1
|
Bauer D, De Gregorio R, Pratt EC, Bell A, Michel A, Lewis JS. Examination of the PET in vivo generator 134Ce as a theranostic match for 225Ac. Eur J Nucl Med Mol Imaging 2024; 51:4015-4025. [PMID: 38940841 DOI: 10.1007/s00259-024-06811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations that are not possible with 225Ac. In this work, 225Ac- and 134Ce-labelled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. METHODS The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labelled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. RESULTS In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. CONCLUSION When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Roberto De Gregorio
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Edwin C Pratt
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Abram Bell
- Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Alexa Michel
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Omweri JM, Saini S, Houson HA, Tekin V, Pyles JM, Parker CC, Lapi SE. Development of 52Mn Labeled Trastuzumab for Extended Time Point PET Imaging of HER2. Mol Imaging Biol 2024; 26:858-868. [PMID: 39192059 PMCID: PMC11436409 DOI: 10.1007/s11307-024-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE Due to their long circulation time in the blood, monoclonal antibodies (mAbs) such as trastuzumab, are usually radiolabeled with long-lived positron emitters for the development of agents for Positron Emission Tomography (PET) imaging. Manganese-52 (52Mn, t1/2 = 5.6 d, β+ = 29.6%, E(βave) = 242 keV) is suitable for imaging at longer time points providing a complementary technique to Zirconium-89 (89Zr, t1/2 = 3.3 d, β+ = 22.7%, E(βave) = 396 keV)) because of its long half-life and low positron energy. To exploit these properties, we aimed to investigate suitable bifunctional chelators that could be readily conjugated to antibodies and labeled with 52Mn under mild conditions using trastuzumab as a proof-of-concept. PROCEDURES Trastuzumab was incubated with S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 1-Oxa-4,7,10-tetraazacyclododecane-5-S-(4-isothiocyantobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A), and 3,6,9,15-tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA) at a tenfold molar excess. The immunoconjugates were purified, combined with [52Mn]MnCl2 at different ratios, and the labeling efficiency was assessed by iTLC. The immunoreactive fraction of the radiocomplex was determined through a Lindmo assay. Cell studies were conducted in HER2 + (BT474) and HER2- (MDA-MB-468) cell lines followed by in vivo studies. RESULTS Trastuzumab-Oxo-DO3A was labeled within 30 min at 37 °C with a radiochemical yield (RCY) of 90 ± 1.5% and with the highest specific activity of the chelators investigated of 16.64 MBq/nmol. The labeled compound was purified with a resulting radiochemical purity of > 98% and retained a 67 ± 1.2% immunoreactivity. DOTA and PCTA immunoconjugates resulted in < 50 ± 2.5% (RCY) with similar specific activity. Mouse serum stability studies of [52Mn]Mn-Oxo-DO3A-trastuzumab showed 95% intact complex for over 5 days. Cell uptake studies showed higher uptake in HER2 + (12.51 ± 0.83% /mg) cells compared to HER2- (0.85 ± 0.10%/mg) cells. PET images of mice bearing BT474 tumors showed high tumor uptake that was consistent with the biodistribution (42.02 ± 2.16%ID/g, 14 d) compared to MDA-MB-468 tumors (2.20 ± 0.80%ID/g, 14 d). Additionally, both models exhibited low bone uptake of < 1% ID/g. CONCLUSION The bifunctional chelator p-SCN-Bn-Oxo-DO3A is promising for the development of 52Mn radiopharmaceuticals as it was easily conjugated, radiolabeled at mild conditions, and illustrated stability for a prolonged duration both in vitro and in vivo. High-quality PET/CT images of [52Mn]Mn-Oxo-DO3A-trastuzumab were obtained 14 d post-injection. This study illustrates the potential of [52Mn]Mn-Oxo-DO3A for the evaluation of antibodies using PET imaging.
Collapse
Affiliation(s)
- James M Omweri
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Shefali Saini
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Jennifer M Pyles
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Candace C Parker
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA
| | - Suzanne E Lapi
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35205, USA.
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave S, WTI 310F, Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
van Trigt VR, Bakker LEH, Lu H, Pelsma ICM, Verstegen MJT, van Furth WR, Pereira Arias-Bouda LM, Biermasz NR. Clinical use of [ 18F]fluoro-ethyl-L-tyrosine PET co-registered with MRI for localizing prolactinoma remnants. Pituitary 2024; 27:614-624. [PMID: 39042164 PMCID: PMC11513721 DOI: 10.1007/s11102-024-01430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE To assess the utility of [18F]fluoroethyl-L-tyrosine PET co-registered with magnetic resonance imaging ([18F]FET-PET/MRICR) in patients with difficult-to-localize prolactinoma to inform clinical decision-making and (surgical) treatment planning. METHODS Retrospective cohort study of 17 consecutive patients with prolactinoma undergoing [18F]FET-PET/MRICR between October 2020 and September 2022 for either (1) additional information in case of difficult-to-visualize remnants after prior transsphenoidal surgery (TSS), or pharmacological treatment, or (2) radiological diagnosis in absence of a (clear) adenoma on diagnostic/post-treatment conventional MRI. RESULTS [18F]FET-PET/MRICR identified a lesion in 14/17 patients, yet failed to identify active lesions in 2 patients with negative conventional MRI despite prolactin > 7.5 times upper limit of normal. [18F]FET-PET/MRICR results were inconclusive in 1 patient due to diffuse tracer uptake 10 weeks post-surgery. [18F]FET-PET/MRICR was completely concordant with a suspected lesion on conventional MRI in 10/17 patients, and partially concordant in 3/17 patients. New foci were identified in 4/17 patients. The [18F]FET-PET/MRICR conclusions influenced clinical shared decision-making in 15/17 patients, of whom 7 patients underwent TSS and 8 refrained from TSS. One patient underwent TSS despite negative [18F]FET-PET/MRICR, and one patient underwent additional imaging. Intraoperative findings corresponded with [18F]FET-PET/MRICR in 5/8 patients, and immunohistochemistry was positive in 5/8 patients. The treatment goal was achieved in 7/8 patients, and remission was achieved in 5/7 patients in whom total resection was considered feasible. CONCLUSION [18F]FET-PET/MRICR can be of added value in the preoperative decision-making process for selected patients with difficult-to-localize prolactinoma (remnants), or patients lacking a substrate on conventional MRI.
Collapse
Affiliation(s)
- Victoria R van Trigt
- Dept. of Medicine, Division of Endocrinology, Center for Endocrine Tumors Leiden, Leiden University Medical Center, Leiden, the Netherlands.
| | - Leontine E H Bakker
- Dept. of Medicine, Division of Endocrinology, Center for Endocrine Tumors Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Huangling Lu
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris C M Pelsma
- Dept. of Medicine, Division of Endocrinology, Center for Endocrine Tumors Leiden, Leiden University Medical Center, Leiden, the Netherlands
| | - Marco J T Verstegen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter R van Furth
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Lenka M Pereira Arias-Bouda
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke R Biermasz
- Dept. of Medicine, Division of Endocrinology, Center for Endocrine Tumors Leiden, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Benčurová K, Tran L, Friske J, Bevc K, Helbich TH, Hacker M, Bergmann M, Zeitlinger M, Haug A, Mitterhauser M, Egger G, Balber T. An in vivo tumour organoid model based on the chick embryonic chorioallantoic membrane mimics key characteristics of the patient tissue: a proof-of-concept study. EJNMMI Res 2024; 14:86. [PMID: 39331331 PMCID: PMC11436503 DOI: 10.1186/s13550-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. RESULTS The main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. CONCLUSIONS We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.
Collapse
Affiliation(s)
- Katarína Benčurová
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kajetana Bevc
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Thomas H Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory Applied Metabolomics, Vienna, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria.
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Theresa Balber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Shoop G, Abbaszadeh S. Combining PET and Compton imaging with edge-on CZT detectors for enhanced diagnostic capabilities. ADVANCES IN RADIOTHERAPY & NUCLEAR MEDICINE 2024; 2:3330. [PMID: 39493887 PMCID: PMC11529829 DOI: 10.36922/arnm.3330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The key metrics for positron emission tomography (PET) imaging devices include the capability to capture the maximum available amount of annihilation photon information while generating high-quality images of the radiation distribution. This capability carries clinical implications by reducing scanning time for imaging, thus reducing radiation exposure for patients. However, imaging quality is degraded by positron range effects and the non-collinearity of positron annihilation photons. Utilizing an edge-on configuration of cadmium zinc telluride (CZT) detector crystals offers a potential solution to increase PET sensitivity. The high cross-section of CZT and its capacity to detect both 511 keV annihilation gammas and high-energy prompt gammas, along with multiple photon interaction events, contribute to this increased sensitivity. In this study, we propose a dual-panel edge-on CZT detector system comprised of 4 × 4 × 0.5 cm3 CZT detectors, with panel dimensions of 20 × 15 cm2 and a thickness of 4 cm. In this study, we demonstrate the increased sensitivity of our imaging system due to the detection of the Compton kinematics of high-energy gammas originating from prompt-gamma-emitting isotopes. This was achieved using Monte Carlo simulations of a prompt-gamma-emitting isotope,72As, with mean positron ranges >3 mm. Our system's dynamic energy range, capable of detecting gammas up to 1.2 MeV, allows it to operate in a dual-mode fashion as both a Compton camera (CC) and standard PET. By presenting reconstructions of 72As, we highlight the absence of positron range effects in CC reconstructions compared to PET reconstructions. In addition, we evaluate the system's increased sensitivity resulting from its ability to detect high-energy prompt gammas.
