1
|
Zajac J, Liu A, Hassan S, Gibson A. Mechanisms of delayed indocyanine green fluorescence and applications to clinical disease processes. Surgery 2024; 176:386-395. [PMID: 38749795 PMCID: PMC11246809 DOI: 10.1016/j.surg.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Delayed indocyanine green fluorescence imaging is under investigation in various clinical disease processes. Understanding the mechanisms of indocyanine green accumulation and retention is essential to correctly interpreting and analyzing imaging data. The purpose of this scoping review was to synthesize what is known about the mechanism of indocyanine green retention at the cellular level to better understand the clinical nuances of delayed indocyanine green imaging and identify critical gaps in our knowledge to guide future studies. METHODS We performed a scoping review of 7,087 citations after performing database searches of PubMed, Scopus, the Cochrane Library, and the Web of Science Core Collection electronic databases. Studies were eligible for inclusion if they were peer-reviewed original research discussing the mechanism of indocyanine green retention in the results section in disease processes involving inflammation and/or necrosis, including cancer, and were available in English. Data were extracted using Covidence software. RESULTS Eighty-nine studies were included in the final analysis. Several features of indocyanine green retention were identified. CONCLUSION We identified several mechanistic features involved in indocyanine green accumulation in diseased tissue that overall had distinct mechanisms of indocyanine green retention in tumors, nontumor inflammation, and necrosis. Our study also reveals new insights on how inflammatory infiltrate influences indocyanine green fluorescence imaging. These findings are noteworthy because they add to our understanding of how fluorescence-guided surgery may be optimized based on the pathology of interest via specific indocyanine green dosing and timing of image acquisition.
Collapse
Affiliation(s)
- Jocelyn Zajac
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sameeha Hassan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Angela Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
2
|
Pashaie R. Illumination pattern optimization in tomography based on the Kalman estimation filter and optimal experiment design. OPTICS EXPRESS 2024; 32:17345-17361. [PMID: 38858920 DOI: 10.1364/oe.520196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
Tomography is widely used in medical imaging or industrial non-destructive testing applications. One costly and time consuming operation in any form of tomography is the process of data acquisition where a large number of measurements are made and collected data is used for image reconstruction. Data acquisition can slow down tomography to the point that the scanner cannot catch up with the speed of changes in the medium under test. By optimizing the information content of each measurement, we can reduce the number of measurements needed to achieve the target precision. Development of algorithms to optimize the information content of tomography measurements is the main goal of this article. Here, the dynamics of the medium and tomography measurements are formulated in the form of a Kalman estimation filter. A mathematical algorithm is developed to compute the optimal measurement matrix which minimizes the uncertainty left in the estimation of the distribution the tomography scanner is reconstructing. Results, as presented in the paper, show noticeable improvement is the quality of generated images when the medium is scanned by optimal measurements instead of traditional raster or random scanning protocols.
Collapse
|
3
|
Li Y, Jin X, Wang F, Zhou H, Gu Y, Yang Y, Qian Z, Li W. Multi-channel Small Animal Drug Metabolism Real-Time Monitoring Fluorescence System. Mol Imaging Biol 2024; 26:138-147. [PMID: 38114709 DOI: 10.1007/s11307-023-01883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The data acquisition of drug metabolism analysis requires a lot of time and animal resources. However, there are often many deviations in the results of pharmacokinetic analysis. Conventional methods cannot measure the blood drug concentration data in multiple tissues at the same time, and the data is obtained by in vitro measurement, which produces time errors, in vitro data errors, and individual differences between animals. In the analysis of pharmacokinetic parameters, it will seriously affect the pass rate of clinical trials of R&D drugs and the accuracy of the dosing schedule. To the best of our knowledge, we have not found the study of in vivo blood drug concentration using multi-channel equipment. Therefore, the purpose of this paper is to build a set of multi-organ monitoring and analysis instruments for synchronously monitoring the metabolism of drugs in various tissues of small animals, so as to obtain real in vivo data of blood drug concentration in real time. PROCEDURES Using the fluorescence properties and laser-induced fluorescence principle of drugs, we designed six channels