1
|
Zhang C, Li Q, Xing J, Yang Y, Zhu M, Lin L, Yu Y, Cai X, Wang X. Tannic acid and zinc ion coordination of nanase for the treatment of inflammatory bowel disease by promoting mucosal repair and removing reactive oxygen and nitrogen species. Acta Biomater 2024; 177:347-360. [PMID: 38373525 DOI: 10.1016/j.actbio.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Colon mucosal overexpression of reactive oxygen and nitrogen species (RONS) accelerates the development of inflammatory bowel disease (IBD) and destroys the mucosa and its barrier. IBD can be alleviated by removing RONS from the inflamed colon. The preparation of strong and efficient nanoantioxidants remains a challenge despite the development of numerous nanoantioxidants. In this paper, Zn-TA nanoparticles with fine hollow microstructure (HZn-TA) were successfully prepared and could be effectively used to treat IBD. In the first step, ZIF-8 nanoparticles were synthesized by a one-pot method. On this basis, HZn-TA nanoparticles were etched by TA, and a multifunctional nanase was developed for the treatment of IBD. RONS, including reactive oxygen species (ROS) and nitric oxide (NO), can be eliminated to increase cell survival following Hydrogen peroxide (H2O2) stimulation, including reactive oxygen species (ROS) and nitric oxide (NO with hydrogen peroxide (H2O2). In a model for preventing and delaying acute colitis, clearance of RONS has been shown to reduce intestinal inflammation in mice by reducing colon damage, proinflammatory cytokine levels, the spleen index, and body weight. Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate zonula occludens protein 1 (ZO-1) and claudin-1 expression. Based on the results of this study, HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS. Therefore, we pioneered the application of HZn-TA nanoparticles for the treatment of IBD, which are capable of clearing RONS without significant adverse effects. STATEMENT OF SIGNIFICANCE: ➢ HZn-TA nanoparticles were successfully prepared and could be effectively used to treat IBD. ➢ Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate ZO-1 and claudin-1 expression. ➢ HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS.
Collapse
Affiliation(s)
- Cong Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China; Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qingrong Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Jianghao Xing
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Yan Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Mengmei Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Liting Lin
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China
| | - Yue Yu
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Xianwen Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
2
|
Miyashita A, Xia Y, Kuda T, Yamamoto M, Nakamura A, Takahashi H. Effects of Sichuan pepper (huājiāo) powder on disease activity and caecal microbiota of dextran sodium sulphate-induced inflammatory bowel disease mouse model. Mol Biol Rep 2024; 51:126. [PMID: 38236446 DOI: 10.1007/s11033-023-09103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Sichuan pepper [Zanthoxylum bungeanum; huājiāo (HJ)] is a widely used spice in China and has better antioxidative, anti-glycation, and bile acid-lowering properties than cumin and coriander seeds. HJ affects inflammation-related cytokines and caecal microbiota in mice fed a low-fibre and high-sucrose diet. METHODS AND RESULTS To determine the ameliorative effect of HJ on inflammatory bowel disease, C57BL/6 mice were divided into three groups and fed distilled water (control) or 3% (w/v) dextran sodium sulphate (DSS) in drinking water with normal chow containing 0% or 5% (w/w) HJ powder for seven days. After 6 days of feeding, diarrhoea, decreased body weight, and blood in faeces were observed in the DSS group. DSS treatment increased the spleen weight and damaged the colon tissue. These inflammatory indices were inhibited by HJ treatment. Amplicon sequencing of the 16S rDNA (V4) gene of the caecal content revealed a decrease in the alpha diversity (Simpson index D) in the DSS treatment group compared to the control group. The abundance of caecal Desulfovibrio, an inflammation-related genus, was higher and the caecal Lachnospiraceae and Bacteroides levels were lower in the DSS-treated mice than those in the control mice. However, HJ suppressed the DSS-induced changes in the caecal microbiota. CONCLUSION HJ intake contributes to the reduction in inflammation and maintenance of the gut microbiota. However, the strong antioxidant properties of phenolic compounds and fermentability of water-soluble dietary fibres in HJ and their relationship with other functional properties warrant further investigation.