Collapse
Affiliation(s)
- Greyson Shoop
- Department of Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, United States of America
| | - Shiva Abbaszadeh
- Department of Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, United States of America
| |
Collapse
|
6
|
Toàn NM, Vágner A, Nagy G, Ország G, Nagy T, Csikos C, Váradi B, Sajtos GZ, Kapus I, Szoboszlai Z, Szikra D, Trencsényi G, Tircsó G, Garai I. [ 52Mn]Mn-BPPA-Trastuzumab: A Promising HER2-Specific PET Radiotracer. J Med Chem 2024; 67:8261-8270. [PMID: 38690886 DOI: 10.1021/acs.jmedchem.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This study aimed to develop a novel radiotracer using trastuzumab and the long-lived [52Mn]Mn isotope for HER2-targeted therapy selection and monitoring. A new Mn(II) chelator, BPPA, synthesized from a rigid bispyclen platform possessing a picolinate pendant arm, formed a stable and inert Mn(II) complex with favorable relaxation properties. BPPA was converted into a bifunctional chelator (BFC), conjugated to trastuzumab, and labeled with [52Mn]Mn isotope. In comparison to DOTA-GA-trastuzumab, the BPPA-trastuzumab conjugate exhibits a labeling efficiency with [52Mn]Mn approximately 2 orders of magnitude higher. In female CB17 SCID mice bearing 4T1 (HER2-) and MDA-MB-HER2+ (HER2+) xenografts, [52Mn]Mn-BPPA-trastuzumab demonstrated superior uptake in HER2+ cells on day 3, with a 3-4 fold difference observed on day 7. Overall, the hexadentate BPPA chelator proves to be exceptional in binding Mn(II). Upon coupling with trastuzumab as a BFC ligand, it becomes an excellent imaging probe for HER2-positive tumors. [52Mn]Mn-BPPA-trastuzumab enables an extended imaging time window and earlier detection of HER2-positive tumors with superior tumor-to-background contrast.
Collapse
Affiliation(s)
- Ngô Minh Toàn
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, Debrecen H-4032, Hungary
| | | | | | | | - Tamás Nagy
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, Debrecen H-4032, Hungary
- Scanomed Ltd., Debrecen H-4032, Hungary
| | - Csaba Csikos
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, Debrecen H-4032, Hungary
| | - Balázs Váradi
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - Gergő Zoltán Sajtos
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - István Kapus
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | | | - Dezső Szikra
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, Debrecen H-4032, Hungary
- Scanomed Ltd., Debrecen H-4032, Hungary
| | - György Trencsényi
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, Debrecen H-4032, Hungary
- Scanomed Ltd., Debrecen H-4032, Hungary
| | - Gyula Tircsó
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen H-4032, Hungary
| | - Ildikó Garai
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, Debrecen H-4032, Hungary
- Scanomed Ltd., Debrecen H-4032, Hungary
| |
Collapse
|
7
|
Bauer D, De Gregorio R, Pratt EC, Bell A, Michel A, Lewis JS. Exploring the PET in vivo generator 134Ce as a theranostic match for 225Ac. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591165. [PMID: 38712285 PMCID: PMC11071455 DOI: 10.1101/2024.04.25.591165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Purpose The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations not possible with 225Ac. In this work, 225Ac- and 134Ce-labeled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. Methods The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labeled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. Results In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. Conclusion When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roberto De Gregorio
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edwin C. Pratt
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abram Bell
- Brigham Young University-Idaho, Rexburg, ID 83440, USA
| | - Alexa Michel
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason S. Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
8
|
Spatz P, Chen X, Reichau K, Huber ME, Mühlig S, Matsusaka Y, Schiedel M, Higuchi T, Decker M. Development and Initial Characterization of the First 18F-CXCR2-Targeting Radiotracer for PET Imaging of Neutrophils. J Med Chem 2024; 67:6327-6343. [PMID: 38570909 DOI: 10.1021/acs.jmedchem.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The interleukin-8 receptor beta (CXCR2) is a highly promising target for molecular imaging of inflammation and inflammatory diseases. This is due to its almost exclusive expression on neutrophils. Modified fluorinated ligands were designed based on a squaramide template, with different modification sites and synthetic strategies explored. Promising candidates were then tested for affinity to CXCR2 in a NanoBRET competition assay, resulting in tracer candidate 16b. As direct 18F-labeling using established tosyl chemistry did not yield the expected radiotracer, an indirect labeling approach was developed. The radiotracer [18F]16b was obtained with a radiochemical yield of 15% using tert-butyl (S)-3-(tosyloxy)pyrrolidine carboxylate and a pentafluorophenol ester. The subsequent time-dependent uptake of [18F]16b in CXCR2-negative and CXCR2-overexpressing human embryonic kidney cells confirmed the radiotracer's specificity. Further studies with human neutrophils revealed its diagnostic potential for functional imaging of neutrophils.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Kora Reichau
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Saskia Mühlig
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Yohji Matsusaka
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
- Pharmaceutical and Medicinal Chemistry, Institute of Medicinal and Pharmaceutical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
9
|
Zhang X, Qiu L, Sultan DH, Luehmann HP, Yu Y, Zhang X, Heo GS, Li A, Lahad D, Rho S, Tu Z, Liu Y. Development of a CCR2 targeted 18F-labeled radiotracer for atherosclerosis imaging with PET. Nucl Med Biol 2024; 130-131:108893. [PMID: 38422918 PMCID: PMC10964492 DOI: 10.1016/j.nucmedbio.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease and the leading cause of morbidity and mortality worldwide. CC motif chemokine ligand 2 and its corresponding cognate receptor 2 (CCL2/CCR2) signaling has been implicated in regulating monocyte recruitment and macrophage polarization during inflammatory responses that plays a pivotal role in atherosclerosis initiation and progression. In this study, we report the design and synthesis of a novel 18F radiolabeled small molecule radiotracer for CCR2-targeted positron emission tomography (PET) imaging in atherosclerosis. The binding affinity of this radiotracer to CCR2 was evaluated via in vitro binding assay using CCR2+ membrane and cells. Ex vivo biodistribution was carried out in wild type mice to assess radiotracer pharmacokinetics. CCR2 targeted PET imaging of plaques was performed in two murine atherosclerotic models. The sensitive detection of atherosclerotic lesions highlighted the potential of this radiotracer for CCR2 targeted PET and warranted further optimization.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lin Qiu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Debbie H Sultan
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hannah P Luehmann
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yanbo Yu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiuli Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alexandria Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Divangana Lahad
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Shinji Rho
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Zhude Tu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
10
|
Alexoff D, Choi SR, Ploessl K, Kim D, Zhao R, Zhu L, Kung H. Optimization and scale up of production of the PSMA imaging agent [ 18F]AlF-P16-093 on a custom automated radiosynthesis platform. EJNMMI Radiopharm Chem 2024; 9:15. [PMID: 38393404 PMCID: PMC10891009 DOI: 10.1186/s41181-024-00247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Recent advancements in positron emission tomograph (PET) using prostate specific membrane antigen (PSMA)-targeted radiopharmaceuticals have changed the standard of care for prostate cancer patients by providing more accurate information during staging of primary and recurrent disease. [68Ga]Ga-P16-093 is a new PSMA-PET radiopharmaceutical that demonstrated superior imaging performance in recent head-to-head studies with [68Ga]Ga-PSMA-11. To improve the availability of this new PSMA PET imaging agent, [18F]AlF-P16-093 was developed. The 18F-analog [18F]AlF-P16-093 has been synthesized manually at low activity levels using [18F]AlF2+ and validated in pre-clinical models. This work reports the optimization of the production of > 15 GBq of [18F]AlF-P16-093 using a custom automated synthesis platform. RESULTS The sensitivity of the radiochemical yield of [18F]AlF-P16-093 to reaction parameters of time, temperature and reagent amounts was investigated using a custom automated system. The automated system is a low-cost, cassette-based system designed for 1-pot syntheses with flow-controlled solid phase extraction (SPE) workup and is based on the Raspberry Pi Zero 2 microcomputer/Python3 ecosystem. The optimized none-decay-corrected yield was 52 ± 4% (N = 3; 17.5 ± 2.2 GBq) with a molar activity of 109 ± 14 GBq/µmole and a radiochemical purity of 98.6 ± 0.6%. Run time was 30 min. A two-step sequence was used: SPE-purified [18F]F- was reacted with 80 nmoles of freeze-dried AlCl3·6H2O at 65 °C for 5 min followed by reaction with 160 nmoles of P16-093 ligand at 40 °C for 4 min in a 1:1 mixture of ethanol:0.5 M pH 4.5 NaOAc buffer. The mixture was purified by SPE (> 97% recovery). The final product formulation (5 mM pH 7 phosphate buffer with saline) exhibited a rate of decline in radiochemical purity of ~ 1.4%/h which was slowed to ~ 0.4%/h when stored at 4 °C. CONCLUSION The optimized method using a custom automated system enabled the efficient (> 50% none-decay-corrected yield) production of [18F]AlF-P16-093 with high radiochemical purity (> 95%). The method and automation system are simple and robust, facilitating further clinical studies with [18F]AlF-P16-093.
Collapse
Affiliation(s)
- David Alexoff
- Five Eleven Pharma Inc., Philadelphia, PA, 19104, USA.
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, PA, 19104, USA
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, PA, 19104, USA
| | - Dohyun Kim
- Isotope Research and Production Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Lin Zhu
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Hank Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
11
|
Wang J, Bermudez D, Chen W, Durgavarjhula D, Randell C, Uyanik M, McMillan A. Motion-correction strategies for enhancing whole-body PET imaging. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1257880. [PMID: 39118964 PMCID: PMC11308502 DOI: 10.3389/fnume.2024.1257880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Positron Emission Tomography (PET) is a powerful medical imaging technique widely used for detection and monitoring of disease. However, PET imaging can be adversely affected by patient motion, leading to degraded image quality and diagnostic capability. Hence, motion gating schemes have been developed to monitor various motion sources including head motion, respiratory motion, and cardiac motion. The approaches for these techniques have commonly come in the form of hardware-driven gating and data-driven gating, where the distinguishing aspect is the use of external hardware to make motion measurements vs. deriving these measures from the data itself. The implementation of these techniques helps correct for motion artifacts and improves tracer uptake measurements. With the great impact that these methods have on the diagnostic and quantitative quality of PET images, much research has been performed in this area, and this paper outlines the various approaches that have been developed as applied to whole-body PET imaging.
