 10117, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Neurosurgery, Universitätsmedizin Charite - Campus Mitte, Luisenstrasse 46, 10117, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charite - Campus Mitte, Luisenstrasse 46, 10117, Berlin, Germany.
| | - Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charite - Campus Mitte, Luisenstrasse 46, 10117, Berlin, Germany.
| |
Collapse
|
10
|
Bugby SL, Lees JE, Perkins AC. Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clin Transl Imaging 2017; 5:323-341. [PMID: 28804703 PMCID: PMC5532406 DOI: 10.1007/s40336-017-0235-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/10/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE This review aims to summarise the hybrid modality radioguidance techniques currently in clinical use and development, and to discuss possible future avenues of research. Due to the novelty of these approaches, evidence of their clinical relevance does not yet exist. The purpose of this review is to inform nuclear medicine practitioners of current cutting edge research in radioguided surgery which may enter standard clinical practice within the next 5-10 years. Hybrid imaging is of growing importance to nuclear medicine diagnostics, but it is only with recent advances in technology that hybrid modalities are being investigated for use during radioguided surgery. These modalities aim to overcome some of the difficulties of surgical imaging while maintaining many benefits, or providing entirely new information unavailable to surgeons with traditional radioguidance. METHODS A literature review was carried out using online reference databases (Scopus, PubMed). Review articles obtained using this technique were citation mined to obtain further references. RESULTS In total, 2367 papers were returned, with 425 suitable for further assessment. 60 papers directly related to hybrid intraoperative imaging in radioguided surgery are reported on. Of these papers, 25 described the clinical use of hybrid imaging, 22 described the development of new hybrid probes and tracers, and 13 described the development of hybrid technologies for future clinical use. Hybrid gamma-NIR fluorescence was found to be the most common clinical technique, with 35 papers associated with these modalities. Other hybrid combinations include gamma-bright field imaging, gamma-ultrasound imaging, gamma-β imaging and β-OCT imaging. The combination of preoperative and intraoperative images is also discussed. CONCLUSION Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as in sentinel node detection.
Collapse
Affiliation(s)
- S L Bugby
- Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH UK
| | - J E Lees
- Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH UK
| | - A C Perkins
- Radiological Sciences, Division of Clinical Neuroscience, School of Medical, University of Nottingham, Nottingham, NG7 2UH UK.,Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, NH7 2UH UK
| |
Collapse
|
11
|
Paulus A, Desai P, Carney B, Carlucci G, Reiner T, Brand C, Weber WA. Development of a clickable bimodal fluorescent/PET probe for in vivo imaging. EJNMMI Res 2015; 5:120. [PMID: 26285667 PMCID: PMC4540712 DOI: 10.1186/s13550-015-0120-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
Background Fluorescent imaging agents are becoming evermore important in preclinical and clinical research. They do, however, suffer from poor tissue penetration, which makes optical fluorescence imaging incompatible with whole-body imaging techniques. The design of novel bimodal PET active and fluorescent tracers could therefore combine the benefits of optical imaging with radioactively labeled imaging probes. Herein, we report the synthesis and evaluation of a clickable 18F-labeled fluorescent dye. Methods An azide-modified BODIPY-Fl dye could be successfully radio-labeled with 18F using an 18F/19F exchange reaction of the boron-fluoride core of the BODIPY dye to yield a clickable bimodal PET/fluorescent imaging tool. In vitro as well as in vivo imaging (PET/fluorescence) using a bombesin analog was conducted to study the applicability of the dual-modality imaging probe. Results We use the radio-labeled small molecule, 18F-BODIPY-azide to label site-specifically different targeted peptides, based on a standard modular labeling protocol. Following the synthesis of a bimodal bombesin analog, we determine the peptide tracer’s performance in vitro and in vivo, exploring both the optical as well as PET imaging capabilities. Conclusion This versatile methodology has the potential to have a transformational impact on 18F radiotracer synthesis, opening the door for rapid screening of novel-labeled peptide tracers, both on the cellular (optical) as well as whole-body (PET) level. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0120-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Paulus
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York, NY, USA,
| | | | | | | | | | | | | |
Collapse
|
12
|
Deng H, Wang H, Wang M, Li Z, Wu Z. Synthesis and Evaluation of 64Cu-DOTA-NT-Cy5.5 as a Dual-Modality PET/Fluorescence Probe to Image Neurotensin Receptor-Positive Tumor. Mol Pharm 2015; 12:3054-61. [PMID: 26162008 DOI: 10.1021/acs.molpharmaceut.5b00325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Overexpression of neurotensin receptors (NTRs) has been suggested to play important roles in the growth and survival of a variety of tumor types. The aim of this study is to develop a dual-modality probe (64Cu -DOTA-NT-Cy5.5) for imaging NTR1 expression in vivo with both positron emission tomography (PET) and fluorescence. In this approach, the thiol group and N terminal amino group of neurotensin analogue (Cys-NT) were chemically modified with Cy5.5 dye and DOTA chelator, respectively. After radiolabeling with 64Cu, the resulting probe (64Cu-DOTA-NT-Cy5.5) was evaluated in NTR1 positive HT-29 tumor model. Small animal PET quantification analysis demonstrated that the tumor uptake was 1.91±0.22 and 1.79±0.16%ID/g at 1 and 4 h postinjection (p.i.), respectively. The tumor-to-muscle ratio was 17.44±3.25 at 4 h p.i. based on biodistribution. Receptor specificity was confirmed by the successful blocking experiment at 4 h p.i. (0.42±0.05%ID/g). In parallel with PET experiment, fluorescence imaging was also performed, which demonstrated prominent tumor uptake in HT-29 model. As a proof of concept, an imaging guided surgery was performed to the fluorescent moiety of this probe and could provide potential surgery guidance for NTR positive patients. In summary, our results clearly indicated that the dual-modality probe, 64Cu-DOTA-NT-Cy5.5, could serve as a promising agent to image NTR positive tumors in vivo.
