1
|
Bærentzen SL, Thomsen MB, Alstrup AK, Wegener G, Brooks DJ, Winterdahl M, Landau AM. Excessive sucrose consumption reduces synaptic density and increases cannabinoid receptors in Göttingen minipigs. Neuropharmacology 2024; 256:110018. [PMID: 38810925 DOI: 10.1016/j.neuropharm.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Diets high in sucrose and fat are becoming more prevalent the world over, accompanied by a raised prevalence of cardiovascular diseases, cancers, diabetes, obesity, and metabolic syndrome. Clinical studies link unhealthy diets with the development of mental health disorders, particularly depression. Here, we investigate the effects of 12 days of sucrose consumption administered as 2 L of 25% sucrose solution daily for 12 days in Göttingen minipigs on the function of brain receptors involved in reward and motivation, regulating feeding, and pre- and post-synaptic mechanisms. Through quantitative autoradiography of cryostat sections containing limbic brain regions, we investigated the effects of sucrose restricted to a 1-h period each morning, on the specific binding of [3H]raclopride on dopamine D2/3 receptors, [3H]UCB-J at synaptic vesicle glycoprotein 2A (SV2A), [3H]MPEPγ at metabotropic glutamate receptor subtype 5 (mGluR5) and [3H]SR141716A at the cannabinoid receptor 1 (CB1). Compared to control diet animals, the sucrose group showed significantly lower [3H]UCB-J and [3H]MPEPγ binding in the prefrontal cortex. The sucrose-consuming minipigs showed higher hippocampal CB1 binding, but unaltered dopamine D2/3 binding compared to the control group. We found that the sucrose diet reduced the synaptic density marker while increasing CB1 binding in limbic brain structures, which may subserve maladaptive changes in appetite regulation and feeding. Further studies of the effects of diets and lifestyle habits on brain neuroreceptor and synaptic density markers are warranted.
Collapse
Affiliation(s)
- Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Aage Ko Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Institute of Translational and Clinical Research, University of Newcastle Upon Tyne, UK
| | - Michael Winterdahl
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Kong Y, Cao L, Xie F, Wang X, Zuo C, Shi K, Rominger A, Huang Q, Xiao J, Jiang D, Guan Y, Ni R. Reduced SV2A and GABA A receptor levels in the brains of type 2 diabetic rats revealed by [ 18F]SDM-8 and [ 18F]flumazenil PET. Biomed Pharmacother 2024; 172:116252. [PMID: 38325265 DOI: 10.1016/j.biopha.2024.116252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is associated with a greater risk of Alzheimer's disease. Synaptic impairment and protein aggregates have been reported in the brains of T2DM models. Here, we assessed whether neurodegenerative changes in synaptic vesicle 2 A (SV2A), γ-aminobutyric acid type A (GABAA) receptor, amyloid-β, tau and receptor for advanced glycosylation end product (RAGE) can be detected in vivo in T2DM rats. METHODS Positron emission tomography (PET) using [18F]SDM-8 (SV2A), [18F]flumazenil (GABAA receptor), [18F]florbetapir (amyloid-β), [18F]PM-PBB3 (tau), and [18F]FPS-ZM1 (RAGE) was carried out in 12-month-old diabetic Zucker diabetic fatty (ZDF) and SpragueDawley (SD) rats. Immunofluorescence staining, Thioflavin S staining, proteomic profiling and pathway analysis were performed on the brain tissues of ZDF and SD rats. RESULTS Reduced cortical [18F]SDM-8 uptake and cortical and hippocampal [18F]flumazenil uptake were observed in 12-month-old ZDF rats compared to SD rats. The regional uptake of [18F]florbetapir and [18F]PM-PBB3 was comparable in the brains of 12-month-old ZDF and SD rats. Immunofluorescence staining revealed Thioflavin S-negative, phospho-tau-positive inclusions in the cortex and hypothalamus in the brains of ZDF rats and the absence of amyloid-beta deposits. The level of GABAA receptors was lower in the cortex of ZDF rats than SD rats. Proteomic analysis further demonstrated that, compared with SD rats, synaptic-related proteins and pathways were downregulated in the hippocampus of ZDF rats. CONCLUSION These findings provide in vivo evidence for regional reductions in SV2A and GABAA receptor levels in the brains of aged T2DM ZDF rats.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China; Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiuzhe Wang
- Dept. Neurology, Shanghai Sixth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kuangyu Shi
- Dept. Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Axel Rominger
- Dept. Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfei Xiao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ruiqing Ni
- Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland; Dept. Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland; Inst. Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Gruber J, Hanssen R, Qubad M, Bouzouina A, Schack V, Sochor H, Schiweck C, Aichholzer M, Matura S, Slattery DA, Zopf Y, Borgland SL, Reif A, Thanarajah SE. Impact of insulin and insulin resistance on brain dopamine signalling and reward processing- an underexplored mechanism in the pathophysiology of depression? Neurosci Biobehav Rev 2023; 149:105179. [PMID: 37059404 DOI: 10.1016/j.neubiorev.2023.105179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type 2 diabetes and major depressive disorder (MDD) are the leading causes of disability worldwide and have a high comorbidity rate with fatal outcomes. Despite the long-established association between these conditions, the underlying molecular mechanisms remain unknown. Since the discovery of insulin receptors in the brain and the brain's reward system, evidence has accumulated indicating that insulin modulates dopaminergic (DA) signalling and reward behaviour. Here, we review the evidence from rodent and human studies, that insulin resistance directly alters central DA pathways, which may result in motivational deficits and depressive symptoms. Specifically, we first elaborate on the differential effects of insulin on DA signalling in the ventral tegmental area (VTA) - the primary DA source region in the midbrain - and the striatum as well as its effects on behaviour. We then focus on the alterations induced by insulin deficiency and resistance. Finally, we review the impact of insulin resistance in DA pathways in promoting depressive symptoms and anhedonia on a molecular and epidemiological level and discuss its relevance for stratified treatment strategies.