to monitor the changes of fluorescence-labeled drugs in their main metabolic organs, a multi-channel calibration method was proposed to improve the accuracy of the time-division multiplexing, the real-time collection of drug concentration in vivo is realized, and the drug metabolism curve in vivo can be observed. RESULTS The instrument satisfies the collection of small doses of drugs such as microgram; the detection sensitivity can reach 10 ng/ml, and can monitor and collect the drug metabolism of multiple small animal tissues at the same time, which greatly reduces the use of animals, reduces the differences between individuals, and reduces consumption cost and improve the detection efficiency of parameters, and obtain data information that is closer to the real biology. CONCLUSION The real-time continuous monitoring and data collection of the drug metabolism in the plasma of living small animals and the important organs such as kidney, liver, and spleen were realized. The research and development of new drugs and clinical research have higher practical value.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Feilong Wang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Huijing Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Yueqing Gu
- Engineering College, China Pharmaceutical University, Nanjing, 211198, China
| | - Yamin Yang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Weitao Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
4
|
Javidan M, Esfandi H, Anderson R, Pashaie R. Optimal data acquisition in tomography. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:2259-2276. [PMID: 38086034 PMCID: PMC10961734 DOI: 10.1364/josaa.506113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 03/16/2024]
Abstract
In tomography, three-dimensional images of a medium are reconstructed from a set of two-dimensional projections. Each projection is the result of a measurement made by the scanner via radiating some form of energy and collecting the scattered field after interacting with the medium. The information content of these measurements is not equal, and one projection can be more informative than others. By choosing the most informative measurement at every step of scanning, an optimal tomography system can maximize the speed of data acquisition and temporal resolution of acquired images, reducing the operation cost and exposure to possible harmful radiations. The aim of this paper is to introduce mathematical algorithms that can be used to design measurements with optimal information content when imaging static or dynamically evolving objects.
Collapse
Affiliation(s)
- Mahshad Javidan
- Electrical and Computer Engineering Department, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, USA
- Department of Medicine, University of Wisconsin-Madison, GRECC D5214 William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, USA
| | - Hadi Esfandi
- Electrical and Computer Engineering Department, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, USA
- Department of Medicine, University of Wisconsin-Madison, GRECC D5214 William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, USA
| | - Rozalyn Anderson
- Department of Medicine, University of Wisconsin-Madison, GRECC D5214 William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, USA
| | - Ramin Pashaie
- Electrical and Computer Engineering Department, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, USA
| |
Collapse
|
5
|
Liu Z, Chen H, Huang C, Huang Q. A Light-Responsive Injectable Hydrogel with Remodeling Tumor Microenvironment for Light-Activated Chemodynamic Therapy. Macromol Biosci 2023; 23:e2200329. [PMID: 36250413 DOI: 10.1002/mabi.202200329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/22/2022] [Indexed: 01/19/2023]
Abstract
Chemodynamic therapy (CDT) based on Fenton-like reaction is often limited by the tumor microenvironment (TME), which has insufficient hydrogen peroxide, and single CDT treatment is often less efficacious. To overcome these limitations, a hydrogel-based system is designed to enhance the redox stress (EOH) by loading the composite nanomaterial Cu-Hemin-Au, into the agarose hydrogels. The hydrogels can reach the tumor site upon intratumoral injection, and then coagulate and stay for extended period. Once irradiated with near-infrared light, the Cu-Hemin-Au act as a photothermal agent to convert the light energy into heat, and the EOH gradually heated up and softened, releasing the Cu-Hemin-Au residing in it to achieve photothermal therapy (PTT). Benefiting from the glucose oxidase (GOx)-like activity of the Au nanoparticles, glucose in the tumor cells is largely consumed, and hydrogen peroxide (H2 O2 ) is generated in situ, and then Cu-Hemin-Au react with sufficient H2 O2 to generate a large amount of reactive oxygen species, which promote the complete inhibition of tumor growth in mice during the treatment cycle. The hydrogel system for the synergistic enhancement of oxidative stress achieves good PTT/CDT synergy, providing a novel inspiration for the next generation of hydrogels for application in antitumor therapy.