Collapse
Affiliation(s)
- Ayumi Miyashita
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Yumeng Xia
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan.
| | - Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
3
|
Mao Q, Pan H, Zhang Y, Zhang Y, Zhu Q, Hong Y, Huang Z, Li Y, Feng X, Fang Y, Chen W, Chen P, Shen B, Ouyang H, Liang Y. GelNB molecular coating as a biophysical barrier to isolate intestinal irritating metabolites and regulate intestinal microbial homeostasis in the treatment of inflammatory bowel disease. Bioact Mater 2023; 19:251-267. [PMID: 35510173 PMCID: PMC9046703 DOI: 10.1016/j.bioactmat.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, immune-mediated inflammatory disease characterized by the destruction of the structure and function of the intestinal epithelial barrier. Due to the poor remission effect and severe adverse events associated with current clinical medications, IBD remains an incurable disease. Here, we demonstrated a novel treatment strategy with high safety and effective inflammation remission via tissue-adhesive molecular coating. The molecular coating is composed of o-nitrobenzaldehyde (NB)-modified Gelatin (GelNB), which can strongly bond with –NH2 on the intestinal surface of tissue to form a thin biophysical barrier. We found that this molecular coating was able to stay on the surface of the intestine for long periods of time, effectively protecting the damaged intestinal epithelium from irritations of external intestinal metabolites and harmful flora. In addition, our results showed that this coating not only provided a beneficial environment for cell migration and proliferation to promote intestinal repair and regeneration, but also achieved a better outcome of IBD by reducing intestinal inflammation. Moreover, the in vivo experiments showed that the GelNB was better than the classic clinical medication—mesalazine. Therefore, our molecular coating showed potential as a promising strategy for the prevention and treatment of IBD. GelNB molecular coating can protect the intestinal epithelium from irritations of intestinal metabolites and harmful flora. GelNB molecular coating not only promote intestinal repair and regeneration, but also reduce intestinal inflammation. GelNB molecular coating shows potential as a promising strategy for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, 310028, China
| | - Haoqi Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuwen Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengze Huang
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
| | - Yang Li
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Xu Feng
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yifeng Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - WenChao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
- Corresponding author. Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Corresponding author. Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Laparoscopic Technology of Zhejiang province, Hangzhou, 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, 310028, China
- Corresponding author. Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
4
|
Bariana M, Cassella E, Rateshwar J, Ouk S, Liou HC, Heller C, Colorado I, Feinman R, Makhdoom A, Siegel DS, Heller G, Tuckett A, Mondello P, Zakrzewski JL. Inhibition of NF-κB DNA Binding Suppresses Myeloma Growth via Intracellular Redox and Tumor Microenvironment Modulation. Mol Cancer Ther 2022; 21:1798-1809. [PMID: 36190955 PMCID: PMC9722601 DOI: 10.1158/1535-7163.mct-22-0257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 01/12/2023]
Abstract
Multiple myeloma is a plasma cell malignancy that is still largely incurable, despite considerable progress in recent years. NF-κB is a well-established therapeutic target in multiple myeloma, but none of the currently available treatment options offer direct, specific pharmacologic targeting of NF-κB transcriptional activity. Thus, we designed a novel direct NF-κB inhibitor (IT848) as a drug candidate with strong potential for clinical translation and conducted comprehensive in vitro and in vivo mechanistic studies in multiple myeloma cell lines, primary multiple myeloma cells, xenograft models, and immunocompetent mouse models of multiple myeloma. Here, we show that IT848 inhibits NF-κB activity through inhibition of DNA binding of all five NF-κB subunits. IT848 treatment of multiple myeloma cell lines and patient samples inhibited proliferation and induced caspase-dependent and independent apoptosis. In addition to direct NF-κB inhibitory effects, IT848 treatment altered the redox homeostasis of multiple myeloma cells through depletion of the reduced glutathione pool, selectively inducing oxidative stress in multiple myeloma but not in healthy cells. Multiple myeloma xenograft studies confirmed the efficacy of IT848 as single agent and in combination with bortezomib. Furthermore, IT848 significantly improved survival when combined with programmed death protein 1 inhibition, and correlative immune studies revealed that this clinical benefit was associated with suppression of regulatory T-cell infiltration of the bone marrow microenvironment. In conclusion, IT848 is a potent direct NF-κB inhibitor and inducer of oxidative stress specifically in tumor cells, displaying significant activity against multiple myeloma cells in vitro and in vivo, both as monotherapy as well as in combination with bortezomib or immune checkpoint blockade.
