1
|
Xiao L, Xiang S, Chen C, Zhu H, Zhou M, Tang Y, Feng L, Hu S. Association of synaptic density and cognitive performance in temporal lobe epilepsy: Humans and animals PET imaging study with [ 18F]SynVesT-1. Psychiatry Clin Neurosci 2024; 78:456-467. [PMID: 38804583 DOI: 10.1111/pcn.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
AIM Cognitive impairment is a common comorbidity in individuals with temporal lobe epilepsy (TLE), yet the underlying mechanisms remain unknown. This study explored the putative association between in vivo synaptic loss and cognitive outcomes in TLE patients by PET imaging of synaptic vesicle glycoprotein 2A (SV2A). METHODS We enrolled 16 TLE patients and 10 cognitively normal controls. All participants underwent SV2A PET imaging using [18F]SynVesT-1 and cognitive assessment. Lithium chloride-pilocarpine-induced rats with status epilepticus (n = 20) and controls (n = 6) rats received levetiracetam (LEV, specifically binds to SV2A), valproic acid (VPA), or saline for 14 days. Then, synaptic density was quantified by [18F]SynVesT-1 micro-PET/CT. The novel object recognition and Morris water maze tests evaluated TLE-related cognitive function. SV2A expression was examined and confirmed by immunohistochemistry. RESULTS Temporal lobe epilepsy patients showed significantly reduced synaptic density in hippocampus, which was associated with cognitive performance. In the rat model of TLE, the expression of SV2A and synaptic density decreased consistently in a wider range of brain regions, including the entorhinal cortex, insula, hippocampus, amygdala, thalamus, and cortex. We treated TLE animal models with LEV or VPA to explore whether synaptic loss contributes to cognitive deficits. It was found that LEV significantly exerted protective effects against brain synaptic deficits and cognitive impairment. CONCLUSION This is the first study to link synaptic loss to cognitive deficits in TLE, suggesting [18F]SynVesT-1 PET could be a promising biomarker for monitoring synaptic loss and cognitive dysfunction. LEV might help reverse synaptic deficits and ameliorate learning and memory impairments in TLE patients.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Shijun Xiang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Zheng C, Toyonaga T, Chen B, Nicholson L, Mennie W, Liu M, Spurrier J, Deluca K, Strittmatter SM, Carson RE, Huang Y, Cai Z. Decreased synaptic vesicle glycoprotein 2A binding in a rodent model of familial Alzheimer's disease detected by [ 18F]SDM-16. Front Neurol 2023; 14:1045644. [PMID: 36846134 PMCID: PMC9945093 DOI: 10.3389/fneur.2023.1045644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Synapse loss is one of the hallmarks of Alzheimer's disease (AD) and is associated with cognitive decline. In this study, we tested [18F]SDM-16, a novel metabolically stable SV2A PET imaging probe, in the transgenic APPswe/PS1dE9 (APP/PS1) mouse model of AD and age-matched wild-type (WT) mice at 12 months of age. Methods Based on previous preclinical PET imaging studies using [11C]UCB-J and [18F]SynVesT-1 in the same strain animals, we used the simplified reference tissue model (SRTM), with brain stem as the pseudo reference region to calculate distribution volume ratios (DVRs). Results To simplify and streamline the quantitative analysis, we compared the standardized uptake value ratios (SUVRs) from different imaging windows to DVRs and found that the averaged SUVRs from 60-90 min post-injection (p.i.) are most consistent with the DVRs. Thus, we used averaged SUVRs from 60-90 min for group comparisons and found statistically significant differences in the tracer uptake in different brain regions, e.g., hippocampus (p = 0.001), striatum (p = 0.002), thalamus (p = 0.003), and cingulate cortex (p = 0.0003). Conclusions In conclusion, [18F]SDM-16 was used to detect decreased SV2A levels in the brain of APP/PS1 AD mouse model at one year old. Our data suggest that [18F]SDM-16 has similar statistical power in detecting the synapse loss in APP/PS1 mice as [11C]UCB-J and [18F]SynVesT-1, albeit later imaging window (60-90 min p.i.) is needed when SUVR is used as a surrogate for DVR for [18F]SDM-16 due to its slower brain kinetics.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, United States
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, United States
| | - Baosheng Chen
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, United States
| | - LaShae Nicholson
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neuroscience and Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - William Mennie
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, United States
| | - Michael Liu
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, United States
| | - Joshua Spurrier
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neuroscience and Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Kristin Deluca