Collapse
Affiliation(s)
- James Wang
- Department of Radiology, University of Wisconsin Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin Madison, Madison, WI, United States
| | - Dalton Bermudez
- Department of Medical Physics, University of Wisconsin Madison, Madison, WI, United States
| | - Weijie Chen
- Department of Radiology, University of Wisconsin Madison, Madison, WI, United States
- Department of Electrical and Computer Engineering, University of Wisconsin Madison, Madison, WI, United States
| | - Divya Durgavarjhula
- Department of Radiology, University of Wisconsin Madison, Madison, WI, United States
- Department of Computer Science, University of Wisconsin Madison, Madison, WI, United States
| | - Caitlin Randell
- Department of Radiology, University of Wisconsin Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI, United States
| | - Meltem Uyanik
- Department of Radiology, University of Wisconsin Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin Madison, Madison, WI, United States
| | - Alan McMillan
- Department of Radiology, University of Wisconsin Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin Madison, Madison, WI, United States
- Department of Electrical and Computer Engineering, University of Wisconsin Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI, United States
- Data Science Institute, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
12
|
Omweri JM, Tekin V, Saini S, Houson HA, Jayawardana SB, Decato DA, Wijeratne GB, Lapi SE. Chelation chemistry of manganese-52 for PET imaging applications. Nucl Med Biol 2024; 128-129:108874. [PMID: 38154167 DOI: 10.1016/j.nucmedbio.2023.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Due to its decay and chemical properties, interest in manganese-52 has increased for development of long-lived PET radiopharmaceuticals. Its long half-life of 5.6 days, low average positron energy (242 keV), and sufficient positron decay branching ratio make it suitable for radiolabeling macromolecules for investigating slow biological processes. This work aims to establish suitable chelators for manganese-52 that can be radiolabeled at mild conditions through the evaluation of commercially available chelators. METHODS Manganese-52 was produced through the nuclear reaction NatCr(p,n)52Mn by irradiation of natural chromium targets on a TR24 cyclotron followed by purification through ion exchange chromatography. The radiolabeling efficiencies of chelators: DOTA, DiAmsar, TETA, DO3A, NOTA, 4'-Formylbenzo-15-crown-5, Oxo-DO3A, and DFO, were assessed by investigating the impact of pH, buffer type, and temperature. In vitro stability of [52Mn]Mn(DO3A)-, [52Mn]Mn(Oxo-DO3A)-, and [52Mn]Mn(DOTA)2- were evaluated in mouse serum. The radiocomplexes were also evaluated in vivo in mice. Crystals of [Mn(Oxo-DO3A)]- were synthesized by reacting Oxo-DO3A with MnCl2 and characterized by single crystal X-ray diffraction. RESULTS Yields of 185 ± 19 MBq (5.0 ± 0.5 mCi) (n = 4) of manganese-52 were produced at the end of a 4 h, 15 μA, bombardment with 12.5 MeV protons. NOTA, DO3A, DOTA, and Oxo-DO3A chelators were readily radiolabeled with >96 % radiochemical purity at all conditions. Manganese radiocomplexes of Oxo-DO3A, DOTA, and DO3A remained stable in vitro up to 5 days and exhibited different biodistribution profiles compared to [52Mn]MnCl2. The solid-state structure of Mn-Oxo-DO3A complex was determined by single-crystal X-ray diffraction. CONCLUSIONS DO3A and Oxo-DO3A are suitable chelators for manganese-52 which are readily radiolabeled at mild conditions with high molar activity, and demonstrate both in vitro and in vivo stability.
Collapse
Affiliation(s)
- James M Omweri
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35205, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shefali Saini
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35205, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samith B Jayawardana
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, MT 59812, USA
| | - Gayan B Wijeratne
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Suzanne E Lapi
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35205, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
13
|
Keramati H, de Vecchi A, Rajani R, Niederer SA. Using Gaussian process for velocity reconstruction after coronary stenosis applicable in positron emission particle tracking: An in-silico study. PLoS One 2023; 18:e0295789. [PMID: 38096169 PMCID: PMC10721050 DOI: 10.1371/journal.pone.0295789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Accurate velocity reconstruction is essential for assessing coronary artery disease. We propose a Gaussian process method to reconstruct the velocity profile using the sparse data of the positron emission particle tracking (PEPT) in a biological environment, which allows the measurement of tracer particle velocity to infer fluid velocity fields. We investigated the influence of tracer particle quantity and detection time interval on flow reconstruction accuracy. Three models were used to represent different levels of stenosis and anatomical complexity: a narrowed straight tube, an idealized coronary bifurcation with stenosis, and patient-specific coronary arteries with a stenotic left circumflex artery. Computational fluid dynamics (CFD), particle tracking, and the Gaussian process of kriging were employed to simulate and reconstruct the pulsatile flow field. The study examined the error and uncertainty in velocity profile reconstruction after stenosis by comparing particle-derived flow velocity with the CFD solution. Using 600 particles (15 batches of 40 particles) released in the main coronary artery, the time-averaged error in velocity reconstruction ranged from 13.4% (no occlusion) to 161% (70% occlusion) in patient-specific anatomy. The error in maximum cross-sectional velocity at peak flow was consistently below 10% in all cases. PEPT and kriging tended to overestimate area-averaged velocity in higher occlusion cases but accurately predicted maximum cross-sectional velocity, particularly at peak flow. Kriging was shown to be useful to estimate the maximum velocity after the stenosis in the absence of negative near-wall velocity.
Collapse
Affiliation(s)
- Hamed Keramati
- School of Bioengineering and Imaging Sciences, King’s College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Adelaide de Vecchi
- School of Bioengineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Ronak Rajani
- School of Bioengineering and Imaging Sciences, King’s College London, London, United Kingdom
- Cardiology Department, Guy’s and St, Thomas’s Hospital, London, United Kingdom
| | - Steven A. Niederer
- School of Bioengineering and Imaging Sciences, King’s College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Turing Research and Innovation Cluster in Digital Twins (TRIC: DT), The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
14
|
Mannes PZ, Barnes CE, Latoche JD, Day KE, Nedrow JR, Lee JS, Tavakoli S. 2-deoxy-2-[ 18F]fluoro-D-glucose Positron Emission Tomography to Monitor Lung Inflammation and Therapeutic Response to Dexamethasone in a Murine Model of Acute Lung Injury. Mol Imaging Biol 2023; 25:681-691. [PMID: 36941514 PMCID: PMC10027262 DOI: 10.1007/s11307-023-01813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE To image inflammation and monitor therapeutic response to anti-inflammatory intervention using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) in a preclinical model of acute lung injury (ALI). PROCEDURES Mice were intratracheally administered lipopolysaccharide (LPS, 2.5 mg/kg) to induce ALI or phosphate-buffered saline as the vehicle control. A subset of mice in the ALI group received two intraperitoneal doses of dexamethasone 1 and 24 h after LPS. [18F]FDG PET/CT was performed 2 days after the induction of ALI. [18F]FDG uptake in the lungs was quantified by PET (%ID/mLmean and standardized uptake value (SUVmean)) and ex vivo γ-counting (%ID/g). The severity of lung inflammation was determined by quantifying the protein level of inflammatory cytokines/chemokines and the activity of neutrophil elastase and glycolytic enzymes. In separate groups of mice, flow cytometry was performed to estimate the contribution of individual immune cell types to the total pulmonary inflammatory cell burden under different treatment conditions. RESULTS Lung uptake of [18F]FDG was significantly increased during LPS-induced ALI, and a decreased [18F]FDG uptake was observed following dexamethasone treatment to an intermediate level between that of LPS-treated and control mice. Protein expression of inflammatory biomarkers and the activity of neutrophil elastase and glycolytic enzymes were increased in the lungs of LPS-treated mice versus those of control mice, and correlated with [18F]FDG uptake. Furthermore, dexamethasone-induced decreases in cytokine/chemokine protein levels and enzyme activities correlated with [18F]FDG uptake. Neutrophils were the most abundant cells in LPS-induced ALI, and the pattern of total cell burden during ALI with or without dexamethasone therapy mirrored that of [18F]FDG uptake. CONCLUSIONS [18F]FDG PET noninvasively detects lung inflammation in ALI and its response to anti-inflammatory therapy in a preclinical model. However, high [18F]FDG uptake by bone, brown fat, and myocardium remains a technical limitation for quantification of [18F]FDG in the lungs.
Collapse
Affiliation(s)
- Philip Z Mannes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clayton E Barnes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph D Latoche
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn E Day
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessie R Nedrow
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Pratt EC, Lopez-Montes A, Volpe A, Crowley MJ, Carter LM, Mittal V, Pillarsetty N, Ponomarev V, Udías JM, Grimm J, Herraiz JL. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron-electron annihilation and prompt gamma emissions. Nat Biomed Eng 2023; 7:1028-1039. [PMID: 37400715 PMCID: PMC10810307 DOI: 10.1038/s41551-023-01060-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
In conventional positron emission tomography (PET), only one radiotracer can be imaged at a time, because all PET isotopes produce the same two 511 keV annihilation photons. Here we describe an image reconstruction method for the simultaneous in vivo imaging of two PET tracers and thereby the independent quantification of two molecular signals. This method of multiplexed PET imaging leverages the 350-700 keV range to maximize the capture of 511 keV annihilation photons and prompt γ-ray emission in the same energy window, hence eliminating the need for energy discrimination during reconstruction or for signal separation beforehand. We used multiplexed PET to track, in mice with subcutaneous tumours, the biodistributions of intravenously injected [124I]I-trametinib and 2-deoxy-2-[18F]fluoro-D-glucose, [124I]I-trametinib and its nanoparticle carrier [89Zr]Zr-ferumoxytol, and the prostate-specific membrane antigen (PSMA) and infused PSMA-targeted chimaeric antigen receptor T cells after the systemic administration of [68Ga]Ga-PSMA-11 and [124I]I. Multiplexed PET provides more information depth, gives new uses to prompt γ-ray-emitting isotopes, reduces radiation burden by omitting the need for an additional computed-tomography scan and can be implemented on preclinical and clinical systems without any modifications in hardware or image acquisition software.
Collapse
Affiliation(s)
- Edwin C Pratt
- Department of Pharmacology, Weill Cornell Graduate School, New York, NY, USA
- Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alejandro Lopez-Montes
- Nuclear Physics Group, EMFTEL and IPARCOS, Complutense University of Madrid, Madrid, Spain
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Crowley
- Department of Cell and Developmental Biology, Weill Cornell Graduate School, New York, NY, USA
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vivek Mittal
- Department of Cell and Developmental Biology, Weill Cornell Graduate School, New York, NY, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, USA
| | | | - Vladimir Ponomarev
- Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose M Udías
- Nuclear Physics Group, EMFTEL and IPARCOS, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Graduate School, New York, NY, USA.
- Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Joaquin L Herraiz
- Nuclear Physics Group, EMFTEL and IPARCOS, Complutense University of Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain.
| |
Collapse
|
16
|
Nguyen AT, Kim HK. Recent Developments in PET and SPECT Radiotracers as Radiopharmaceuticals for Hypoxia Tumors. Pharmaceutics 2023; 15:1840. [PMID: 37514026 PMCID: PMC10385036 DOI: 10.3390/pharmaceutics15071840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Hypoxia, a deficiency in the levels of oxygen, is a common feature of most solid tumors and induces many characteristics of cancer. Hypoxia is associated with metastases and strong resistance to radio- and chemotherapy, and can decrease the accuracy of cancer prognosis. Non-invasive imaging methods such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using hypoxia-targeting radiopharmaceuticals have been used for the detection and therapy of tumor hypoxia. Nitroimidazoles are bioreducible moieties that can be selectively reduced under hypoxic conditions covalently bind to intracellular macromolecules, and are trapped within hypoxic cells and tissues. Recently, there has been a strong motivation to develop PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazole moieties for the visualization and treatment of hypoxic tumors. In this review, we summarize the development of some novel PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazoles, as well as their physicochemical properties, in vitro cellular uptake values, in vivo biodistribution, and PET/SPECT imaging results.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
17
|
Thanigainathan T, Sharma A, Patel C, Seth S, Roy A, Pandey AK, Gupta P, Kumar R, Kumar P, Bal CS. Imaging of cardiac sympathetic dysfunction with 18F-FDOPA PET/CT in patients with heart failure: a pilot study. J Nucl Cardiol 2023; 30:1147-1157. [PMID: 36474068 DOI: 10.1007/s12350-022-03150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Routine use of cardiac sympathetic imaging in HF has been limited by the lower availability/sensitivity of radiotracers. This study was aimed to assess the feasibility of 18F-FDOPA (commonly available PET-radiotracer) in assessment of cardiac autonomic dysfunction. METHODS Twenty-four controls (46.5 ± 11.1 years, 16men) and 24 patients (43.5 ± 11.0 years, 18men) with diagnosed HF (Framingham-Criteria) underwent cardiac-PET/CT. Region(s) Of Interest were drawn over entire left ventricular myocardium (LV), individual walls, and mediastinum (M). Coefficient of Variation (CV) was calculated from individual wall counts. RESULTS HF patients had significantly lower myocardial 18F-FDOPA uptake (P < .001, independent t test) than controls [32.4% ± 9.5% global reduction; highest in apex (39.9% ± 7.0%)]. A cut-off of LV/M ≤ 1.68 could differentiate patients from controls with sensitivity and specificity of 100% and 95.8%, respectively. LV/M correlated positively with EF (Pearson coefficient = 0.460, P .031). During follow-up, 3 patients were lost to follow-up, 4 died (survival-20.5 ± 4 months), 2 worsened, and 15 remained stable/showed mild improvement. Patients who worsened/died during follow-up had higher CV than those with stable/improving symptoms [0.16 ± 0.05 vs 0.11 ± 0.05, P value .069 (independent t test); Cox regression P = .084]. CONCLUSION Myocardial 18F-FDOPA uptake in patients with HF is significantly reduced. Higher reduction is seen in those with lower EF. CV, a maker of regional heterogeneity, is a potential prognostic marker.
Collapse
Affiliation(s)
| | - Anshul Sharma
- Department of Nuclear Medicine, HBCHRC (Tata Memorial Centre), Mullanpur, Punjab, India
| | - Chetan Patel
- Department of Nuclear Medicine, AIIMS, New Delhi, India.
| | - Sandeep Seth
- Department of Cardiology, AIIMS, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, AIIMS, New Delhi, India
| | | | | | - Rajeev Kumar
- Department of Nuclear Medicine, AIIMS, New Delhi, India
| | - Praveen Kumar
- Department of Nuclear Medicine, AIIMS, New Delhi, India
| | | |
Collapse
|
18
|
Su L, Dalby KS, Luehmann H, Elkassih SA, Cho S, He X, Detering L, Lin YN, Kang N, Moore DA, Laforest R, Sun G, Liu Y, Wooley KL. Ultrasmall, elementary and highly translational nanoparticle X-ray contrast media from amphiphilic iodinated statistical copolymers. Acta Pharm Sin B 2023; 13:1660-1670. [PMID: 37139426 PMCID: PMC10149980 DOI: 10.1016/j.apsb.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022] Open
Abstract
To expand the single-dose duration over which noninvasive clinical and preclinical cancer imaging can be conducted with high sensitivity, and well-defined spatial and temporal resolutions, a facile strategy to prepare ultrasmall nanoparticulate X-ray contrast media (nano-XRCM) as dual-modality imaging agents for positron emission tomography (PET) and computed tomography (CT) has been established. Synthesized from controlled copolymerization of triiodobenzoyl ethyl acrylate and oligo(ethylene oxide) acrylate monomers, the amphiphilic statistical iodocopolymers (ICPs) could directly dissolve in water to afford thermodynamically stable solutions with high aqueous iodine concentrations (>140 mg iodine/mL water) and comparable viscosities to conventional small molecule XRCM. The formation of ultrasmall iodinated nanoparticles with hydrodynamic diameters of ca. 10 nm in water was confirmed by dynamic and static light scattering techniques. In a breast cancer mouse model, in vivo biodistribution studies revealed that the 64Cu-chelator-functionalized iodinated nano-XRCM exhibited extended blood residency and higher tumor accumulation compared to typical small molecule imaging agents. PET/CT imaging of tumor over 3 days showed good correlation between PET and CT signals, while CT imaging allowed continuous observation of tumor retention even after 10 days post-injection, enabling longitudinal monitoring of tumor retention for imaging or potentially therapeutic effect after a single administration of nano-XRCM.
Collapse
Affiliation(s)
- Lu Su
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB 5600, The Netherlands
| | - Kellie S. Dalby
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sussana A. Elkassih
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Sangho Cho
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Xun He
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yen-Nan Lin
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Nari Kang
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | | | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Guorong Sun
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karen L. Wooley
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
19
|
Li C, Scheins J, Tellmann L, Issa A, Wei L, Shah NJ, Lerche C. Fast 3D kernel computation method for positron range correction in PET. Phys Med Biol 2023; 68. [PMID: 36595256 DOI: 10.1088/1361-6560/acaa84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
Objective. The positron range is a fundamental, detector-independent physical limitation to spatial resolution in positron emission tomography (PET) as it causes a significant blurring of underlying activity distribution in the reconstructed images. A major challenge for positron range correction methods is to provide accurate range kernels that inherently incorporate the generally inhomogeneous stopping power, especially at tissue boundaries. In this work, we propose a novel approach to generate accurate three-dimensional (3D) blurring kernels both in homogenous and heterogeneous media to improve PET spatial resolution.Approach. In the proposed approach, positron energy deposition was approximately tracked along straight paths, depending on the positron stopping power of the underlying material. The positron stopping power was derived from the attenuation coefficient of 511 keV gamma photons according to the available PET attenuation maps. Thus, the history of energy deposition is taken into account within the range of kernels. Special emphasis was placed on facilitating the very fast computation of the positron annihilation probability in each voxel.Results. Positron path distributions of18F in low-density polyurethane were in high agreement with Geant4 simulation at an annihilation probability larger than 10-2∼ 10-3of the maximum annihilation probability. The Geant4 simulation was further validated with measured18F depth profiles in these polyurethane phantoms. The tissue boundary of water with cortical bone and lung was correctly modeled. Residual artifacts from the numerical computations were in the range of 1%. The calculated annihilation probability in voxels shows an overall difference of less than 20% compared to the Geant4 simulation.Significance. The proposed method is expected to significantly improve spatial resolution for non-standard isotopes by providing sufficiently accurate range kernels, even in the case of significant tissue inhomogeneities.
Collapse
Affiliation(s)
- Chong Li
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany.,Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jürgen Scheins
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany
| | - Lutz Tellmann
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany
| | - Ahlam Issa
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, RWTH Aachen University, Aachen, Germany
| | - Long Wei
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - N Jon Shah
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine, INM-11, Forschungszentrum GmbH, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, RWTH Aachen University, Aachen, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany
| |
Collapse
|
20
|
Du J, Jones T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats. EJNMMI Phys 2023; 10:2. [PMID: 36592266 PMCID: PMC9807733 DOI: 10.1186/s40658-022-00523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Positron emission tomography (PET) is the most sensitive in vivo molecular imaging technique available. Small animal PET has been widely used in studying pharmaceutical biodistribution and disease progression over time by imaging a wide range of biological processes. However, it remains true that almost all small animal PET studies using mouse or rat as preclinical models are either limited by the spatial resolution or the sensitivity (especially for dynamic studies), or both, reducing the quantitative accuracy and quantitative precision of the results. Total-body small animal PET scanners, which have axial lengths longer than the nose-to-anus length of the mouse/rat and can provide high sensitivity across the entire body of mouse/rat, can realize new opportunities for small animal PET. This article aims to discuss the technical opportunities and challenges in developing total-body small animal PET scanners for mice and rats.
Collapse
Affiliation(s)
- Junwei Du
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Terry Jones
- grid.27860.3b0000 0004 1936 9684Department of Radiology, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
21
|
Akamatsu G, Tsutsui Y, Daisaki H, Mitsumoto K, Baba S, Sasaki M. A review of harmonization strategies for quantitative PET. Ann Nucl Med 2023; 37:71-88. [PMID: 36607466 PMCID: PMC9902332 DOI: 10.1007/s12149-022-01820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
PET can reveal in vivo biological processes at the molecular level. PET-derived quantitative values have been used as a surrogate marker for clinical decision-making in numerous clinical studies and trials. However, quantitative values in PET are variable depending on technical, biological, and physical factors. The variability may have a significant impact on a study outcome. Appropriate scanner calibration and quality control, standardization of imaging protocols, and any necessary harmonization strategies are essential to make use of PET as a biomarker with low bias and variability. This review summarizes benefits, limitations, and remaining challenges for harmonization of quantitative PET, including whole-body PET in oncology, brain PET in neurology, PET/MR, and non-18F PET imaging. This review is expected to facilitate harmonization of quantitative PET and to promote the contribution of PET-derived biomarkers to research and development in medicine.