Collapse
Affiliation(s)
- Manpreet Bariana
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Elena Cassella
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Janice Rateshwar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | | | | | | | - Iriana Colorado
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Rena Feinman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Ali Makhdoom
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - David S. Siegel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA,Multiple Myeloma Division, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Glenn Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Tuckett
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrizia Mondello
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Johannes L. Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA,Department of Oncology, Georgetown University, Washington, DC, USA,Department of Pediatrics, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
5
|
Evaluation of the in vivo antihypertensive effect and antioxidant activity of HL-7 and HL-10 peptide in mice. Mol Biol Rep 2021; 48:5571-5578. [PMID: 34291394 DOI: 10.1007/s11033-021-06576-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The tendency to use bioactive peptides has increased in recent decades, and research would be essential for recognizing the therapeutic effects of peptides present in animals or food resource. In this study, the in vivo antioxidant and antihypertensive properties of peptides HL-7 with the sequence of YLYELR and HL-10 with the sequence of AFPYYGHHLG were identified from scorpion venom of H. lepturus were evaluated. METHODS AND RESULTS To study the in vivo effects of peptides, D-galactose-induced and DOCA salt-induced mice models were used. The results of the antioxidant assay for both peptides showed that the activity of serum and liver catalase (CAT), as well as superoxide dismutase (SOD) enzymes, was significantly decreased in the D-galactose-induced group (NC), while MDA levels were increased in serum and the liver tissue samples (p < 0.01). Compared with the D-galactose-induced mice, the peptide treated mice group had a higher activity of antioxidant enzymes namely CAT and SOD, as well as a lower lipid peroxidation level. Also, the results of antihypertensive activity for both peptides showed that systolic blood pressure (SBP) and diastolic blood pressure (DBP) of the mice treated with the HL-7 and HL-10 peptides were significantly reduced in a dose-dependent manner (p < 0.01). The administration of the HL-7 peptide at doses of 2 mg/kg BW (LP1), 5 mg/kg BW (-IP1) and 15 mg/kg BW (HP1) significantly diminished the mean arterial blood pressure (MAP) by 11 mmHg, 31 mmHg and 40.47 mmHg, respectively. Accordingly, treatment of mice with the HL-10 peptide at doses of 2 mg/kg BW (LP2), 5 mg/kg BW (IP2) and 15 mg/kg BW (HP2) considerably lowered the MAP by 8 mmHg, 18.3 mmHg and 21.93 mmHg, respectively. CONCLUSION Our findings suggest that both the HL-7 and HL-10 peptides could be potentially utilized as antihypertensive and antioxidant components.
Collapse
|
6
|
Yan X, Lin W, Liu H, Pu W, Li J, Wu P, Ding J, Luo G, Zhang J. Wavelength-Tunable, Long Lifetime, and Biocompatible Luminescent Nanoparticles Based on a Vitamin E-Derived Material for Inflammation and Tumor Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100045. [PMID: 34031977 DOI: 10.1002/smll.202100045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Luminescence imaging is one of the most effective noninvasive strategies for detection and stratification of inflammation and oxidative stress that are closely related to the pathogenesis of numerous acute and chronic diseases. Herein biocompatible nanoparticles based on a peroxalate ester derived from vitamin E (defined as OVE) are developed. In combination with different fluorophores, OVE can generate luminescence systems with emission wavelengths varying from blue to the near-infrared light in its native and nanoparticle forms, in the presence of hydrogen peroxide (H2 O2 ). The OVE-based nanoprobes exhibit high luminescence signals with extremely long lifetime, upon triggering by inflammatory conditions with abnormally elevated H2 O2 . Activated neutrophils and macrophages can be illuminated by this type of luminescent nanoprobes, with luminescence intensities positively correlated with inflammatory cell counts. In mouse models of peritonitis, alcoholic liver injury, drug-induced acute liver injury, and acute lung injury, the developed luminescence nanoprobes enable precision imaging of inflammation and disease progression. Moreover, tumors expressing a high level of H2 O2 can be shined. Importantly, the OVE-based nanoplatform shows excellent in vitro and in vivo biocompatibility.
Collapse
Affiliation(s)
- Xinhao Yan
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723000, China
| | - Wenjie Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huan Liu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Junhong Li
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723000, China
| | - Peng Wu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723000, China
| | - Jun Ding
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
7
|
Dacquay LC, McMillen DR. Improving the design of an oxidative stress sensing biosensor in yeast. FEMS Yeast Res 2021; 21:6232160. [PMID: 33864457 PMCID: PMC8088429 DOI: 10.1093/femsyr/foab025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transcription factor (TF)-based biosensors have proven useful for increasing biomanufacturing yields, large-scale functional screening, and in environmental monitoring. Most yeast TF-based biosensors are built from natural promoters, resulting in large DNA parts retaining considerable homology to the host genome, which can complicate biological engineering efforts. There is a need to explore smaller, synthetic biosensors to expand the options for regulating gene expression in yeast. Here, we present a systematic approach to improving the design of an existing oxidative stress sensing biosensor in Saccharomyces cerevisiae based on the Yap1 transcription factor. Starting from a synthetic core promoter, we optimized the activity of a Yap1-dependent promoter through rational modification of a minimalist Yap1 upstream activating sequence. Our novel promoter achieves dynamic ranges of activation surpassing those of the previously engineered Yap1-dependent promoter, while reducing it to only 171 base pairs. We demonstrate that coupling the promoter to a positive-feedback-regulated TF further improves the biosensor by increasing its dynamic range of activation and reducing its limit of detection. We have illustrated the robustness and transferability of the biosensor by reproducing its activity in an unconventional probiotic yeast strain, Saccharomyces boulardii. Our findings can provide guidance in the general process of TF-based biosensor design.