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neuroscience and Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Stephen M. Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neuroscience and Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, United States
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, United States
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
3
|
Tang Y, Yu J, Zhou M, Li J, Long T, Li Y, Feng L, Chen D, Yang Z, Huang Y, Hu S. Cortical abnormalities of synaptic vesicle protein 2A in focal cortical dysplasia type II identified in vivo with 18F-SynVesT-1 positron emission tomography imaging. Eur J Nucl Med Mol Imaging 2022; 49:3482-3491. [PMID: 34978594 PMCID: PMC9308579 DOI: 10.1007/s00259-021-05665-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/19/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The loss of synaptic vesicle glycoprotein 2A (SV2A) is well established as the major correlate of epileptogenesis in focal cortical dysplasia type II (FCD II), but this has not been directly tested in vivo. In this positron emission tomography (PET) study with the new tracer 18F-SynVesT-1, we evaluated SV2A abnormalities in patients with FCD II and compared the pattern to 18F-fluorodeoxyglucose (18F-FDG). METHODS Sixteen patients with proven FCD II and 16 healthy controls were recruited. All FCD II patients underwent magnetic resonance imaging (MRI) and static PET imaging with both 18F-SynVesT-1 and 18F-FDG, while the controls underwent MRI and PET with only 18F-SynVesT-1. Visual assessment of PET images was undertaken. The standardized uptake values (SUVs) of 18F-SynVesT-1 were computed for regions of interest (ROIs), along with SUV ratio (SUVr) between ROI and centrum semiovale (white matter). Asymmetry indices (AIs) were analyzed between the lesion and the contralateral hemisphere for intersubject comparisons. RESULTS Lesions in the brains of FCD II patients had significantly reduced 18F-SynVesT-1 uptake compared with contralateral regions, and brains of the controls. 18F-SynVesT-1 PET indicated low lesion uptake in 14 patients (87.5%), corresponding to hypometabolism detected by 18F-FDG PET, with higher accuracy for lesion localization than MRI (43.8%) (P < 0.05). AI analyses demonstrated that in the lesions, SUVr for each of the radiotracers were not significantly different (P > 0.05), and 18F-SynVesT-1 SUVr correlated with that of 18F-FDG across subjects (R2 = 0.41, P = 0.008). Subsequent visual ratings indicated that 18F-SynVesT-1 uptake had a more restricted pattern of reduction than 18F-FDG uptake in FCD II lesions (P < 0.05). CONCLUSION SV2A PET with 18F-SynVesT-1 shows a higher accuracy for the localization of FCD II lesions than MRI and a more restricted pattern of abnormality than 18F-FDG PET.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jie Yu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Tingting Long
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yulai Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, P.O. Box 208048, New Haven, CT, 06520-8048, USA.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Spatio-Temporal Alterations in Synaptic Density During Epileptogenesis in the Rat Brain. Neuroscience 2022; 499:142-151. [PMID: 35878719 DOI: 10.1016/j.neuroscience.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein that binds levetiracetam and is involved in neurotransmission via an unknown mechanism. SV2A-immunoreactivity is reduced in animal models of epilepsy, and in postmortem hippocampi from patients with temporal lobe epilepsy. It is not known if other regions outside the hippocampus are affected in epilepsy, and whether SV2A is expression permanently reduced or regulated over time. In this study, we induced a generalized status epilepticus (SE) by systemic administration of lithium-pilocarpine to adult female rats. The brains from all animals experiencing SE were collected at different time points after the treatment. The radiotracer, [11C]-UCB-J, binds to SV2A with high affinity, and has been used for in vivo imaging as an a-proxy marker for synaptic density. Here we determined the level of tritiated UCB-J binding by semiquantitative autoradiography in the cerebral cortex, hippocampus, thalamus, and hypothalamus, and in subregions of these. A prominent and highly significant reduction in SV2A binding capacity was observed over the first days after SE in the cerebral cortex and the hippocampus, but not in the thalamus and hypothalamus. The magnitude in reduction was larger and occurred earlier in the hippocampus and the piriform cortex, than in other cortical subregions. Interestingly, in all areas examined, the binding capacity returned to control levels 12 weeks after the SE comparable to the chronic phase. These data show that lithium-pilocarpine-induced epileptogenesis involves both loss and gain of synapses in the in a time-dependent manner.