Collapse
Affiliation(s)
- Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan. .,Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yuji Tsutsui
- Department of Radiological Science, Faculty of Health Science, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-8510 Japan
| | - Hiromitsu Daisaki
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma 371-0052 Japan
| | - Katsuhiko Mitsumoto
- Department of Clinical Radiology Service, Kyoto University Hospital, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Shingo Baba
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masayuki Sasaki
- Department of Medical Quantum Science, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
22
|
Winter G, Eberhardt N, Löffler J, Raabe M, Alam MNA, Hao L, Abaei A, Herrmann H, Kuntner C, Glatting G, Solbach C, Jelezko F, Weil T, Beer AJ, Rasche V. Preclinical PET and MR Evaluation of 89Zr- and 68Ga-Labeled Nanodiamonds in Mice over Different Time Scales. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4471. [PMID: 36558325 PMCID: PMC9780863 DOI: 10.3390/nano12244471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Nanodiamonds (NDs) have high potential as a drug carrier and in combination with nitrogen vacancies (NV centers) for highly sensitive MR-imaging after hyperpolarization. However, little remains known about their physiological properties in vivo. PET imaging allows further evaluation due to its quantitative properties and high sensitivity. Thus, we aimed to create a preclinical platform for PET and MR evaluation of surface-modified NDs by radiolabeling with both short- and long-lived radiotracers. Serum albumin coated NDs, functionalized with PEG groups and the chelator deferoxamine, were labeled either with zirconium-89 or gallium-68. Their biodistribution was assessed in two different mouse strains. PET scans were performed at various time points up to 7 d after i.v. injection. Anatomical correlation was provided by additional MRI in a subset of animals. PET results were validated by ex vivo quantification of the excised organs using a gamma counter. Radiolabeled NDs accumulated rapidly in the liver and spleen with a slight increase over time, while rapid washout from the blood pool was observed. Significant differences between the investigated radionuclides were only observed for the spleen (1 h). In summary, we successfully created a preclinical PET and MR imaging platform for the evaluation of the biodistribution of NDs over different time scales.
Collapse
Affiliation(s)
- Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nina Eberhardt
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| | - Marco Raabe
- Department of Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Md. Noor A. Alam
- Department of Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Li Hao
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| | - Alireza Abaei
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| | - Hendrik Herrmann
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, 1090 Vienna, Austria
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Solbach
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - Tanja Weil
- Department of Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Volker Rasche
- Department of Internal Medicine II, Experimental Cardiovascular Imaging, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
23
|
Li M, Ma X, Molnar CJ, Wang S, Wu Z, Popik VV, Li Z. Modular PET Agent Construction Strategy through Strain-Promoted Double-Click Reagent with Efficient Photoclick Step. Bioconjug Chem 2022; 33:2088-2096. [DOI: 10.1021/acs.bioconjchem.2c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manshu Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xinrui Ma
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher J. Molnar
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Shuli Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vladimir V. Popik
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Gavriilidis P, Koole M, Annunziata S, Mottaghy FM, Wierts R. Positron Range Corrections and Denoising Techniques for Gallium-68 PET Imaging: A Literature Review. Diagnostics (Basel) 2022; 12:2335. [PMID: 36292023 PMCID: PMC9600409 DOI: 10.3390/diagnostics12102335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 10/26/2023] Open
Abstract
Gallium-68 (68Ga) is characterized by relatively high positron energy compared to Fluorine-18 (18F), causing substantial image quality degradation. Furthermore, the presence of statistical noise can further degrade image quality. The aim of this literature review is to identify the recently developed positron range correction techniques for 68Ga, as well as noise reduction methods to enhance the image quality of low count 68Ga PET imaging. The search engines PubMed and Scopus were employed, and we limited our research to published results from January 2010 until 1 August 2022. Positron range correction was achieved by using either deblurring or deep learning approaches. The proposed techniques improved the image quality and, in some cases, achieved an image quality comparable to 18F PET. However, none of these techniques was validated in clinical studies. PET denoising for 68Ga-labeled radiotracers was reported using either reconstruction-based techniques or deep learning approaches. It was demonstrated that both approaches can substantially enhance the image quality by reducing the noise levels of low count 68Ga PET imaging. The combination of 68Ga-specific positron range correction techniques and image denoising approaches may enable the application of low-count, high-quality 68Ga PET imaging in a clinical setting.
Collapse
Affiliation(s)
- Prodromos Gavriilidis
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
- Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Salvatore Annunziata
- Unit of Nuclear Medicine, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Nuclear Medicine, RWTH University Hospital, D-52074 Aachen, Germany
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
25
|
Braune A, Oehme L, Freudenberg R, Hofheinz F, van den Hoff J, Kotzerke J, Hoberück S. Comparison of image quality and spatial resolution between 18F, 68Ga, and 64Cu phantom measurements using a digital Biograph Vision PET/CT. EJNMMI Phys 2022; 9:58. [PMID: 36064989 PMCID: PMC9445107 DOI: 10.1186/s40658-022-00487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PET nuclides can have a considerable influence on the spatial resolution and image quality of PET/CT scans, which can influence diagnostics in oncology, for example. The individual impact of the positron energy of 18F, 68Ga, and 64Cu on spatial resolution and image quality was compared for PET/CT scans acquired using a clinical, digital scanner. METHODS A Jaszczak phantom and a NEMA PET body phantom were filled with 18F-FDG, 68Ga-HCl, or 64Cu-HCl, and PET/CT scans were performed on a Siemens Biograph Vision. Acquired images were analyzed regarding spatial resolution and image quality (recovery coefficients (RC), coefficient of variation within the background, contrast recovery coefficient (CRC), contrast-noise ratio (CNR), and relative count error in the lung insert). Data were compared between scans with different nuclides. RESULTS We found that image quality was comparable between 18F-FDG and 64Cu-HCl PET/CT measurements featuring similar maximal endpoint energies of the positrons. In comparison, RC, CRC, and CNR were degraded in 68Ga-HCl data despite similar count rates. In particular, the two smallest spheres of 10 mm and 13 mm diameter revealed lower RC, CRC, and CNR values. The spatial resolution was similar between 18F-FDG and 64Cu-HCl but up to 18% and 23% worse compared with PET/CT images of the NEMA PET body phantom filled with 68Ga-HCl. CONCLUSIONS The positron energy of the PET nuclide influences the spatial resolution and image quality of a digital PET/CT scan. The image quality and spatial resolution of 68Ga-HCl PET/CT images were worse than those of 18F-FDG or 64Cu-HCl despite similar count rates.
Collapse
Affiliation(s)
- Anja Braune
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| | - Liane Oehme
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Robert Freudenberg
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Frank Hofheinz
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jörg van den Hoff
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.,PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Nuclear Medicine, Medizinische Fakultat Carl Gustav Carus, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Sebastian Hoberück
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.,Department of Nuclear Medicine, Helios Klinikum Erfurt, Erfurt, Germany
| |
Collapse
|
26
|
Kertész H, Conti M, Panin V, Cabello J, Bharkhada D, Beyer T, Papp L, Jentzen W, Cal-Gonzalez J, Herraiz JL, López-Montes A, Rausch I. Positron range in combination with point-spread-function correction: an evaluation of different implementations for [124I]-PET imaging. EJNMMI Phys 2022; 9:56. [PMID: 35984531 PMCID: PMC9391565 DOI: 10.1186/s40658-022-00482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
AIM To evaluate the effect of combining positron range correction (PRC) with point-spread-function (PSF) correction and to compare different methods of implementation into iterative image reconstruction for 124I-PET imaging. MATERIALS AND METHODS Uniform PR blurring kernels of 124I were generated using the GATE (GEANT4) framework in various material environments (lung, water, and bone) and matched to a 3D matrix. The kernels size was set to 11 × 11 × 11 based on the maximum PR in water and the voxel size of the PET system. PET image reconstruction was performed using the standard OSEM algorithm, OSEM with PRC implemented before the forward projection (OSEM+PRC simplified) and OSEM with PRC implemented in both forward- and back-projection steps (full implementation) (OSEM+PRC). Reconstructions were repeated with resolution recovery, point-spread function (PSF) included. The methods and kernel variation were validated using different phantoms filled with 124I acquired on a Siemens mCT PET/CT system. The data was evaluated for contrast recovery and image noise. RESULTS Contrast recovery improved by 2-10% and 4-37% with OSEM+PRC simplified and OSEM+PRC, respectively, depending on the sphere size of the NEMA IQ phantom. Including PSF in the reconstructions further improved contrast by 4-19% and 3-16% with the PSF+PRC simplified and PSF+PRC, respectively. The benefit of PRC was more pronounced within low-density material. OSEM-PRC and OSEM-PSF as well as OSEM-PSF+PRC in its full- and simplified implementation showed comparable noise and convergence. OSEM-PRC simplified showed comparably faster convergence but at the cost of increased image noise. CONCLUSIONS The combination of the PSF and PRC leads to increased contrast recovery with reduced image noise compared to stand-alone PSF or PRC reconstruction. For OSEM-PRC reconstructions, a full implementation in the reconstruction is necessary to handle image noise. For the combination of PRC with PSF, a simplified PRC implementation can be used to reduce reconstruction times.
