1
|
Miller ADC, Chowdhury SP, Hanson HW, Linderman SK, Ghasemi HI, Miller WD, Morrissey MA, Richardson CD, Gardner BM, Mukherjee A. Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types. J Biol Eng 2024; 18:30. [PMID: 38649904 PMCID: PMC11035135 DOI: 10.1186/s13036-024-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Aquaporin-1 (Aqp1), a water channel, has garnered significant interest for cell-based medicine and in vivo synthetic biology due to its ability to be genetically encoded to produce magnetic resonance signals by increasing the rate of water diffusion in cells. However, concerns regarding the effects of Aqp1 overexpression and increased membrane diffusivity on cell physiology have limited its widespread use as a deep-tissue reporter. In this study, we present evidence that Aqp1 generates strong diffusion-based magnetic resonance signals without adversely affecting cell viability or morphology in diverse cell lines derived from mice and humans. Our findings indicate that Aqp1 overexpression does not induce ER stress, which is frequently associated with heterologous expression of membrane proteins. Furthermore, we observed that Aqp1 expression had no detrimental effects on native biological activities, such as phagocytosis, immune response, insulin secretion, and tumor cell migration in the analyzed cell lines. These findings should serve to alleviate any lingering safety concerns regarding the utilization of Aqp1 as a genetic reporter and should foster its broader application as a noninvasive reporter for in vivo studies.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Hadley W Hanson
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Sarah K Linderman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Hannah I Ghasemi
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Wyatt D Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Arnab Mukherjee
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- Department of Bioengineering, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemistry, University of California, Santa Barbara, CA, 93106, USA.
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
2
|
Miller ADC, Chowdhury SP, Hanson HW, Linderman SK, Ghasemi HI, Miller WD, Morrissey MA, Richardson CD, Gardner BM, Mukherjee A. Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566095. [PMID: 37986852 PMCID: PMC10659288 DOI: 10.1101/2023.11.07.566095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Aquaporin-1 (Aqp1), a water channel, has garnered significant interest for cell-based medicine and in vivo synthetic biology due to its ability to be genetically encoded to produce magnetic resonance signals by increasing the rate of water diffusion in cells. However, concerns regarding the effects of Aqp1 overexpression and increased membrane diffusivity on cell physiology have limited its widespread use as a deep-tissue reporter. In this study, we present evidence that Aqp1 generates strong diffusion-based magnetic resonance signals without adversely affecting cell viability or morphology in diverse cell lines derived from mice and humans. Our findings indicate that Aqp1 overexpression does not induce ER stress, which is frequently associated with heterologous expression of membrane proteins. Furthermore, we observed that Aqp1 expression had no detrimental effects on native biological activities, such as phagocytosis, immune response, insulin secretion, and tumor cell migration in the analyzed cell lines. These findings should serve to alleviate any lingering safety concerns regarding the utilization of Aqp1 as a genetic reporter and should foster its broader application as a noninvasive reporter for in vivo studies.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hadley W Hanson
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Sarah K Linderman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hannah I Ghasemi
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wyatt D Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Bioengineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
4
|
Hill M, Cunniffe N, Franklin R. Seeing is believing: Identifying remyelination in the central nervous system. Curr Opin Pharmacol 2022; 66:102269. [DOI: 10.1016/j.coph.2022.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
|
5
|
Ma D, Wang H, Ugo T, Mustafa D, Zhou W, Cali JJ. Luminogenic D-Luciferin Derivatives as OATP1B1 and 1B3 Substrates in No-wash Assays †. Photochem Photobiol 2021; 97:1407-1416. [PMID: 33948961 DOI: 10.1111/php.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
The human hepatic organic ion transporting polypeptides OATP1B1 and -1B3 are uptake transporters that influence the disposition of several small molecule drugs and perpetrate certain adverse drug-drug interactions. To predict these in vivo effects, in vitro systems are used to screen new drug entities as potential transporter substrates or inhibitors. To simplify such studies, we synthesized luminogenic derivatives of the OATP1B1 and -1B3 substrate D-luciferin to test as probe substrates in a rapid, no-wash optical approach for substrate and inhibitor identification and characterization. Each derivative is a pro-luciferin containing a self-immolating trimethyl lock quinone linker that is sensitive to intracellular reducing environments that cause the release of free luciferin in proportion to the amount of probe taken up by the transporter. A subsequent luciferin-limited luciferase reaction produces light in proportion to transporter activity. We tested the derivatives in HEK293 cells that overexpress OATP1B1 or OATP1B3 by transient transfection or viral transduction. Derivatives were identified that showed OATP-dependent uptake that was time and concentration dependent, saturable and sensitive to inhibition by known OATP1B1 and -1B3 substrates and inhibitors. These luminogenic transporter probes enabled an add-only multi-well plate protocol suitable for automation and high throughput screening.