Collapse
|
5
|
Szabo CA, Salinas FS. Neuroimaging in the Epileptic Baboon. Front Vet Sci 2022; 9:908801. [PMID: 35909685 PMCID: PMC9330034 DOI: 10.3389/fvets.2022.908801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Characterization of baboon model of genetic generalized epilepsy (GGE) is driven both electroclinically and by successful adoption of neuroimaging platforms, such as magnetic resonance imaging (MRI) and positron emission tomography (PET). Based upon its phylogenetic proximity and similar brain anatomy to humans, the epileptic baboon provides an excellent translational model. Its relatively large brain size compared to smaller nonhuman primates or rodents, a gyrencephalic structure compared to lissencephalic organization of rodent brains, and the availability of a large pedigreed colony allows exploration of neuroimaging markers of diseases. Similar to human idiopathic generalized epilepsy (IGE), structural imaging in the baboon is usually normal in individual subjects, but gray matter volume/concentration (GMV/GMC) changes are reported by statistical parametric mapping (SPM) analyses. Functional neuroimaging has been effective for mapping the photoepileptic responses, the epileptic network, altered functional connectivity of physiological networks, and the effects of anti-seizure therapies. This review will provide insights into our current understanding the baboon model of GGE through functional and structural imaging.
Collapse
Affiliation(s)
- C. Akos Szabo
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, United States
- *Correspondence: C. Akos Szabo
| | - Felipe S. Salinas
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, TX, United States
- Department of Radiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
8
|
Longitudinal [18]UCB-H/[18F]FDG imaging depicts complex patterns of structural and functional neuroplasticity following bilateral vestibular loss in the rat. Sci Rep 2022; 12:6049. [PMID: 35411002 PMCID: PMC9001652 DOI: 10.1038/s41598-022-09936-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Neuronal lesions trigger mechanisms of structural and functional neuroplasticity, which can support recovery. However, the temporal and spatial appearance of structure–function changes and their interrelation remain unclear. The current study aimed to directly compare serial whole-brain in vivo measurements of functional plasticity (by [18F]FDG-PET) and structural synaptic plasticity (by [18F]UCB-H-PET) before and after bilateral labyrinthectomy in rats and investigate the effect of locomotor training. Complex structure–function changes were found after bilateral labyrinthectomy: in brainstem-cerebellar circuits, regional cerebral glucose metabolism (rCGM) decreased early, followed by reduced synaptic density. In the thalamus, increased [18F]UCB-H binding preceded a higher rCGM uptake. In frontal-basal ganglia loops, an increase in synaptic density was paralleled by a decrease in rCGM. In the group with locomotor training, thalamic rCGM and [18F]UCB-H binding increased following bilateral labyrinthectomy compared to the no training group. Rats with training had considerably fewer body rotations. In conclusion, combined [18F]FDG/[18F]UCB-H dual tracer imaging reveals that adaptive neuroplasticity after bilateral vestibular loss is not a uniform process but is composed of complex spatial and temporal patterns of structure–function coupling in networks for vestibular, multisensory, and motor control, which can be modulated by early physical training.