Collapse
Affiliation(s)
- Hunor Kertész
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | | | | | - Jorge Cabello
- Siemens Medical Solutions USA, Inc., Knoxville, TN, USA
| | | | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Laszlo Papp
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Walter Jentzen
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Jacobo Cal-Gonzalez
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Ion Beam Applications, Protontherapy Center Quironsalud, Madrid, Spain
| | - Joaquín L Herraiz
- Nuclear Physics Group and IPARCOS, Faculty of Physical Sciences, University Complutense of Madrid, Madrid, Spain.,Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Alejandro López-Montes
- Nuclear Physics Group and IPARCOS, Faculty of Physical Sciences, University Complutense of Madrid, Madrid, Spain
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
27
|
Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Curr Med Chem 2022; 29:4862-4890. [PMID: 35352645 PMCID: PMC10080361 DOI: 10.2174/0929867329666220329204054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | | | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
28
|
PET-CT in Clinical Adult Oncology-IV. Gynecologic and Genitourinary Malignancies. Cancers (Basel) 2022; 14:cancers14123000. [PMID: 35740665 PMCID: PMC9220973 DOI: 10.3390/cancers14123000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Positron emission tomography (PET), typically combined with computed tomography (CT), has become a critical advanced imaging technique in oncology. With concurrently acquired positron emission tomography and computed tomography (PET-CT), a radioactive molecule (radiotracer) is injected in the bloodstream and localizes to sites of tumor because of specific cellular features of the tumor that accumulate the targeting radiotracer. The CT scan provides information to allow better visualization of radioactivity from deep or dense structures and to provide detailed anatomic information. PET-CT has a variety of applications in oncology, including staging, therapeutic response assessment, restaging and surveillance. This series of six review articles provides an overview of the value, applications, and imaging interpretive strategies for PET-CT in the more common adult malignancies. The fourth report in this series provides a review of PET-CT imaging in gynecologic and genitourinary malignancies. Abstract Concurrently acquired positron emission tomography and computed tomography (PET-CT) is an advanced imaging modality with diverse oncologic applications, including staging, therapeutic assessment, restaging and longitudinal surveillance. This series of six review articles focuses on providing practical information to providers and imaging professionals regarding the best use and interpretative strategies of PET-CT for oncologic indications in adult patients. In this fourth article of the series, the more common gynecological and adult genitourinary malignancies encountered in clinical practice are addressed, with an emphasis on Food and Drug Administration (FDA)-approved and clinically available radiopharmaceuticals. The advent of new FDA-approved radiopharmaceuticals for prostate cancer imaging has revolutionized PET-CT imaging in this important disease, and these are addressed in this report. However, [18F]F-fluoro-2-deoxy-d-glucose (FDG) remains the mainstay for PET-CT imaging of gynecologic and many other genitourinary malignancies. This information will serve as a guide for the appropriate role of PET-CT in the clinical management of gynecologic and genitourinary cancer patients for health care professionals caring for adult cancer patients. It also addresses the nuances and provides guidance in the accurate interpretation of FDG PET-CT in gynecological and genitourinary malignancies for imaging providers, including radiologists, nuclear medicine physicians and their trainees.
Collapse
|
29
|
Pavel DG, Henderson TA, DeBruin S, Cohen PF. The Legacy of the TTASAAN Report - Premature Conclusions and Forgotten Promises About SPECT Neuroimaging: A Review of Policy and Practice Part II. Front Neurol 2022; 13:851609. [PMID: 35655621 PMCID: PMC9152128 DOI: 10.3389/fneur.2022.851609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Brain perfusion single photon emission computed tomography (SPECT) scans were initially developed in 1970s. A key radiopharmaceutical, hexamethylpropyleneamine oxime (HMPAO), was not stabilized until 1993 and most early SPECT scans were performed on single-head gamma cameras. These early scans were of inferior quality. In 1996, the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (TTASAAN) issued a report regarding the use of SPECT in the evaluation of neurological disorders. This two-part series explores the policies and procedures related to perfusion SPECT functional neuroimaging. In Part I, the comparison between the quality of the SPECT scans and the depth of the data for key neurological and psychiatric indications at the time of the TTASAAN report vs. the intervening 25 years were presented. In Part II, the technical aspects of perfusion SPECT neuroimaging and image processing will be explored. The role of color scales will be reviewed and the process of interpreting a SPECT scan will be presented. Interpretation of a functional brain scans requires not only anatomical knowledge, but also technical understanding on correctly performing a scan, regardless of the scanning modality. Awareness of technical limitations allows the clinician to properly interpret a functional brain scan. With this foundation, four scenarios in which perfusion SPECT neuroimaging, together with other imaging modalities and testing, lead to a narrowing of the differential diagnoses and better treatment. Lastly, recommendations for the revision of current policies and practices are made.
Collapse
Affiliation(s)
- Dan G Pavel
- PathFinder Brain SPECT, Deerfield, IL, United States.,The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States
| | - Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States.,Neuro-Laser Foundation, Denver, CO, United States
| | - Simon DeBruin
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Good Lion Imaging, Baltimore, MD, United States
| | - Philip F Cohen
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Nuclear Medicine, Lions Gate Hospital, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Shahmohammadi Beni M, Yu KN, Islam MR, Watabe H. Development of PHITS graphical user interface for simulation of positron emitting radioisotopes production in common biological materials during proton therapy. JOURNAL OF RADIATION RESEARCH 2022; 63:385-392. [PMID: 35349714 PMCID: PMC9124619 DOI: 10.1093/jrr/rrac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The Monte Carlo (MC) method is a powerful tool for modeling nuclear radiation interaction with matter. A variety of MC software packages has been developed, especially for applications in radiation therapy. Most widely used MC packages require users to write their own input scripts for their systems, which can be a time consuming and error prone process and requires extensive user experience. In the present work, we have developed a graphical user interface (GUI) bundled with a custom-made 3D OpenGL visualizer for PHITS MC package. The current version focuses on modeling proton induced positron emitting radioisotopes, which in turn can be used for verification of proton ranges in proton therapy. The developed GUI program does not require extensive user experience. The present open-source program is distributed under GPLv3 license that allows users to freely download, modify, recompile and redistribute the program.
Collapse
Affiliation(s)
| | | | - M Rafiqul Islam
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Hiroshi Watabe
- Corresponding author. Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan. Phone: (81)22-795-7803; Fax: (81)22-795-7809;
| |
Collapse
|
31
|
Kertész H, Beyer T, Panin V, Jentzen W, Cal-Gonzalez J, Berger A, Papp L, Kench PL, Bharkhada D, Cabello J, Conti M, Rausch I. Implementation of a Spatially-Variant and Tissue-Dependent Positron Range Correction for PET/CT Imaging. Front Physiol 2022; 13:818463. [PMID: 35350691 PMCID: PMC8957980 DOI: 10.3389/fphys.2022.818463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Aim To develop and evaluate a new approach for spatially variant and tissue-dependent positron range (PR) correction (PRC) during the iterative PET image reconstruction. Materials and Methods The PR distributions of three radionuclides (18F, 68Ga, and 124I) were simulated using the GATE (GEANT4) framework in different material compositions (lung, water, and bone). For every radionuclide, the uniform PR kernel was created by mapping the simulated 3D PR point cloud to a 3D matrix with its size defined by the maximum PR in lung (18F) or water (68Ga and 124I) and the PET voxel size. The spatially variant kernels were composed from the uniform PR kernels by analyzing the material composition of the surrounding medium for each voxel before implementation as tissue-dependent, point-spread functions into the iterative image reconstruction. The proposed PRC method was evaluated using the NEMA image quality phantom (18F, 68Ga, and 124I); two unique PR phantoms were scanned and evaluated following OSEM reconstruction with and without PRC using different metrics, such as contrast recovery, contrast-to-noise ratio, image noise and the resolution evaluated in terms of full width at half maximum (FWHM). Results The effect of PRC on 18F-imaging was negligible. In contrast, PRC improved image contrast for the 10-mm sphere of the NEMA image quality phantom filled with 68Ga and 124I by 33 and 24%, respectively. While the effect of PRC was less noticeable for the larger spheres, contrast recovery still improved by 5%. The spatial resolution was improved by 26% for 124I (FWHM of 4.9 vs. 3.7 mm). Conclusion For high energy positron-emitting radionuclides, the proposed PRC method helped recover image contrast with reduced noise levels and with improved spatial resolution. As such, the PRC approach proposed here can help improve the quality of PET data in clinical practice and research.
Collapse
Affiliation(s)
- Hunor Kertész
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Vladimir Panin
- Siemens Medical Solutions USA, Inc., Knoxville, TN, United States
| | - Walter Jentzen
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Jacobo Cal-Gonzalez
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ion Beam Applications, Quirónsalud Proton Therapy Center, Madrid, Spain
| | - Alexander Berger
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Laszlo Papp
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Peter L Kench
- Discipline of Medical Imaging Science and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Deepak Bharkhada
- Siemens Medical Solutions USA, Inc., Knoxville, TN, United States
| | - Jorge Cabello
- Siemens Medical Solutions USA, Inc., Knoxville, TN, United States
| | - Maurizio Conti
- Siemens Medical Solutions USA, Inc., Knoxville, TN, United States
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Meng X, Liu H, Li H, Wang S, Sun H, Wang F, Ding J, He L, Chen X, Jin L, Dong Y, Zhu H, Yang Z. Evaluating the impact of different positron emitters on the performance of a clinical PET/MR system. Med Phys 2022; 49:2642-2651. [PMID: 35106784 DOI: 10.1002/mp.15513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The positron range and prompt gamma emission are distinctive with different positron emitters. The performance assessment of an integrated PET/MR scanner with these positron emitters is required for related applications, as the magnetic field interferes with the positron propagation. Such an assessment is to be performed on the United Imaging uPMR 790 integrated PET/MR system. METHODS The performance measurement methods were modified based on NEMA NU 2-2012, involving 18 F, 64 Cu, 68 Ga, 89 Zr, and 124 I as positron emitters. The NEMA IEC phantom was used for evaluations of image qualities. An agarose cap was wrapped around the point source for tissue-simulating spatial resolution measurement. The count rate performance was assessed with selected positron emitters. Images of a 3D-printed Derenzo phantom and representative patients were also acquired. RESULTS The image quality measurement showed that all five positron emitters were suitable for the PET/MR system studied. However, due to the magnetic field, the image of the point source showed an elongated comet-tail feature, which could be eliminated by a tissue-simulating cap. This effect is more obvious in 124 I and 68 Ga, due to their long positron ranges. The imaging ability with various positron emitters was further validated with the count rate assessment, the Derenzo phantom, and the clinical images. CONCLUSIONS Different positron emitters could be effectively imaged by the PET/MR system tested. The resolution measurement strategy proposed could be applied to measure PET spatial resolution in the magnetic field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Hui Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China.,United Imaging Healthcare, Shanghai, China
| | - Hui Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China.,Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | - Shujing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Hongwei Sun
- Central Research Institute, United Imaging Healthcare, Beijing, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Liuchun He
- United Imaging Healthcare, Shanghai, China
| | - Xin Chen
- United Imaging Healthcare, Shanghai, China
| | - Lujia Jin
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Yun Dong
- United Imaging Healthcare, Shanghai, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
33
|
Shida JF, Spieglan E, Adams BW, Angelico E, Domurat-Sousa K, Elagin A, Frisch HJ, La Riviere P, Squires AH. Low-Dose High-Resolution TOF-PET Using Ionization-activated Multi-State Low-Z Detector Media. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2021; 1017:165801. [PMID: 34690392 PMCID: PMC8530277 DOI: 10.1016/j.nima.2021.165801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We propose PET scanners using low atomic number media that undergo a persistent local change of state along the paths of the Compton recoil electrons. Measurement of the individual scattering locations and angles, deposited energies, and recoil electron directions allows using the kinematical constraints of the 2-body Compton scattering process to perform a statistical time-ordering of the scatterings, with a high probability of precisely identifying where the gamma first interacted in the detector. In these cases the Line-of-Response is measured with high resolution, determined by the underlying physics processes and not the detector segmentation. There are multiple such media that act through different mechanisms. As an example in which the change of state is quantum-mechanical through a change in molecular configuration, rather than thermodynamic, as in a bubble chamber, we present simulations of a two-state photoswitchable organic dye, a 'Switchillator', that is activated to a fluorescent-capable state by the ionization of the recoil electrons. The activated state is persistent, and can be optically excited multiple times to image individual activated molecules. Energy resolution is provided by counting the activated molecules. Location along the LOR is implemented by large-area time-of-flight MCP-PMT photodetectors with single photon time resolution in the tens of ps and sub-mm spatial resolution. Simulations indicate a large reduction of dose.