Collapse
Affiliation(s)
- Louis C Dacquay
- Dept of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga ON L5L 1C6, Canada
| | - David R McMillen
- Dept of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga ON L5L 1C6, Canada.,Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto ON M5S 3H6, Canada
| |
Collapse
|
8
|
Functional Imaging Using Bioluminescent Reporter Genes in Living Subjects. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Cao X, Duan L, Hou H, Liu Y, Chen S, Zhang S, Liu Y, Wang C, Qi X, Liu N, Han Z, Zhang D, Han ZC, Guo Z, Zhao Q, Li Z. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE 2-mediated M2 macrophage polarization. Am J Cancer Res 2020; 10:7697-7709. [PMID: 32685014 PMCID: PMC7359093 DOI: 10.7150/thno.45434] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Mesenchymal stem cell (MSC)-based therapies hold great promise for the treatment of inflammatory bowel disease (IBD). In order to optimize and maximize the therapeutic benefits of MSCs, we investigated whether cotransplantation of a chitosan (CS)-based injectable hydrogel with immobilized IGF-1 C domain peptide (CS-IGF-1C) and human placenta-derived MSCs (hP-MSCs) could ameliorate colitis in mice. Methods: IGF-1C hydrogel was generated by immobilizing IGF-1C to CS hydrogel. Colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. We initially applied hP-MSCs and CS-IGF-1C hydrogel for the treatment of colitis by in situ injection, and molecular imaging methods were used for real-time imaging of reactive oxygen species (ROS) and tracking of transplanted hP-MSCs by bioluminescence imaging (BLI). Furthermore, the effects of CS-IGF-1C hydrogel on prostaglandin E2 (PGE2) secretion of hP-MSCs and polarization of M2 macrophages were investigated as well. Results: The CS-IGF-1C hydrogel significantly increased hP-MSC proliferation and promoted the production of PGE2 from hP-MSCs in vitro. Moreover, in vivo studies indicated that the CS-IGF-1C hydrogel promoted hP-MSC survival as visualized by BLI and markedly alleviated mouse colitis, which was possibly mediated by hP-MSC production of PGE2 and interleukin-10 (IL-10) production by polarized M2 macrophages. Conclusions: The CS-IGF-1C hydrogel improved the engraftment of transplanted hP-MSCs, ameliorated inflammatory responses, and further promoted the functional and structural recovery of colitis through PGE2-mediated M2 macrophage polarization. Molecular imaging approaches and therapeutic strategies for hydrogel application provide a versatile platform for exploring the promising therapeutic potential of MSCs in the treatment of IBD.
Collapse
|
10
|
Yang N, Liang G, Lin J, Zhang S, Lin Q, Ji X, Chen H, Li N, Jin S. Ginsenoside Rd therapy improves histological and functional recovery in a rat model of inflammatory bowel disease. Phytother Res 2020; 34:3019-3028. [PMID: 32468636 DOI: 10.1002/ptr.6734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Ginsenoside Rd (GRd) is a biologically active component of ginseng that stimulates the proliferation of endogenous stem cells. The objective of our research was to evaluate the utility of GRd in gastrointestinal mucosal regeneration in a rat model of inflammatory bowel disease (IBD) and to clarify whether GRd exerts its pharmacological effects by modulating endogenous intestinal stem cells. The IBD rat model was established via subcutaneous injection of indomethacin, and 10, 20, or 40 mg/kg GRd or an equal volume of physiological saline was then administered orally to rats in different groups every day for seven consecutive days. We observed that GRd treatment, especially 20 mg/kg GRd, significantly reduced indomethacin-induced damage compared with that in the control group. By measuring the mRNA and protein levels of the intestinal stem cell markers Bmi and Msi-1 and the intestinal epithelial cell marker CDX-2 as well as by double-labelling these markers with 5-bromo-2-deoxyuridine (BrdU), we inferred that GRd could stimulate the proliferation and differentiation of endogenous intestinal stem cells in IBD model rats, leading to improved recovery of intestinal function.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guoying Liang
- Department of Spleen and Stomach Disease, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Lin
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sijia Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuchi Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuechun Ji
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoyuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Li
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shizhu Jin