Collapse
Affiliation(s)
| | - Hui Wang
- Promega Biosciences LLC, San Luis Obispo, CA
| | - Tim Ugo
- Promega Biosciences LLC, San Luis Obispo, CA
| | | | - Wenhui Zhou
- Promega Biosciences LLC, San Luis Obispo, CA
| | | |
Collapse
|
6
|
Kelly JJ, Saee-Marand M, Nyström NN, Evans MM, Chen Y, Martinez FM, Hamilton AM, Ronald JA. Safe harbor-targeted CRISPR-Cas9 homology-independent targeted integration for multimodality reporter gene-based cell tracking. SCIENCE ADVANCES 2021; 7:eabc3791. [PMID: 33523917 PMCID: PMC7817109 DOI: 10.1126/sciadv.abc3791] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/25/2020] [Indexed: 05/12/2023]
Abstract
Imaging reporter genes provides longitudinal information on the biodistribution, growth, and survival of engineered cells in vivo. A translational bottleneck to using reporter genes is the necessity to engineer cells with randomly integrating vectors. Here, we built homology-independent targeted integration (HITI) CRISPR-Cas9 minicircle donors for precise safe harbor-targeted knock-in of fluorescence, bioluminescence, and MRI (Oatp1a1) reporter genes. Our results showed greater knock-in efficiency using HITI vectors compared to homology-directed repair vectors. HITI clones demonstrated functional fluorescence and bioluminescence reporter activity as well as significant Oatp1a1-mediated uptake of the clinically approved MRI agent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid. Contrast-enhanced MRI improved the conspicuity of both subcutaneous and metastatic Oatp1a1-expressing tumors before they became palpable or even readily visible on precontrast images. Our work demonstrates the first CRISPR-Cas9 HITI system for knock-in of large DNA donor constructs at a safe harbor locus, enabling multimodal longitudinal in vivo imaging of cells.
Collapse
Affiliation(s)
- John J Kelly
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Moe Saee-Marand
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Nivin N Nyström
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Melissa M Evans
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Yuanxin Chen
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Francisco M Martinez
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Amanda M Hamilton
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - John A Ronald
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
7
|
Longitudinal Visualization of Viable Cancer Cell Intratumoral Distribution in Mouse Models Using Oatp1a1-Enhanced Magnetic Resonance Imaging. Invest Radiol 2019; 54:302-311. [PMID: 30672844 DOI: 10.1097/rli.0000000000000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Multimodality reporter gene imaging provides valuable, noninvasive information on the fate of engineered cell populations. To complement magnetic resonance imaging (MRI) measures of tumor volume and 2-dimensional reporter-based optical measures of cell viability, reporter-based MRI may offer 3-dimensional information on the distribution of viable cancer cells in deep tissues. MATERIALS AND METHODS Here, we engineered human and murine triple-negative breast cancer cells with lentivirus encoding tdTomato and firefly luciferase for fluorescence imaging and bioluminescence imaging (BLI). A subset of these cells was additionally engineered with lentivirus encoding organic anion transporting polypeptide 1a1 (Oatp1a1) for MRI. Oatp1a1 operates by transporting gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) into cells, and it concomitantly improves BLI substrate uptake. After orthotopic implantation of engineered cells expressing or not expressing Oatp1a1, longitudinal fluorescence imaging, BLI, and 3-Tesla MRI were performed. RESULTS Oatp1a1-expressing tumors displayed significantly increased BLI signals relative to control tumors at all time points (P < 0.05). On MRI, post-Gd-EOB-DTPA T1-weighted images of Oatp1a1-expressing tumors exhibited significantly increased contrast-to-noise ratios compared with control tumors and precontrast images (P < 0.05). At endpoint, tumors expressing Oatp1a1 displayed intratumoral MR signal heterogeneity not present at earlier time points. Pixel-based analysis of matched in vivo MR and ex vivo fluorescence microscopy images revealed a strong, positive correlation between MR intensity and tdTomato intensity for Oatp1a1-expressing tumors (P < 0.05), but not control tumors. CONCLUSIONS These results characterize Oatp1a1 as a sensitive, quantitative, positive contrast MRI reporter gene for 3-dimensional assessment of viable cancer cell intratumoral distribution and concomitant BLI enhancement. This multimodality reporter gene system can provide new insights into the influence of viable cancer cell intratumoral distribution on tumor progression and metastasis, as well as improved assessments of anticancer therapies.