Collapse
Affiliation(s)
- J F Shida
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - E Spieglan
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - B W Adams
- Quantum Optics Applied Research, Naperville, IL 60564
| | - E Angelico
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - K Domurat-Sousa
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - A Elagin
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - H J Frisch
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - P La Riviere
- Department of Radiology, The University of Chicago, Billings Hospital, P220, 5841 South Maryland Avenue, MC2026, Chicago, IL 60637
| | - A H Squires
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637
| |
Collapse
|
34
|
George KJH, Borjian S, Cross MC, Hicks JW, Schaffer P, Kovacs MS. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv 2021; 11:31098-31123. [PMID: 35498914 PMCID: PMC9041346 DOI: 10.1039/d1ra04480j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular imaging with medical radioisotopes enables the minimally-invasive monitoring of aberrant biochemical, cellular and tissue-level processes in living subjects. The approach requires the administration of radiotracers composed of radioisotopes attached to bioactive molecules, the pairing of which considers several aspects of the radioisotope in addition to the biological behavior of the targeting molecule to which it is attached. With the advent of modern cellular and biochemical techniques, there has been a virtual explosion in potential disease recognition antigens as well as targeting moieties, which has subsequently opened new applications for a host of emerging radioisotopes with well-matched properties. Additionally, the global radioisotope production landscape has changed rapidly, with reactor-based production and its long-defined, large-scale centralized manufacturing and distribution paradigm shifting to include the manufacture and distribution of many radioisotopes via a worldwide fleet of cyclotrons now in operation. Cyclotron-based radioisotope production has become more prevalent given the commercial availability of instruments, coupled with the introduction of new target hardware, process automation and target manufacturing methods. These advances enable sustained, higher-power irradiation of solid targets that allow hospital-based radiopharmacies to produce a suite of radioisotopes that drive research, clinical trials, and ultimately clinical care. Over the years, several different radioisotopes have been investigated and/or selected for radiolabeling due to favorable decay characteristics (i.e. a suitable half-life, high probability of positron decay, etc.), well-elucidated chemistry, and a feasible production framework. However, longer-lived radioisotopes have surged in popularity given recent regulatory approvals and incorporation of radiopharmaceuticals into patient management within the medical community. This review focuses on the applications, nuclear properties, and production and purification methods for some of the most frequently used/emerging positron-emitting, solid-target-produced radioisotopes that can be manufactured using small-to-medium size cyclotrons (≤24 MeV).
Collapse
Affiliation(s)
- K J H George
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - S Borjian
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - M C Cross
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - J W Hicks
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - P Schaffer
- Life Sciences, TRIUMF 4004 Wesbrook Mall Vancouver BC V6T 2A3 Canada
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
- Radiology, University of British Columbia 2775 Laurel St Vancouver BC V5Z 1M9 Canada
- Chemistry, Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - M S Kovacs
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
- Medical Imaging, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| |
Collapse
|
35
|
Alluri SR, Higashi Y, Kil KE. PET Imaging Radiotracers of Chemokine Receptors. Molecules 2021; 26:molecules26175174. [PMID: 34500609 PMCID: PMC8434599 DOI: 10.3390/molecules26175174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chemokines and chemokine receptors have been recognized as critical signal components that maintain the physiological functions of various cells, particularly the immune cells. The signals of chemokines/chemokine receptors guide various leukocytes to respond to inflammatory reactions and infectious agents. Many chemokine receptors play supportive roles in the differentiation, proliferation, angiogenesis, and metastasis of diverse tumor cells. In addition, the signaling functions of a few chemokine receptors are associated with cardiac, pulmonary, and brain disorders. Over the years, numerous promising molecules ranging from small molecules to short peptides and antibodies have been developed to study the role of chemokine receptors in healthy states and diseased states. These drug-like candidates are in turn exploited as radiolabeled probes for the imaging of chemokine receptors using noninvasive in vivo imaging, such as positron emission tomography (PET). Recent advances in the development of radiotracers for various chemokine receptors, particularly of CXCR4, CCR2, and CCR5, shed new light on chemokine-related cancer and cardiovascular research and the subsequent drug development. Here, we present the recent progress in PET radiotracer development for imaging of various chemokine receptors.
Collapse
Affiliation(s)
- Santosh R. Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
| | - Yusuke Higashi
- Department of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-884-7885
| |
Collapse
|
36
|
Comparison of Quantification of Target-Specific Accumulation of [ 18F]F-siPSMA-14 in the HET-CAM Model and in Mice Using PET/MRI. Cancers (Basel) 2021; 13:cancers13164007. [PMID: 34439163 PMCID: PMC8393674 DOI: 10.3390/cancers13164007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Animal studies are essential for the development of new radiopharmaceuticals to determine specific accumulation and biodistribution. Alternative models, such as the HET-CAM model, offer the possibility of reducing animal experiments in accordance with the 3Rs principles. Accurate quantification of tumor accumulation of a PSMA-specific ligand in the HET-CAM model and comparison with corresponding animal experiments was performed using the imaging modalities PET and MRI. It was demonstrated that the HET-CAM model leads to comparable results and is suitable as an alternative to animal experiments for the initial assessment of target-specific binding of novel radiopharmaceuticals. However, as evaluation of biodistribution in ovo is still limited, further animal experiments with promising compounds are mandatory. Abstract Assessment of biodistribution and specific tumor accumulation is essential for the development of new radiopharmaceuticals and requires animal experiments. The HET-CAM (hens-egg test—chorioallantoic membrane) model can be used in combination with the non-invasive imaging modalities PET and MRI for pre-selection during radiopharmaceutical development to reduce the number of animal experiments required. Critical to the acceptance of this model is the demonstration of the quantifiability and reproducibility of these data compared to the standard animal model. Tumor accumulation and biodistribution of the PSMA-specific radiotracer [18F]F-siPSMA-14 was analyzed in the chick embryo and in an immunodeficient mouse model. Evaluation was based on MRI and PET data in both models. γ-counter measurements and histopathological analyses complemented these data. PSMA-specific accumulation of [18F]F-siPSMA-14 was successfully demonstrated in the HET-CAM model, similar to the results obtained by mouse model studies. The combination of MR and PET imaging allowed precise quantification of peptide accumulation, initial assessment of biodistribution, and accurate determination of tumor volume. Thus, the use of the HET-CAM model is suitable for the pre-selection of new radiopharmaceuticals and potentially reduces animal testing in line with the 3Rs principles of animal welfare.
Collapse
|
37
|
Bratteby K, Shalgunov V, Herth MM. Aliphatic 18 F-Radiofluorination: Recent Advances in the Labeling of Base-Sensitive Substrates*. ChemMedChem 2021; 16:2612-2622. [PMID: 34169672 DOI: 10.1002/cmdc.202100303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Aliphatic fluorine-18 radiolabeling is the most commonly used method to synthesize tracers for PET-imaging. With an increasing demand for 18 F-radiotracers for clinical applications, new labeling strategies aiming to increase radiochemical yields of established tracers or, more importantly, to enable 18 F-labeling of new scaffolds have been developed. In recent years, increased attention has been focused on the direct aliphatic 18 F-fluorination of base-sensitive substrates in this respect. This minireview gives a concise overview of the recent advances within this field and aims to highlight the advantages and limitations of these methods.
Collapse
Affiliation(s)
- Klas Bratteby
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 222 42, Lund, Sweden.,Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
38
|
Rogasch JMM, Boellaard R, Pike L, Borchmann P, Johnson P, Wolf J, Barrington SF, Kobe C. Moving the goalposts while scoring-the dilemma posed by new PET technologies. Eur J Nucl Med Mol Imaging 2021; 48:2696-2710. [PMID: 33990846 PMCID: PMC8263433 DOI: 10.1007/s00259-021-05403-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam UMC, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Lucy Pike
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Peter Borchmann
- German Hodgkin Study Group, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Peter Johnson
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - Jürgen Wolf
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne and University of Cologne, Cologne, Germany
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Carsten Kobe
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
39
|
Shopa RY, Klimaszewski K, Kopka P, Kowalski P, Krzemień W, Raczyński L, Wiślicki W, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Kisielewska D, Korcyl G, Krawczyk N, Kubicz E, Niedźwiecki S, Raj J, Sharma S, Shivani, Stȩpień EŁ, Tayefi F, Moskal P. Optimisation of the event-based TOF filtered back-projection for online imaging in total-body J-PET. Med Image Anal 2021; 73:102199. [PMID: 34365143 DOI: 10.1016/j.media.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
We perform a parametric study of the newly developed time-of-flight (TOF) image reconstruction algorithm, proposed for the real-time imaging in total-body Jagiellonian PET (J-PET) scanners. The asymmetric 3D filtering kernel is applied at each most likely position of electron-positron annihilation, estimated from the emissions of back-to-back γ-photons. The optimisation of its parameters is studied using Monte Carlo simulations of a 1-mm spherical source, NEMA IEC and XCAT phantoms inside the ideal J-PET scanner. The combination of high-pass filters which included the TOF filtered back-projection (FBP), resulted in spatial resolution, 1.5 times higher in the axial direction than for the conventional 3D FBP. For realistic 10-minute scans of NEMA IEC and XCAT, which require a trade-off between the noise and spatial resolution, the need for Gaussian TOF kernel components, coupled with median post-filtering, is demonstrated. The best sets of 3D filter parameters were obtained by the Nelder-Mead minimisation of the mean squared error between the resulting and reference images. The approach allows training the reconstruction algorithm for custom scans, using the IEC phantom, when the temporal resolution is below 50 ps. The image quality parameters, estimated for the best outcomes, were systematically better than for the non-TOF FBP.