Collapse
Affiliation(s)
- Huaifu Deng
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,‡PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Hui Wang
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mengzhe Wang
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zibo Li
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Yazdani A, Janzen N, Banevicius L, Czorny S, Valliant JF. Imidazole-Based [2 + 1] Re(I)/99mTc(I) Complexes as Isostructural Nuclear and Optical Probes. Inorg Chem 2015; 54:1728-36. [PMID: 25634699 DOI: 10.1021/ic502663p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Abdolreza Yazdani
- Department of Chemistry
and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Nancy Janzen
- Centre for Probe Development and Commercialization, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Laura Banevicius
- Centre for Probe Development and Commercialization, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Shannon Czorny
- Centre for Probe Development and Commercialization, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - John F. Valliant
- Department of Chemistry
and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
- Centre for Probe Development and Commercialization, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
14
|
Kirschner S, Felix MC, Hartmann L, Bierbaum M, Maros ME, Kerl HU, Wenz F, Glatting G, Kramer M, Giordano FA, Brockmann MA. In vivo micro-CT imaging of untreated and irradiated orthotopic glioblastoma xenografts in mice: capabilities, limitations and a comparison with bioluminescence imaging. J Neurooncol 2015; 122:245-54. [PMID: 25605299 DOI: 10.1007/s11060-014-1708-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/24/2014] [Indexed: 11/28/2022]
Abstract
Small animal imaging is of increasing relevance in biomedical research. Studies systematically assessing the diagnostic accuracy of contrast-enhanced in vivo micro-CT of orthotopic glioma xenografts in mice do not exist. NOD/SCID/γc(-/-) mice (n = 27) underwent intracerebral implantation of 2.5 × 10(6) GFP-Luciferase-transduced U87MG cells. Mice underwent bioluminescence imaging (BLI) to detect tumor growth and afterwards repeated contrast-enhanced (300 µl Iomeprol i.v.) micro-CT imaging (80 kV, 75 µAs, 360° rotation, 1,000 projections, 33 s scan time, resolution 40 × 40 × 53 µm, 0.5 Gy/scan). Presence of tumors, tumor diameter and tumor volume in micro-CT were rated by two independent readers. Results were compared with histological analyses. Six mice with tumors confirmed by micro-CT received fractionated irradiation (3 × 5 Gy every other day) using the micro-CT (5 mm pencil beam geometry). Repeated micro-CT scans were tolerated well. Tumor engraftment rate was 74 % (n = 20). In micro-CT, mean tumor volume was 30 ± 33 mm(3), and the smallest detectable tumor measured 360 × 620 µm. The inter-rater agreement (n = 51 micro-CT scans) for the item tumor yes/no was excellent (Spearman-Rho = 0.862, p < 0.001). Sensitivity and specificity of micro-CT were 0.95 and 0.71, respectively (PPV = 0.91, NPV = 0.83). BLI on day 21 after tumor implantation had a sensitivity and specificity of 0.90 and 1.0, respectively (PPV = 1.0, NPV = 0.5). Maximum tumor diameter and volume in micro-CT and histology correlated excellently (tumor diameter: 0.929, p < 0.001; tumor volume: 0.969, p < 0.001, n = 17). Irradiated animals showed a large central tumor necrosis. Longitudinal contrast enhanced micro-CT imaging of brain tumor growth in live mice is feasible at high sensitivity levels and with excellent inter-rater agreement and allows visualization of radiation effects.