Collapse
|
8
|
Li M, Wang Y, Liu M, Lan X. Multimodality reporter gene imaging: Construction strategies and application. Theranostics 2018; 8:2954-2973. [PMID: 29896296 PMCID: PMC5996353 DOI: 10.7150/thno.24108] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging has played an important role in the noninvasive exploration of multiple biological processes. Reporter gene imaging is a key part of molecular imaging. By combining with a reporter probe, a reporter protein can induce the accumulation of specific signals that are detectable by an imaging device to provide indirect information of reporter gene expression in living subjects. There are many types of reporter genes and each corresponding imaging technique has its own advantages and drawbacks. Fused reporter genes or single reporter genes with products detectable by multiple imaging modalities can compensate for the disadvantages and potentiate the advantages of each modality. Reporter gene multimodality imaging could be applied to trace implanted cells, monitor gene therapy, assess endogenous molecular events, screen drugs, etc. Although several types of multimodality imaging apparatus and multimodality reporter genes are available, more sophisticated detectors and multimodality reporter gene systems are needed.
Collapse
Affiliation(s)
- Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Mei Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| |
Collapse
|
9
|
Wu MR, Liu HM, Lu CW, Shen WH, Lin IJ, Liao LW, Huang YY, Shieh MJ, Hsiao JK. Organic anion-transporting polypeptide 1B3 as a dual reporter gene for fluorescence and magnetic resonance imaging. FASEB J 2018; 32:1705-1715. [PMID: 29146731 PMCID: PMC5892727 DOI: 10.1096/fj.201700767r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reporter proteins have broad applications in visualizing molecular events at the cellular, tissue and whole-body levels. Transmembrane transporters recognizing specific molecular domains are of particular interest because they enable the migration of signal-source molecules from the extracellular space to the cytoplasm for subsequent application in multimodality imaging. Organic anion-transporting polypeptides (OATPs) have demonstrated their MRI reporter efficacy. We further expanded their use as a dual-modality reporter in MRI and noninvasive in vivo imaging system (IVIS). We overexpressed OATP1B3 in the HT-1080 sarcoma cell line. Both Gd-EOB-DTPA, an MRI contrast agent, and indocyanine green (ICG), a near-infrared fluorescent dye that provides better deep-tissue detection because of its long wavelength, could be delivered to the intracellular space and imaged in a tumor-bearing nude mouse model. Our in vivo dual-imaging reporter system achieved high sensitivity in MRI and observation periods lasting as long as 96 h in IVIS. Because of the superior temporal and spatial resolutions and the clinical availability of both ICG and Gd-EOB-DTPA, this dual-imaging OATP1B3 system will find biomedical use in tumor biology, stem cell trafficking, and tissue engineering.—Wu, M.-R., Liu, H.-M., Lu, C.-W., Shen, W.-H., Lin, I.-J., Liao, L.-W., Huang, Y.-Y., Shieh, M.-J., Hsiao, J.-K. Organic anion-transporting polypeptide 1B3 as a dual reporter gene for fluorescence and magnetic resonance imaging.