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Le D, Dhamecha D, Gonsalves A, Menon JU. Ultrasound-Enhanced Chemiluminescence for Bioimaging. Front Bioeng Biotechnol 2020; 8:25. [PMID: 32117914 PMCID: PMC7016203 DOI: 10.3389/fbioe.2020.00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue imaging has emerged as an important aspect of theragnosis. It is essential not only to evaluate the degree of the disease and thus provide appropriate treatments, but also to monitor the delivery of administered drugs and the subsequent recovery of target tissues. Several techniques including magnetic resonance imaging (MRI), computational tomography (CT), acoustic tomography (AT), biofluorescence (BF) and chemiluminescence (CL), have been developed to reconstruct three-dimensional images of tissues. While imaging has been achieved with adequate spatial resolution for shallow depths, challenges still remain for imaging deep tissues. Energy loss is usually observed when using a magnetic field or traditional ultrasound (US), which leads to a need for more powerful energy input. This may subsequently result in tissue damage. CT requires exposure to radiation and a high dose of contrast agent to be administered for imaging. The BF technique, meanwhile, is affected by strong scattering of light and autofluorescence of tissues. The CL is a more selective and sensitive method as stable luminophores are produced from physiochemical reactions, e.g. with reactive oxygen species. Development of near infrared-emitting luminophores also bring potential for application of CL in deep tissues and whole animal studies. However, traditional CL imaging requires an enhancer to increase the intensity of low-level light emissions, while reducing the scattering of emitted light through turbid tissue environment. There has been interest in the use of focused ultrasound (FUS), which can allow acoustic waves to propagate within tissues and modulate chemiluminescence signals. While light scattering is decreased, the spatial resolution is increased with the assistance of US. In this review, chemiluminescence detection in deep tissues with assistance of FUS will be highlighted to discuss its potential in deep tissue imaging.
Collapse
Affiliation(s)
| | | | | | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
12
|
Abstract
Although the superoxide anion (O2-·) is generated during normal cellular respiration and has fundamental roles in a wide range of cellular processes, such as cell proliferation, migration, apoptosis, and homeostasis, its dysregulation is associated with a variety of diseases. Regarding these prominent roles in biological systems, the development of accurate methods for quantification of superoxide anion has attracted tremendous research attention. Here, we evaluated aequorin, a calcium-dependent photoprotein, as a potential bioluminescent reporter protein of superoxide anion. The mechanism is based on the measurement of aequorin bioluminescence, where the lower the concentration of coelenterazine under the oxidation of superoxide anion, the lower the amount aequorin regeneration, leading to a decrease in bioluminescence. The bioluminescence intensity of aequorin was proportional to the concentration of superoxide anion in the range from 4 to 40 000 pM with a detection limit (S/N = 3) of 1.2 pM, which was 5000-fold lower than those of the chemiluminescence methods. The proposed method exhibited high sensitivity and has been successfully applied to the determination of superoxide anion in the plant cell samples. The results could suggest a photoprotein-based bioluminescence system as a highly sensitive, specific, and simple bioluminescent probe for in vitro detection of superoxide anion.
Collapse
Affiliation(s)
- Hossein Rahmani
- Department of Biochemistry, Faculty of Biological Sciences , Tarbiat Modares University , Tehran 14115-154 , Iran
| | - Fahimeh Ghavamipour
- Department of Biochemistry, Faculty of Biological Sciences , Tarbiat Modares University , Tehran 14115-154 , Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences , Tarbiat Modares University , Tehran 14115-154 , Iran
| |
Collapse
|
13
|
Nomura N, Nishihara R, Nakajima T, Kim SB, Iwasawa N, Hiruta Y, Nishiyama S, Sato M, Citterio D, Suzuki K. Biothiol-Activatable Bioluminescent Coelenterazine Derivative for Molecular Imaging in Vitro and in Vivo. Anal Chem 2019; 91:9546-9553. [PMID: 31291724 DOI: 10.1021/acs.analchem.9b00694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high demand for sensitive biothiol probes targeting cysteine, glutathione, and homocysteine. These biothiols are known as playing essential roles to maintain homeostasis and work as indicators of many diseases. This work presents a bioluminescent probe (named AMCM) to detect biothiols in live mammalian cells and in vivo with a limit of detection of 0.11 μM for cysteine in solution and high selectivity for biothiols, making it suitable for real-time biothiol detection in biological systems. Upon application to live cells, AMCM showed low cytotoxicity and sensitively reported bioluminescence in response to changes of biothiol levels. Furthermore, a bioluminescence resonance energy transfer system consisting of AMCM combined with the near-infrared fluorescent protein iRFP713 was applied to in vivo imaging, with emitted tissue-permeable luminescence in living mice. In summary, this work demonstrates that AMCM is of high practical value for the detection of biothiols in living cells and for deep tissue imaging in living animals.