Collapse
Affiliation(s)
- R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland.
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - P Kopka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - P Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - W Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - W Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - N Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, Frascati 00044, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, Vienna 1090, Austria
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - D Kisielewska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - N Krawczyk
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - E Kubicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - Sz Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - J Raj
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - E Ł Stȩpień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - F Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| |
Collapse
|
40
|
68Ga-DOTATOC-PET/MRI-A Secure One-Stop Shop Imaging Tool for Robotic Radiosurgery Treatment Planning in Patients with Optic Nerve Sheath Meningioma. Cancers (Basel) 2021; 13:cancers13133305. [PMID: 34282752 PMCID: PMC8267930 DOI: 10.3390/cancers13133305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Optic nerve sheath meningiomas (ONSM) are rare but can lead to irreversible blindness. Hybrid imaging may enhance tumor delineation and diagnostic accuracy via receptor binding. However, relevant clinical data for ONSM are lacking. We evaluated the feasibility of receptor-based hybrid imaging prior to robotic radiosurgery (RRS). We retrospectively analyzed all of our institution's patients with suspected ONSM who underwent combined positron emission tomography and magnetic resonance imaging (PET/MRI) with gallium-68-labeled (DOTA0-Phe1-Tyr3) octreotide (Ga68-DOTATOC) before RRS between 2018 and 2019. Eight patients with ten suspected ONSM (female = 7; median age, 51.2 years; IQR, 43.0-66.0) were included. Nine out of ten ONSM were deemed PET-positive with a median standard uptake value (SUV) max of 5.6 (IQR, 2.6-7.8). For all nine ONSM that presented 68Ga-DOTATOC uptake, hybrid PET/MRI was used for target volume contouring prior to RSS. At a median follow-up of 11.7 months (IQR, 9.4-16.4), tumor control was achieved in all patients. Radiosurgery resulted in the improvement of visual acuity in two of eight patients, whereas six showed stable vision. Ga68-DOTATOC-PET/MRI can be used for target volume contouring prior to RRS for ONSM as it enables safe treatment planning and improves diagnostic accuracy.
Collapse
|
41
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
42
|
Sanders VA, Cutler CS. Radioarsenic: A promising theragnostic candidate for nuclear medicine. Nucl Med Biol 2021; 92:184-201. [PMID: 32376084 DOI: 10.1016/j.nucmedbio.2020.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Molecular imaging is a non-invasive process that enables the visualization, characterization, and quantitation of biological processes at the molecular and cellular level. With the emergence of theragnostic agents to diagnose and treat disease for personalized medicine there is a growing need for matched pairs of isotopes. Matched pairs offer the unique opportunity to obtain patient specific information from SPECT or PET diagnostic studies to quantitate in vivo function or receptor density to inform and tailor therapeutic treatment. There are several isotopes of arsenic that have emissions suitable for either or both diagnostic imaging and radiotherapy. Their half-lives are long enough to pair them with peptides and antibodies which take longer to reach maximum uptake to facilitate improved patient pharmacokinetics and dosimetry then can be obtained with shorter lived radionuclides. Arsenic-72 even offers availability from a generator that can be shipped to remote sites and thus enhances availability. Arsenic has a long history as a diagnostic agent, but until recently has suffered from limited availability, lack of suitable chelators, and concerns about toxicity have inhibited its use in nuclear medicine. However, new production methods and novel chelators are coming online and the use of radioarsenic in the pico and nanomolar scale is well below the limits associated with toxicity. This manuscript will review the production routes, separation chemistry, radiolabeling techniques and in vitro/in vivo studies of three medically relevant isotopes of arsenic (arsenic-74, arsenic-72, and arsenic-77).
Collapse
Affiliation(s)
- Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
43
|
Herraiz JL, Bembibre A, López-Montes A. Deep-Learning Based Positron Range Correction of PET Images. APPLIED SCIENCES-BASEL 2020. [DOI: https://doi.org/10.3390/app11010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Positron emission tomography (PET) is a molecular imaging technique that provides a 3D image of functional processes in the body in vivo. Some of the radionuclides proposed for PET imaging emit high-energy positrons, which travel some distance before they annihilate (positron range), creating significant blurring in the reconstructed images. Their large positron range compromises the achievable spatial resolution of the system, which is more significant when using high-resolution scanners designed for the imaging of small animals. In this work, we trained a deep neural network named Deep-PRC to correct PET images for positron range effects. Deep-PRC was trained with modeled cases using a realistic Monte Carlo simulation tool that considers the positron energy distribution and the materials and tissues it propagates into. Quantification of the reconstructed PET images corrected with Deep-PRC showed that it was able to restore the images by up to 95% without any significant noise increase. The proposed method, which is accessible via Github, can provide an accurate positron range correction in a few seconds for a typical PET acquisition.
Collapse
|
44
|
Abstract
Positron emission tomography (PET) is a molecular imaging technique that provides a 3D image of functional processes in the body in vivo. Some of the radionuclides proposed for PET imaging emit high-energy positrons, which travel some distance before they annihilate (positron range), creating significant blurring in the reconstructed images. Their large positron range compromises the achievable spatial resolution of the system, which is more significant when using high-resolution scanners designed for the imaging of small animals. In this work, we trained a deep neural network named Deep-PRC to correct PET images for positron range effects. Deep-PRC was trained with modeled cases using a realistic Monte Carlo simulation tool that considers the positron energy distribution and the materials and tissues it propagates into. Quantification of the reconstructed PET images corrected with Deep-PRC showed that it was able to restore the images by up to 95% without any significant noise increase. The proposed method, which is accessible via Github, can provide an accurate positron range correction in a few seconds for a typical PET acquisition.
Collapse
|
45
|
The prostate-specific membrane antigen (PSMA)-targeted radiotracer 18F-DCFPyL detects tumor neovasculature in metastatic, advanced, radioiodine-refractory, differentiated thyroid cancer. Med Oncol 2020; 37:98. [PMID: 33034761 DOI: 10.1007/s12032-020-01427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Prostate-specific membrane antigen (PSMA; also termed glutamate carboxypeptidase II (GCP II)) is abundantly expressed in prostate cancer. It has been shown recently that PSMA is expressed in neovasculature of differentiated thyroid cancer. In this study, we show that 18F-DCFPyl might detect neovasculature in advanced, metastatic differentiated thyroid cancer (DTC). We first stained the preserved lymph node samples of three patients with DTC who had undergone total thyroidectomy and neck dissection for cervical lymph node metastatic disease to identify PSMA expression, with the PSMA antibody (DAKO Monoclonal). Then, we performed 18F-DCFPyl imaging in two other advanced DTC patients with elevated serum thyroglobulin (Tg), indicative of residual disease. We compared the findings with contemporaneous FDG PET/CT scan, conventional Imaging (CT,MRI) and whole-body scan performed with I123/I131. All the three lymph node samples stained positive for PSMA expression in the neovasculature. In the first imaged patient, 18F-DCFPyl detected activity within the retropharyngeal CT contrast-enhancing lymph node. Compared to FDG PET/CT, the 18F-DCFPyl scan showed a greater SUV (3.1 vs 1.8). In the second imaged patient, 18F-DCFPyl showed intense uptake in the L3 vertebra (not seen on the post treatment 131I scan or the 18F-FDG PET/CT). MRI of the lumbar spine confirmed the presence of sclerotic-lytic lesion at the location, consistent with metastatic disease. Our exploratory study is proof of principle, that the prostate cancer imaging agent 18F-DCFPyl may prove useful for the localization of metastases, in patients with metastatic RAI-refractory DTC by detecting neoangiogenesis within the tumor.
Collapse
|
46
|
Ndiaye D, Sy M, Pallier A, Même S, Silva I, Lacerda S, Nonat AM, Charbonnière LJ, Tóth É. Unprecedented Kinetic Inertness for a Mn
2+
‐Bispidine Chelate: A Novel Structural Entry for Mn
2+
‐Based Imaging Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daouda Ndiaye
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| | - Maryame Sy
- Equipe de Synthèse Pour l'Analyse Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Agnès Pallier
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| | - Sandra Même
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| | - Isidro Silva
- CEMHTI, CNRS UPR3079 Université d'Orléans 45071 Orléans 2 France
| | - Sara Lacerda
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| | - Aline M. Nonat
- Equipe de Synthèse Pour l'Analyse Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Loïc J. Charbonnière
- Equipe de Synthèse Pour l'Analyse Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Éva Tóth
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| |
Collapse
|
47
|
Ndiaye D, Sy M, Pallier A, Même S, Silva I, Lacerda S, Nonat AM, Charbonnière LJ, Tóth É. Unprecedented Kinetic Inertness for a Mn
2+
‐Bispidine Chelate: A Novel Structural Entry for Mn
2+
‐Based Imaging Agents. Angew Chem Int Ed Engl 2020; 59:11958-11963. [DOI: 10.1002/anie.202003685] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/06/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Daouda Ndiaye
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| | - Maryame Sy
- Equipe de Synthèse Pour l'Analyse Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Agnès Pallier
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| | - Sandra Même
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| | - Isidro Silva
- CEMHTI, CNRS UPR3079 Université d'Orléans 45071 Orléans 2 France
| | - Sara Lacerda
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| | - Aline M. Nonat
- Equipe de Synthèse Pour l'Analyse Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Loïc J. Charbonnière
- Equipe de Synthèse Pour l'Analyse Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Éva Tóth
- Centre de Biophyisique Moléculaire, CNRS UPR 4301 Université d'Orléans rue Charles Sadron 45071 Orléans France
| |
Collapse
|
48
|
Mohammadi I, Castro IFC, Correia PMM, Silva ALM, Veloso JFCA. Minimization of parallax error in positron emission tomography using depth of interaction capable detectors: methods and apparatus. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab4a1b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|