Collapse
Affiliation(s)
- Menq-Rong Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Medical Imaging, Taipei TzuChi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Hon-Man Liu
- Department of Medical Imaging, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.,Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Radiology and Medical Imaging, Fu-Jen Catholic University and Hospital, New Taipei City, Taiwan
| | - Chen-Wen Lu
- Department of Medical Imaging, Taipei TzuChi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Way-Hone Shen
- Department of Medical Imaging, Taipei TzuChi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Jou Lin
- Department of Medical Imaging, Taipei TzuChi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Li-Wen Liao
- Department of Medical Imaging, Taipei TzuChi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-You Huang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Taipei TzuChi General Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
10
|
Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin-luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin. Biochem Biophys Res Commun 2017; 495:2152-2157. [PMID: 29273507 DOI: 10.1016/j.bbrc.2017.12.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/27/2023]
Abstract
Bioluminescence (BL) imaging based on d-luciferin (d-luc)-luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc-luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293 cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293 cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (Km) of 0.23 μM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis-Menten kinetics with an apparent Km of 0.36 μM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc-luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells.
Collapse
|
11
|
Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, Amali M, Barbellion S, Jones V, Niemeijer M, Potdevin S, Roussignol G, Vaganov A, Barbaric I, Barrow M, Burton NC, Connell J, Dazzi F, Edsbagge J, French NS, Holder J, Hutchinson C, Jones DR, Kalber T, Lovatt C, Lythgoe MF, Patel S, Patrick PS, Piner J, Reinhardt J, Ricci E, Sidaway J, Stacey GN, Starkey Lewis PJ, Sullivan G, Taylor A, Wilm B, Poptani H, Murray P, Goldring CEP, Park BK. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen Med 2017; 2:28. [PMID: 29302362 PMCID: PMC5677988 DOI: 10.1038/s41536-017-0029-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.
Collapse
Affiliation(s)
- Lauren Scarfe
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Nathalie Brillant
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - J. Dinesh Kumar
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Noura Ali
- College of Health Science, University of Duhok, Duhok, Iraq
| | - Ahmed Alrumayh
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Mohammed Amali
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Stephane Barbellion
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Vendula Jones
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Marije Niemeijer
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Sophie Potdevin
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Gautier Roussignol
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Anatoly Vaganov
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Michael Barrow
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | | | - John Connell
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Francesco Dazzi
- Department of Haemato-Oncology, King’s College London, London, UK
| | | | - Neil S. French
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Julie Holder
- Roslin Cells, University of Cambridge, Cambridge, UK
| | - Claire Hutchinson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - David R. Jones
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Cerys Lovatt
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Sara Patel
- ReNeuron Ltd, Pencoed Business Park, Pencoed, Bridgend, UK
| | - P. Stephen Patrick
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Jacqueline Piner
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
| | | | - Emanuelle Ricci
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | - Glyn N. Stacey
- UK Stem Cell Bank, Division of Advanced Therapies, National Institute for Biological Standards Control, Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Philip J. Starkey Lewis
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Gareth Sullivan
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Blindern, Oslo, Norway
- Institute of Immunology, Oslo University Hospital-Rikshospitalet, Nydalen, Oslo, Norway
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Yasunaga M, Fujita Y, Saito R, Oshimura M, Nakajima Y. Continuous long-term cytotoxicity monitoring in 3D spheroids of beetle luciferase-expressing hepatocytes by nondestructive bioluminescence measurement. BMC Biotechnol 2017. [PMID: 28637431 PMCID: PMC5480146 DOI: 10.1186/s12896-017-0374-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Three-dimensional (3D) spheroids are frequently used in toxicological study because their morphology and function closely resemble those of tissue. As these properties are maintained over a long term, repeated treatment of the spheroids with a test object is possible. Generally, in the repeated treatment test to assess cytotoxicity in the spheroids, ATP assay, colorimetric measurement using pigments or high-content imaging analysis is performed. However, continuous assessment of cytotoxicity in the same spheroids using the above assays or analysis is impossible because the spheroids must be disrupted