Collapse
|
9
|
Pazarlar BA, Madsen CA, Oyar EÖ, Eğilmez CB, Mikkelsen JD. Temporal and Spatial Changes in Synaptic Vesicle Glycoprotein 2 A (SV2A) under Kainic Acid Induced Epileptogenesis: An Autoradiographic Study. Epilepsy Res 2022; 183:106926. [DOI: 10.1016/j.eplepsyres.2022.106926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
|
10
|
Toyonaga T, Fesharaki-Zadeh A, Strittmatter SM, Carson RE, Cai Z. PET Imaging of Synaptic Density: Challenges and Opportunities of Synaptic Vesicle Glycoprotein 2A PET in Small Animal Imaging. Front Neurosci 2022; 16:787404. [PMID: 35345546 PMCID: PMC8957200 DOI: 10.3389/fnins.2022.787404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
The development of novel PET imaging agents for synaptic vesicle glycoprotein 2A (SV2A) allowed for the in vivo detection of synaptic density changes, which are correlated with the progression and severity of a variety of neuropsychiatric diseases. While multiple ongoing clinical investigations using SV2A PET are expanding its applications rapidly, preclinical SV2A PET imaging in animal models is an integral component of the translation research and provides supporting and complementary information. Herein, we overview preclinical SV2A PET studies in animal models of neurodegenerative disorders and discuss the opportunities and practical challenges in small animal SV2A PET imaging. At the Yale PET Center, we have conducted SV2A PET imaging studies in animal models of multiple diseases and longitudinal SV2A PET allowed us to evaluate synaptic density dynamics in the brains of disease animal models and to assess pharmacological effects of novel interventions. In this article, we discuss key considerations when designing preclinical SV2A PET imaging studies and strategies for data analysis. Specifically, we compare the brain imaging characteristics of available SV2A tracers, i.e., [11C]UCB-J, [18F]SynVesT-1, [18F]SynVesT-2, and [18F]SDM-16, in rodent brains. We also discuss the limited spatial resolution of PET scanners for small brains and challenges of kinetic modeling. We then compare different injection routes and estimate the maximum throughput (i.e., number of animals) per radiotracer synthesis by taking into account the injectable volume for each injection method, injected mass, and radioactivity half-lives. In summary, this article provides a perspective for designing and analyzing SV2A PET imaging studies in small animals.
Collapse
Affiliation(s)
- Takuya Toyonaga
- Positron Emission Tomography (PET) Center, Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Arman Fesharaki-Zadeh
- Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Stephen M. Strittmatter
- Neurology, Yale School of Medicine, New Haven, CT, United States
- Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Richard E. Carson
- Positron Emission Tomography (PET) Center, Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Zhengxin Cai
- Positron Emission Tomography (PET) Center, Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis 2022; 13:215-231. [PMID: 35111370 PMCID: PMC8782545 DOI: 10.14336/ad.2021.0723] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a serious neurological disorder characterized by abnormal, recurrent, and synchronous discharges in the brain. Long-term recurrent seizure attacks can cause serious damage to brain function, which is usually observed in patients with temporal lobe epilepsy. Controlling seizure attacks is vital for the treatment and prognosis of epilepsy. Animal models, such as the kindling model, which was the most widely used model in the past, allow the understanding of the potential epileptogenic mechanisms and selection of antiepileptic drugs. In recent years, various animal models of epilepsy have been established to mimic different seizure types, without clear merits and demerits. Accordingly, this review provides a summary of the views mentioned above, aiming to provide a reference for animal model selection.