Collapse
Affiliation(s)
| | | | - Takahiro Nakajima
- Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro , Tokyo , Japan
| | - Sung Bae Kim
- National Institute of Advanced Industrial Science and Technology , 1-1-1 Umezono , Tsukuba , Ibaraki 305-8560 , Japan
| | | | | | | | - Moritoshi Sato
- Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro , Tokyo , Japan
| | | | | |
Collapse
|
14
|
Calderón-Torres CM, Sarabia-Curz L, Ledesma-Soto Y, Murguía-Romero M, Terrazas LI. Denitrase activity of Debaryomyces hansenii reduces the oxidized compound 3-nitrotyrosine in mice liver with colitis. Exp Ther Med 2019; 17:3748-3754. [PMID: 31007730 DOI: 10.3892/etm.2019.7395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
The oxidation of tyrosine to 3-nitrotyrosine is irreversible, and due to this characteristic, 3-nitrotyrosine is used as a marker for oxidative stress in a range of diverse chronic and degenerative diseases. It has been established that the yeast Debaryomyces hansenii (D. hansenii) can assimilate free 3-nitrotyrosine as unique source of nitrogen, and during saline stress, has a high denitrase activity to detoxify this compound in a reaction that involves the liberation of nitrogen dioxide from 3-nitrotyrosine. However, until now it has not been determined whether D. hansenii can detoxify protein-bound 3-nitrotyrosine such as nitrated proteins present in different chronic illnesses. TThe aim of the present study was to evaluate the denitrase activity of D. hansenii to reduce 3-nitrotyrosine from liver proteins of mice with colitis. Firstly, the levels of reactive oxygen species of liver tissue of colitic and control mice were measured by the reaction with the 2'7'-dichlorofluorescein diacetate. Denitrase activity of D. hansenii was evaluated by incubating cell extracts of the yeast with protein extracts from livers of mice with colitis. Following incubation, 3-nitrotyrosine was measured, and to corroborate that denitrase reaction had occurred, the production of nitrites was measured. In samples of liver tissue from mice with colitis, the maximum levels of reactive oxygen species were up to two times higher compared with the control livers. Following the incubation of colitic liver samples with cell extracts of D. hansenii, it was observed that 3-nitrotyrosine decreased to the basal concentration of control liver samples, and that the concentration of nitrites was increased. These results indicate that denitrase of D. hansenii extracts can effectively detoxify 3-nitrotyrosine bound to proteins and that the extracts could be used to decrease protein oxidation damage in chronic degenerative diseases.
Collapse
Affiliation(s)
| | - Lirio Sarabia-Curz
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla 54090, Mexico
| | - Yadira Ledesma-Soto
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla 54090, Mexico
| | - Miguel Murguía-Romero
- Morphology and Function Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla 54090, Mexico
| | - Luis I Terrazas
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla 54090, Mexico
| |
Collapse
|
15
|
Stephens M, Liao S, von der Weid PY. Mesenteric Lymphatic Alterations Observed During DSS Induced Intestinal Inflammation Are Driven in a TLR4-PAMP/DAMP Discriminative Manner. Front Immunol 2019; 10:557. [PMID: 30972059 PMCID: PMC6443629 DOI: 10.3389/fimmu.2019.00557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD) is characterized by both acute and chronic phase inflammation of the gastro-intestinal (GI) tract that affect a large and growing number of people worldwide with little to no effective treatments. This is in part due to the lack of understanding of the disease pathogenesis and also the currently poorly described involvement of other systems such as the lymphatics. During DSS induced colitis, mice also develop a severe inflammation of terminal ileum with many features similar to IBD. As well as inflammation within the ileum we have previously demonstrated lymphatic remodeling within the mesentery and mesenteric lymph nodes of DSS-treated mice. The lymphatic remodeling includes lymphangiogenesis, lymphatic vessel dilation and leakiness, as well as cellular infiltration into the surrounding tissue and peripheral draining lymph nodes. Methods: Intestinal inflammation was induced in C57BL/6 mice by administration of 2.5% DSS in drinking water for 7 days. Mice were treated with TLR4 blocker C34 or Polymyxin-B (PMXB) daily from days 3 to 7 of DSS treatment via I.P. injection, and their therapeutic effects on disease activity and lymphatic function were examined. TLR activity and subsequent effect on lymphangiogenesis, lymphadenopathy, and mesenteric lymph node cellular composition were assessed. Results: DSS Mice treated with TLR4 inhibitor, C34, had a significantly improved disease phenotype characterized by reduced ileal and colonic insult. The change correlated with significant reduction in colonic and mesenteric inflammation, resolved mesenteric lymphangiectasia, and CD103+ DC migration similar to that of healthy control. PMXB treatment however did not resolve inflammation within the colon or associated mesenteric lymphatic dysfunction but did however prevent lymphadenopathy within the MLN through alteration of CCL21 gradients and CD103+ DC migration. Conclusions: TLR4 appears to mediate several changes within the mesenteric lymphatics, more specifically it is shown to have different outcomes whether stimulation occurs through pathogen derived factors such as LPS or tissue derived DAMPs, a novel phenomenon.