or killed. To overcome this technical limitation, we constructed a simple monitoring system in which cytotoxicity in the spheroids can be continuously monitored by nondestructive bioluminescence measurement. Results Mouse primary hepatocytes were isolated from transchromosomic (Tc) mice harboring a mouse artificial chromosome (MAC) vector expressing beetle luciferase Emerald Luc (ELuc) under the control of cytomegalovirus immediate early enhancer/chicken β-actin promoter/rabbit β-globin intron II (CAG) promoter, and used in 3D cultures. We confirmed that both luminescence and albumin secretion from the spheroids seeded in the 96-well format Cell-ableTM were maintained for approximately 1 month. Finally, we repetitively treated the luminescent 3D spheroids with representative hepatotoxicants for approximately 1 month, and continuously and nondestructively measured bioluminescence every day. We successfully obtained daily changes of the dose-response bioluminescence curves for the respective toxicants. Conclusions In this study, we constructed a monitoring system in which cytotoxicity in the same 3D spheroids was continuously and sensitively monitored over a long term. Because this system can be easily applied to other cells, such as human primary cells or stem cells, it is expected to serve as the preferred platform for simple and cost-effective long-term monitoring of cellular events, including cytotoxicity. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0374-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayu Yasunaga
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, 761-0395, Japan
| | - Yasuko Fujita
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, 761-0395, Japan
| | - Rumiko Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, 980-8573, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, 761-0395, Japan. .,Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
13
|
Feeney KA, Putker M, Brancaccio M, O'Neill JS. In-depth Characterization of Firefly Luciferase as a Reporter of Circadian Gene Expression in Mammalian Cells. J Biol Rhythms 2016; 31:540-550. [PMID: 28112045 PMCID: PMC5117186 DOI: 10.1177/0748730416668898] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Firefly luciferase (Fluc) is frequently used to report circadian gene expression rhythms in mammalian cells and tissues. During longitudinal assays it is generally assumed that enzymatic substrates are in saturating excess, such that total bioluminescence is directly proportional to Fluc protein level. To test this assumption, we compared the enzyme kinetics of purified luciferase with its activity in mammalian cells. We found that Fluc activity in solution has a lower Michaelis constant (Km) for luciferin, lower temperature dependence, and lower catalytic half-life than Fluc in cells. In consequence, extracellular luciferin concentration significantly affects the apparent circadian amplitude and phase of the widely used PER2::LUC reporter in cultured fibroblasts, but not in SCN, and we suggest that this arises from differences in plasma membrane luciferin transporter activity. We found that at very high concentrations (>1 mM), luciferin lengthens circadian period, in both fibroblasts and organotypic SCN slices. We conclude that the amplitude and phase of circadian gene expression inferred from bioluminescence recordings should be treated with some caution, and we suggest that optimal luciferin concentration should be determined empirically for each luciferase reporter and cell type.
Collapse
Affiliation(s)
- Kevin A Feeney
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Marrit Putker
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Marco Brancaccio
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| |
Collapse
|
14
|
Click beetle luciferases as dual reporters of gene expression in Candida albicans. Microbiology (Reading) 2016; 162:1310-1320. [DOI: 10.1099/mic.0.000329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
MRI Reporter Genes for Noninvasive Molecular Imaging. Molecules 2016; 21:molecules21050580. [PMID: 27213309 PMCID: PMC6273230 DOI: 10.3390/molecules21050580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/17/2023] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase), the receptor on the cells (e.g., transferrin receptor), and endogenous reporter genes (e.g., ferritin reporter gene). However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.
Collapse
|
16
|
Patrick PS, Rodrigues TB, Kettunen MI, Lyons SK, Neves AA, Brindle KM. Development of Timd2 as a reporter gene for MRI. Magn Reson Med 2016; 75:1697-707. [PMID: 25981669 PMCID: PMC4832381 DOI: 10.1002/mrm.25750] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE To assess the potential of an MRI gene reporter based on the ferritin receptor Timd2 (T-cell immunoglobulin and mucin domain containing protein 2), using T1- and T2-weighted imaging. METHODS Pellets of cells that had been modified to express the Timd2 transgene, and incubated with either iron-loaded or manganese-loaded ferritin, were imaged using T1- and T2-weighted MRI. Mice were also implanted subcutaneously with Timd2-expressing cells and the resulting xenograft tissue imaged following intravenous injection of ferritin using T2-weighted imaging. RESULTS Timd2-expressing cells, but not control cells, showed a large increase in both R2 and R1 in vitro following incubation with iron-loaded and manganese-loaded ferritin, respectively. Expression of Timd2 had no effect on cell viability or proliferation; however, manganese-loaded ferritin, but not iron-loaded ferritin, was toxic to Timd2-expressing cells. Timd2-expressing xenografts in vivo showed much smaller changes in R2 following injection of iron-loaded ferritin than the same cells incubated in vitro with iron-loaded ferritin. CONCLUSION Timd2 has demonstrated potential as an MRI reporter gene, producing large increases in R2 and R1 with ferritin and manganese-loaded ferritin respectively in vitro, although more modest changes in R2 in vivo. Manganese-loaded apoferritin was not used in vivo due to the toxicity observed in vitro. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