Collapse
Affiliation(s)
- Judith Gruber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ruth Hanssen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Prevention Medicine, Germany
| | - Mishal Qubad
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Aicha Bouzouina
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Vivi Schack
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Hannah Sochor
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Carmen Schiweck
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Mareike Aichholzer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Yurdaguel Zopf
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Canada
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sharmili Edwin Thanarajah
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
4
|
Cao S, Tang J, Liu C, Fang Y, Ji L, Xu Y, Chen Z. Synthesis and Biological Evaluation of [ 18F]FECNT-d 4 as a Novel PET Agent for Dopamine Transporter Imaging. Mol Imaging Biol 2021; 23:733-744. [PMID: 33851345 DOI: 10.1007/s11307-021-01603-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE The dopamine transporter (DAT) is a marker of the occurrence and development of Parkinson's disease (PD) and other diseases with nigrostriatal degeneration. 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl)nortropane ([18F]FECNT), an 18F-labelled tropane derivative, was reported to be a useful positron-emitting probe for DAT. However, the rapid formation of brain-penetrating radioactive metabolites is an impediment to the proper quantitation of DAT in PET studies with [18F]FECNT. Deuterium-substituted analogues have presented better in vivo stability to reduce metabolites. This study aimed to synthesize a deuterium-substituted DAT radiotracer, [18F]FECNT-d4, and to make a preliminary investigation of its properties as a DAT tracer in vivo. PROCEDURES The ligand [18F]FECNT-d4 was obtained by one-step radiolabelling reaction. The lipophilicity was measured by the shake-flask method. Binding properties of [18F]FECNT-d4 were estimated by in vitro binding assay, biodistribution, and microPET imaging in rats. In vivo stability of [18F]FECNT-d4 was estimated by radio-HPLC. RESULTS [18F]FECNT-d4 was synthesized at an average activity yield of 46 ± 17 % (n = 15) and the molar activity was 67 ± 12 GBq/μmol. The deuterated tracer showed suitable lipophilicity and the ability to penetrate the blood-brain barrier (brain uptake of 1.72 % ID at 5 min). [18F]FECNT-d4 displayed a high binding affinity for DAT comparable to that of [18F]FECNT in rat striatum homogenates. Biodistribution results in normal rats showed that [18F]FECNT-d4 exhibited a higher ratio of the target to non-target (striatum/cerebellum) at 15 min post administration (5.00 ± 0.44 vs 3.84 ± 0.24 for [18F]FECNT-d4 vs [18F]FECNT). MicroPET imaging studies of [18F]FECNT-d4 in normal rats showed that the ligand selectively localized to DAT-rich striatal regions and the accumulation could be blocked with DAT inhibitor. Furthermore, in the unilateral PD model rat, a significant reduction of the signal was found in the lesioned side relative to the unlesioned side. Striatal standardized uptake value of [18F]FECNT-d4 remained ~4.02 in the striatum between 5 and 20 min, whereas that of [18F]FECNT fell rapidly from 4.11 to 2.95. Radio-HPLC analysis of the plasma demonstrated better in vivo stability of [18F]FECNT-d4 than [18F]FECNT. CONCLUSION The deuterated compound [18F]FECNT-d4 may serve as a promising PET imaging agent to assess DAT-related disorders.