Collapse
Affiliation(s)
- Matthew Stephens
- Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Shan Liao
- Department of Microbiology, Immunology and Infectious Diseases, Inflammation Research Network, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Pierre-Yves von der Weid
- Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Abstract
Reactive oxygen species (ROS) are critical redox regulators of cellular dynamics controlling homeostasis. Although numerous fluorescent probes are currently available to measure ROS in cell-based assays, the short-lived nature of these molecules renders their detection challenging in more complex biological systems, such as the gastrointestinal tract in vivo. However, in the past decade, significant progress has been made in the development of novel imaging technologies and probes, facilitating ROS quantification with high sensitivity, selectivity, and temporal resolution. The IVIS Spectrum (PerkinElmer) is an optical imaging system for small animal imaging allowing precise and noninvasive visualization of fluorescent or bioluminescent signals. Here, we describe a reproducible and comprehensive method for the measurement of physiological intestinal NADPH oxidase-derived ROS by using the chemiluminescent probe L-012. Using transgenic mice deficient in Nox isoforms expressed in the intestinal mucosa, we delineate the contribution of gut epithelial versus immune cell NADPH oxidase activity in homeostatic conditions. We also discuss L-012 probe specificity and potential alternatives for in vivo studies.
Collapse
Affiliation(s)
- Emer Conroy
- Conway Institute, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
17
|
Gao Y, Bai D, Zhao Y, Zhu Q, Zhou Y, Li Z, Lu N. LL202 ameliorates colitis against oxidative stress of macrophage by activation of the Nrf2/HO‐1 pathway. J Cell Physiol 2018; 234:10625-10639. [DOI: 10.1002/jcp.27739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Dongsheng Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Qin Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Yihui Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Zhiyu Li
- Department of Medicinal Chemistry China Pharmaceutical University Nanjing China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| |
Collapse
|
18
|
Verification of radiodynamic therapy by medical linear accelerator using a mouse melanoma tumor model. Sci Rep 2018; 8:2728. [PMID: 29426920 PMCID: PMC5807383 DOI: 10.1038/s41598-018-21152-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
Combined treatment with 5-aminolevulinic acid (5-ALA) and X-rays improves tumor suppression in vivo. This is because the accumulated protoporphyrin IX from 5-ALA enhances the generation of ROS by the X-ray irradiation. In the present study, a high-energy medical linear accelerator was used instead of a non-medical low energy X-ray irradiator, which had been previously used. Tumor-bearing mice implanted with B16-BL6 melanoma cells were treated with fractionated doses of irradiation (in total, 20 or 30 Gy), using two types of X-ray irradiator after 5-ALA administration. Suppression of tumor growth was enhanced with X-ray irradiation in combination with 5-ALA treatment compared with X-ray treatment alone, using both medical and non-medical X-ray irradiators. 5-ALA has been used clinically for photodynamic therapy. Thus, “radiodynamic therapy”, using radiation from medical linacs as a physical driving force, rather than the light used in photodynamic therapy, may have potential clinical applications.
Collapse
|
19
|
Yuan M, Ma X, Jiang T, Zhang C, Chen H, Gao Y, Yang X, Du L, Li M. A novel coelenterate luciferin-based luminescent probe for selective and sensitive detection of thiophenols. Org Biomol Chem 2018; 14:10267-10274. [PMID: 27747358 DOI: 10.1039/c6ob02038k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first dual bioluminescent and chemiluminescent sensor for detecting highly toxic thiophenols has been developed. Such a probe was designed by using a coelenterazine analogue as the luminophore and dinitrophenyl ether as the recognition moiety. It should be noted that this probe displayed good sensitivity and selectivity toward thiophenols, and has been effectively applied for the quantitative detection of thiophenols in aqueous media and complex biological samples.