- P. Stephen Patrick
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | - Tiago B. Rodrigues
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | - Mikko I. Kettunen
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | - Scott K. Lyons
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | - André A. Neves
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | - Kevin M. Brindle
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
17
|
Goda K, Hatta‐Ohashi Y, Akiyoshi R, Sugiyama T, Sakai I, Takahashi T, Suzuki H. Combining fluorescence and bioluminescence microscopy. Microsc Res Tech 2015; 78:715-22. [PMID: 26096873 PMCID: PMC4745033 DOI: 10.1002/jemt.22529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/09/2015] [Indexed: 11/08/2022]
Abstract
Bioluminescence microscopy has revealed that gene expression in individual cells can respond differently to the same stimulus. To understand this phenomenon, it is important to sequentially observe the series of events from cellular signal transduction to gene expression regulated by specific transcription factors derived from signaling cascades in individual cells. However, these processes have been separately analyzed with fluorescence and bioluminescence microscopy. Furthermore, in culture medium, the background fluorescence of luciferin-a substrate of luciferase in promoter assays of gene expression in cultured cells-confounds the simultaneous observation of fluorescence and bioluminescence. Therefore, we optimized conditions for optical filter sets based on spectral properties and the luciferin concentration based on cell permeability for fluorescence observation combined with bioluminescence microscopy. An excitation and emission filter set (492-506 nm and 524-578 nm) was suitable for green fluorescent protein and yellow fluorescent protein imaging of cells, and >100 μM luciferin was acceptable in culture medium based on kinetic constants and the estimated intracellular concentration. Using these parameters, we present an example of sequential fluorescence and bioluminescence microscopic observation of signal transduction (translocation of protein kinase C alpha from the cytoplasm to the plasma membrane) coupled with activation of gene expression by nuclear factor of kappa light polypeptide B in individual cells and show that the gene expression response is not completely concordant with upstream signaling following stimulation with phorbol-12-myristate-13-acetate. Our technique is a powerful imaging tool for analysis of heterogeneous gene expression together with upstream signaling in live single cells.
Collapse
Affiliation(s)
- Kazuhito Goda
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Yoko Hatta‐Ohashi
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Ryutaro Akiyoshi
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Takashi Sugiyama
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Ikuko Sakai
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Takeo Takahashi
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Hirobumi Suzuki
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| |
Collapse
|
18
|
|
19
|
Mann A, Semenenko I, Meir M, Eyal S. Molecular Imaging of Membrane Transporters' Activity in Cancer: a Picture is Worth a Thousand Tubes. AAPS JOURNAL 2015; 17:788-801. [PMID: 25823669 DOI: 10.1208/s12248-015-9752-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/09/2015] [Indexed: 01/22/2023]
Abstract
Molecular imaging allows the non-invasive assessment of membrane transporter expression and function in living subjects. Such technologies have the potential to become diagnostic and prognostic tools, allowing detection, localization, and prediction of response of tumors and their metastases to therapy. Beyond tumors, imaging can also help understand the role of transporters in adverse drug effects and drug clearance. Here, we review molecular imaging technologies that monitor transporter-mediated processes. We emphasize emerging probe substrates and potential clinical applications of imaging the function of membrane transporters in cancer.
Collapse
Affiliation(s)
- Aniv Mann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Room 613, Ein Kerem, Jerusalem, 91120, Israel
| | | | | | | |
Collapse
|
20
|
Adams ST, Miller SC. Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr Opin Chem Biol 2014; 21:112-20. [PMID: 25078002 DOI: 10.1016/j.cbpa.2014.07.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/28/2014] [Accepted: 07/03/2014] [Indexed: 01/10/2023]
Abstract
The light-emitting chemical reaction catalyzed by the enzyme firefly luciferase is widely used for noninvasive imaging in live mice. However, photon emission from the luciferase is crucially dependent on the chemical properties of its substrate, D-luciferin. In this review, we describe recent work to replace the natural luciferase substrate with synthetic analogs that extend the scope of bioluminescence imaging.
Collapse
Affiliation(s)
- Spencer T Adams
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen C Miller
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|