Collapse
Affiliation(s)
- Shanshan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Linyang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yingjiao Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Zhengping Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China. .,NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| |
Collapse
|
5
|
A dopaminergic mechanism of antipsychotic drug efficacy, failure, and failure reversal: the role of the dopamine transporter. Mol Psychiatry 2020; 25:2101-2118. [PMID: 30038229 PMCID: PMC7473845 DOI: 10.1038/s41380-018-0114-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
Antipsychotic drugs are effective interventions in schizophrenia. However, the efficacy of these agents often decreases over time, which leads to treatment failure and symptom recurrence. We report that antipsychotic efficacy in rat models declines in concert with extracellular striatal dopamine levels rather than insufficient dopamine D2 receptor occupancy. Antipsychotic efficacy was associated with a suppression of dopamine transporter activity, which was reversed during failure. Antipsychotic failure coincided with reduced dopamine neuron firing, which was not observed during antipsychotic efficacy. Synaptic field responses in dopamine target areas declined during antipsychotic efficacy and showed potentiation during failure. Antipsychotics blocked synaptic vesicle release during efficacy but enhanced this release during failure. We found that the pharmacological inhibition of the dopamine transporter rescued antipsychotic drug treatment outcomes, supporting the hypothesis that the dopamine transporter is a main target of antipsychotic drugs and predicting that dopamine transporter blockers may be an adjunct treatment to reverse antipsychotic treatment failure.
Collapse
|
6
|
Casquero-Veiga M, García-García D, Pascau J, Desco M, Soto-Montenegro ML. Stimulating the nucleus accumbens in obesity: A positron emission tomography study after deep brain stimulation in a rodent model. PLoS One 2018; 13:e0204740. [PMID: 30261068 PMCID: PMC6160153 DOI: 10.1371/journal.pone.0204740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The nucleus accumbens (NAcc) has been suggested as a possible target for deep brain stimulation (DBS) in the treatment of obesity. Our hypothesis was that NAcc-DBS would modulate brain regions related to reward and food intake regulation, consequently reducing the food intake and, finally, the weight gain. Therefore, we examined changes in brain glucose metabolism, weight gain and food intake after NAcc-DBS in a rat model of obesity. PROCEDURES Electrodes were bilaterally implanted in 2 groups of obese Zucker rats targeting the NAcc. One group received stimulation one hour daily during 15 days, while the other remained as control. Weight and daily consumption of food and water were everyday registered the days of stimulation, and twice per week during the following month. Positron emission tomography (PET) studies with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) were performed 1 day after the end of DBS. PET data was assessed by statistical parametric mapping (SPM12) software and region of interest (ROI) analyses. RESULTS NAcc-DBS lead to increased metabolism in the cingulate-retrosplenial-parietal association cortices, and decreased metabolism in the NAcc, thalamic and pretectal nuclei. Furthermore, ROIs analyses confirmed these results by showing a significant striatal and thalamic hypometabolism, and a cortical hypermetabolic region. However, NAcc-DBS did not induce a decrease in either weight gain or food intake. CONCLUSIONS NAcc-DBS led to changes in the metabolism of regions associated with cognitive and reward systems, whose impairment has been described in obesity.
Collapse
Affiliation(s)
| | | | - Javier Pascau
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
7
|
Change in the Binding of [ 11C]BU99008 to Imidazoline I 2 Receptor Using Brain PET in Zucker Rats. Mol Imaging Biol 2018; 21:105-112. [PMID: 29736564 DOI: 10.1007/s11307-018-1206-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE The imdazoline I2 receptor (I2R) has been found in the feeding centers of the brain, such as the hypothalamus, and certain I2R ligands have been reported to stimulate food intake. Thus, it has been proposed that I2R may play a role in feeding control. [11C]BU99008 was developed as a positron emission tomography (PET) tracer for imaging of I2R. [11C]BU99008 displayed relatively high brain penetration and specific binding by brain PET studies in preclinical studies. Here, we evaluated a pathological condition caused by obesity related to I2R function by quantitative PET study using [11C]BU99008. PROCEDURES PET scans were acquired in the Zucker (ZUC) lean and fatty rats, radioactivity and metabolites of plasma were measured, and the kinetic parameters were estimated. RESULTS Radioactivity levels after the injection of [11C]BU99008 in the hypothalamus of both ZUC lean and fatty rats were highly accumulated, and then gradually decreased until 60 min after the injection. The accumulated radioactivity from 30 to 60 min after the injection in the hypothalamus of the ZUC fatty rats was 1.3 times greater than that of lean rats. The volume of distribution (VT) estimated by Logan graphical analysis in the hypothalamus of the ZUC fatty rats was 1.8 times greater than that in the ZUC lean rats. In metabolite analysis, the percentages of the unchanged form in the plasma of the ZUC fatty rats at 60 min after the injection (5.0 %) was significantly lower than that of lean rats (9.1 %). CONCLUSIONS By PET imaging using [11C]BU99008, we demonstrated that the accumulated radioactivity and estimated VT value in the feeding center of ZUC lean rats was lower than that in fatty rats. PET studies using [11C]BU99008 may contribute to elucidate a pathological condition caused by obesity related to I2R function.
Collapse
|