Collapse
Affiliation(s)
- Stefanie Kirschner
- Department of Neuroradiology, Medical Faculty Mannheim, University, Medical Center Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Riedl SJ, Pasquale EB. Targeting the Eph System with Peptides and Peptide Conjugates. Curr Drug Targets 2015; 16:1031-47. [PMID: 26212263 PMCID: PMC4861043 DOI: 10.2174/1389450116666150727115934] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/02/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023]
Abstract
Eph receptor tyrosine kinases and ephrin ligands constitute an important cell communication system that controls development, tissue homeostasis and many pathological processes. Various Eph receptors/ephrins are present in essentially all cell types and their expression is often dysregulated by injury and disease. Thus, the 14 Eph receptors are attracting increasing attention as a major class of potential drug targets. In particular, agents that bind to the extracellular ephrin-binding pocket of these receptors show promise for medical applications. This pocket comprises a broad and shallow groove surrounded by several flexible loops, which makes peptides particularly suitable to target it with high affinity and selectivity. Accordingly, a number of peptides that bind to Eph receptors with micromolar affinity have been identified using phage display and other approaches. These peptides are generally antagonists that inhibit ephrin binding and Eph receptor/ ephrin signaling, but some are agonists mimicking ephrin-induced Eph receptor activation. Importantly, some of the peptides are exquisitely selective for single Eph receptors. Most identified peptides are linear, but recently the considerable advantages of cyclic scaffolds have been recognized, particularly in light of potential optimization towards drug leads. To date, peptide improvements have yielded derivatives with low nanomolar Eph receptor binding affinity, high resistance to plasma proteases and/or long in vivo half-life, exemplifying the merits of peptides for Eph receptor targeting. Besides their modulation of Eph receptor/ephrin function, peptides can also serve to deliver conjugated imaging and therapeutic agents or various types of nanoparticles to tumors and other diseased tissues presenting target Eph receptors.
Collapse
Affiliation(s)
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptor tyrosine kinase family plays important roles in developmental processes, adult tissue homeostasis, and various diseases. Interaction with Eph receptor-interacting protein (ephrin) ligands on the surface of neighboring cells triggers Eph receptor kinase-dependent signaling. The ephrins can also transmit signals, leading to bidirectional cell contact-dependent communication. Moreover, Eph receptors and ephrins can function independently of each other through interplay with other signaling systems. Given their involvement in many pathological conditions ranging from neurological disorders to cancer and viral infections, Eph receptors and ephrins are increasingly recognized as attractive therapeutic targets, and various strategies are being explored to modulate their expression and function. Eph receptor/ephrin upregulation in cancer cells, the angiogenic vasculature, and injured or diseased tissues also offer opportunities for Eph/ephrin-based targeted drug delivery and imaging. Thus, despite the challenges presented by the complex biology of the Eph receptor/ephrin system, exciting possibilities exist for therapies exploiting these molecules.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037; ,
| | | |
Collapse
|
17
|
Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 2014; 76:2-20. [PMID: 25086372 DOI: 10.1016/j.addr.2014.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients.
Collapse
|
18
|
Keunen O, Taxt T, Grüner R, Lund-Johansen M, Tonn JC, Pavlin T, Bjerkvig R, Niclou SP, Thorsen F. Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies. Adv Drug Deliv Rev 2014; 76:98-115. [PMID: 25078721 DOI: 10.1016/j.addr.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/18/2023]
Abstract
The vast majority of malignant gliomas relapse after surgery and standard radio-chemotherapy. Novel molecular and cellular therapies are thus being developed, targeting specific aspects of tumor growth. While histopathology remains the gold standard for tumor classification, neuroimaging has over the years taken a central role in the diagnosis and treatment follow up of brain tumors. It is used to detect and localize lesions, define the target area for biopsies, plan surgical and radiation interventions and assess tumor progression and treatment outcome. In recent years the application of novel drugs including anti-angiogenic agents that affect the tumor vasculature, has drastically modulated the outcome of brain tumor imaging. To properly evaluate the effects of emerging experimental therapies and successfully support treatment decisions, neuroimaging will have to evolve. Multi-modal imaging systems with existing and new contrast agents, molecular tracers, technological advances and advanced data analysis can all contribute to the establishment of disease relevant biomarkers that will improve disease management and patient care. In this review, we address the challenges of glioma imaging in the context of novel molecular and cellular therapies, and take a prospective look at emerging experimental and pre-clinical imaging techniques that bear the promise of meeting these challenges.
Collapse
|
19
|
Lütje S, Rijpkema M, Helfrich W, Oyen WJG, Boerman OC. Targeted Radionuclide and Fluorescence Dual-modality Imaging of Cancer: Preclinical Advances and Clinical Translation. Mol Imaging Biol 2014; 16:747-55. [DOI: 10.1007/s11307-014-0747-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|