Collapse
Affiliation(s)
- Mingliang Yuan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Xiaojie Ma
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Tianyu Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Chaochao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Hui Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Yuqi Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
20
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017; 6. [PMID: 28892296 DOI: 10.1002/adhm.201700258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Approaches to increase the efficiency in developing drugs and diagnostics tools, including new drug delivery and diagnostic technologies, are needed for improved diagnosis and treatment of major diseases and health problems such as cancer, inflammatory diseases, chronic wounds, and antibiotic resistance. Development within several areas of research ranging from computational sciences, material sciences, bioengineering to biomedical sciences and bioimaging is needed to realize innovative drug development and diagnostic (DDD) approaches. Here, an overview of recent progresses within key areas that can provide customizable solutions to improve processes and the approaches taken within DDD is provided. Due to the broadness of the area, unfortunately all relevant aspects such as pharmacokinetics of bioactive molecules and delivery systems cannot be covered. Tailored approaches within (i) bioinformatics and computer-aided drug design, (ii) nanotechnology, (iii) novel materials and technologies for drug delivery and diagnostic systems, and (iv) disease models to predict safety and efficacy of medicines under development are focused on. Current developments and challenges ahead are discussed. The broad scope reflects the multidisciplinary nature of the field of DDD and aims to highlight the convergence of biological, pharmaceutical, and medical disciplines needed to meet the societal challenges of the 21st century.
Collapse
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
21
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017. [DOI: 10.1002/adhm.201700258 10.1002/adhm.201700258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
22
|
Mouse models of inflammatory bowel disease for investigating mucosal immunity in the intestine. Curr Opin Gastroenterol 2017; 33:411-416. [PMID: 28901966 DOI: 10.1097/mog.0000000000000402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Currently several mouse models are considered representative of inflammatory bowel disease (IBD). This review presents recent developments regarding the role of animal models of intestinal inflammation as research tools in IBD. RECENT FINDINGS Preclinical studies in animal models of intestinal inflammation have generated novel findings in several areas of IBD research. The combination of chemical and genetically engineered models have revealed protective or harmful roles for various components of the innate immune system in response to acute injury and repair mechanisms for the intestinal mucosa. Advances in the use of endoscopic and radiologic techniques have allowed identification of inflammatory biomarkers and in-vivo monitoring of cell trafficking towards inflammatory sites. Translational research has shed light on pathogenic mechanisms through which recent biological treatments may exert their beneficial effects in patients with IBD. Finally, novel therapies are continuously tested in animal models of IBD as part of preclinical drug development programs. SUMMARY Animal models of intestinal inflammation continue to be important research tools with high significance for understanding the pathogenesis of IBD and exploring novel therapeutic options. Development of additional experimental models that address existing limitations, and more closely resemble the characteristics of Crohn's disease and ulcerative colitis are greatly needed.
Collapse
|
23
|
Pinto da Silva L, Magalhães CM, Crista DMA, Esteves da Silva JCG. Theoretical modulation of singlet/triplet chemiexcitation of chemiluminescent imidazopyrazinone dioxetanone via C8-substitution. Photochem Photobiol Sci 2017; 16:897-907. [PMID: 28430271 DOI: 10.1039/c7pp00012j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DFT analysis of the thermolysis of C8-substituted imidazopyrazinone dioxetanone allows the rational tuning of the activation barrier and singlet/triplet chemiexcitation.
Collapse
Affiliation(s)
- L. Pinto da Silva
- Chemistry Research Unit (CIQUP)
- Department of Chemistry and Biochemistry
- Faculty of Sciences of University of Porto
- 4169-007 Porto
- Portugal
| | - C. M. Magalhães
- Chemistry Research Unit (CIQUP)
- Department of Chemistry and Biochemistry
- Faculty of Sciences of University of Porto
- 4169-007 Porto
- Portugal
| | - D. M. A. Crista
- Chemistry Research Unit (CIQUP)
- Department of Chemistry and Biochemistry
- Faculty of Sciences of University of Porto
- 4169-007 Porto
- Portugal
| | - J. C. G. Esteves da Silva
- Chemistry Research Unit (CIQUP)
- Department of Chemistry and Biochemistry
- Faculty of Sciences of University of Porto
- 4169-007 Porto
- Portugal
| |
Collapse
|
24
|
Protective effects of rice bran fermented by Saccharomyces cerevisiae Misaki-1 and Lactobacillus plantarum Sanriki-SU8 in dextran sodium sulphate-induced inflammatory bowel disease model mice. FOOD BIOSCI 2016. [DOI: 10.1016/j.fbio.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|