Collapse
Affiliation(s)
- Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbo Chen
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunyu Huang
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China.,Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qinqin Huang
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| |
Collapse
|
6
|
Zhang L, Cheng N, Liu H, Pan Y, Zhang Y, Gao F. High-sensitivity dynamic diffuse fluorescence tomography system for fluorescence pharmacokinetics. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:046002. [PMID: 35460219 PMCID: PMC9026229 DOI: 10.1117/1.jbo.27.4.046002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Dynamic diffuse fluorescence tomography (DFT) can recover the static distribution of fluorophores and track dynamic temporal events related to physiological and disease progression. Dynamic imaging indocyanine green (ICG) approved by the food and drug administration is still under-exploited because of its characteristics of low quantum yield and relatively rapid tissue metabolism. AIM In order to acquire the ICG tomographic image sequences for pharmacokinetic analysis, a dynamic DFT system was proposed. APPROACH A fiber-based dynamic DFT system adopts square-wave modulation lock-in photon-counting scheme and series-parallel measurement mode, which possesses high sensitivity, large dynamic range, high anti-ambient light ability in common knowledge, as well as good cost performance. In order to investigate the effectiveness of the proposed system, the measurement stability and the anti-crosstalk-a crucial factor affecting the system parallelization-were assessed firstly, then a series of static phantoms, dynamic phantoms and in vivo mice experiments were conducted to verify the imaging capability. RESULTS The system has the limited dynamic range of 100 dB, the fluctuation of photon counting within 3%, and channel-to-channel crosstalk ratio better than 1.35. Under the condition of a sufficient signal-to-noise ratio, a complete measurement time for one frame image was 10.08 s. The experimental results of static phantoms with a single target and three targets showed that this system can accurately obtain the positions, sizes, and shapes of the targets and the reconstructed images exhibited a high quantitativeness. Further, the self-designed dynamic phantom experiments demonstrated the capability of the system to capture fast changing fluorescence signals. Finally, the in vivo experiments validated the practical capability of the system to effectively track the ICG metabolism in living mice. CONCLUSIONS These results demonstrate that our proposed system can be utilized for assessing ICG pharmacokinetics, which may provide a valuable tool for tumor detection, drug assessment, and liver function evaluation.
Collapse
Affiliation(s)
- Limin Zhang
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instrument, Tianjin, China
| | - Nan Cheng
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
- Tianjin University, Tianjin International Engineering Institute, Tianjin, China
| | - Han Liu
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
| | - Yingxue Pan
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
| | - Yanqi Zhang
- Tianjin Medical University, School of Medical Imaging, Tianjin, China
| | - Feng Gao
- Tianjin University, College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instrument, Tianjin, China
| |
Collapse
|
7
|
Wu J, Lee HJ, You L, Luo X, Hasegawa T, Huang KC, Lin P, Ratliff T, Ashizawa M, Mei J, Cheng JX. Functionalized NIR-II Semiconducting Polymer Nanoparticles for Single-cell to Whole-Organ Imaging of PSMA-Positive Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001215. [PMID: 32307923 DOI: 10.1002/smll.202001215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Development of molecular probes holds great promise for early diagnosis of aggressive prostate cancer. Here, 2-[3-(1,3-dicarboxypropyl) ureido] pentanedioic acid (DUPA)-conjugated ligand and bis-isoindigo-based polymer (BTII) are synthesized to formulate semiconducting polymer nanoparticles (BTII-DUPA SPN) as a prostate-specific membrane antigen (PSMA)-targeted probe for prostate cancer imaging in the NIR-II window. Insights into the interaction of the imaging probes with the biological targets from single cell to whole organ are obtained by transient absorption (TA) microscopy and photoacoustic (PA) tomography. At single-cell level, TA microscopy reveals the targeting efficiency, kinetics, and specificity of BTII-DUPA SPN to PSMA-positive prostate cancer. At organ level, PA tomographic imaging of BTII-DUPA SPN in the NIR-II window demonstrates superior imaging depth and contrast. By intravenous administration, BTII-DUPA SPN demonstrates selective accumulation and retention in the PSMA-positive tumor, allowing noninvasive PA detection of PSMA overexpressing prostate tumors in vivo. The distribution of nanoparticles inside the tumor tissue is further analyzed through TA microscopy. These results collectively demonstrate BTII-DUPA SPN as a promising probe for prostate cancer diagnosis by PA tomography.
Collapse
Affiliation(s)
- Jiayingzi Wu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Hyeon Jeong Lee
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Xuyi Luo
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Tsukasa Hasegawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kai-Chih Huang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Peng Lin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Timothy Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Minoru Ashizawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Photonics Center, Boston University, Boston, MA, 02215, USA
| |
Collapse
|