Collapse
Affiliation(s)
- Yilin Wang
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Feng Yan
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Bertoglio D, Amhaoul H, Goossens J, Ali I, Jonckers E, Bijnens T, Siano M, Wyffels L, Verhaeghe J, Van der Linden A, Staelens S, Dedeurwaerdere S. TSPO PET upregulation predicts epileptic phenotype at disease onset independently from chronic TSPO expression in a rat model of temporal lobe epilepsy. Neuroimage Clin 2021; 31:102701. [PMID: 34090124 PMCID: PMC8182303 DOI: 10.1016/j.nicl.2021.102701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a key component of epileptogenesis, the process leading to acquired epilepsy. In recent years, with the development of non-invasive in vivo positron emission tomography (PET) imaging of translocator protein 18 kDa (TSPO), a marker of neuroinflammation, it has become possible to perform longitudinal studies to characterize neuroinflammation at different disease stages in animal models of epileptogenesis. This study aimed to utilize the prognostic capability of TSPO PET imaging at disease onset (2 weeks post-SE) to categorize epileptic rats with distinct seizure burden based on TSPO levels at disease onset and investigate their association to TSPO expression at the chronic epilepsy stage. Controls (n = 14) and kainic acid-induced status epilepticus (KASE) rats (n = 41) were scanned non-invasively with [18F]PBR111 PET imaging measuring TSPO expression. Animals were monitored using video-electroencephalography (vEEG) up to chronic disease (12 weeks post-SE), at which TSPO levels ([3H]PK11195) as well as other post-mortem abnormalities (namely synaptic density ([3H]UCB-J), neuronal loss (NeuN), and neurodegeneration (FjC)) were investigated. By applying multivariate analysis, TSPO PET imaging at disease onset identified three KASE groups with significantly different spontaneous recurrent seizures (SRS) burden (defined as rare SRS, sporadic SRS, and frequent SRS) (p = 0.003). Interestingly, TSPO levels were significantly different when comparing the three KASE groups (p < 0.0001), with the frequent SRS group characterized only by a limited focal TSPO increase at disease onset. On the contrary, TSPO measured during chronic epilepsy was found to be the highest in the frequent SRS group and correlated with seizure burden (r = 0.826, p < 0.0001). Importantly, early and chronic TSPO levels did not correlate (r = -0.05). Finally, significant pathological changes in neuronal loss, synaptic density, and neurodegeneration were found not only when compared to control animals (p < 0.01), but also between the three KASE rat categories in the hippocampus (p < 0.05). Early and chronic TSPO upregulation following epileptogenic insult appear to be driven by two superimposed dynamic processes. The former is associated with epileptogenesis as measured at disease onset, while the latter is related to seizure frequency as quantified during chronic epilepsy.
Collapse
Affiliation(s)
- Daniele Bertoglio
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium; Department of Translational Neurosciences, University of Antwerp, Belgium.
| | - Halima Amhaoul
- Department of Translational Neurosciences, University of Antwerp, Belgium
| | - Joery Goossens
- Department of Translational Neurosciences, University of Antwerp, Belgium
| | - Idrish Ali
- Department of Translational Neurosciences, University of Antwerp, Belgium
| | | | - Tom Bijnens
- Department of Translational Neurosciences, University of Antwerp, Belgium
| | - Matteo Siano
- Department of Translational Neurosciences, University of Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium; Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | | | - Steven Staelens
- Department of Translational Neurosciences, University of Antwerp, Belgium
| | | |
Collapse
|
13
|
Goutal S, Guillermier M, Becker G, Gaudin M, Bramoullé Y, Luxen A, Lemaire C, Plenevaux A, Salmon E, Hantraye P, Barret O, Van Camp N. The pharmacokinetics of [ 18F]UCB-H revisited in the healthy non-human primate brain. EJNMMI Res 2021; 11:36. [PMID: 33826008 PMCID: PMC8026785 DOI: 10.1186/s13550-021-00777-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background Positron Emission Tomography (PET) imaging of the Synaptic Vesicle glycoprotein (SV) 2A is a new tool to quantify synaptic density. [18F]UCB-H was one of the first promising SV2A-ligands to be labelled and used in vivo in rodent and human, while limited information on its pharmacokinetic properties is available in the non-human primate. Here, we evaluate the reliability of the three most commonly used modelling approaches for [18F]UCB-H in the non-human cynomolgus primate, adding the coupled fit of the non-displaceable distribution volume (VND) as an alternative approach to improve unstable fit. The results are discussed in the light of the current state of SV2A PET ligands. Results [18F]UCB-H pharmacokinetic data was optimally fitted with a two-compartment model (2TCM), although the model did not always converge (large total volume of distribution (VT) or large uncertainty of the estimate). 2TCM with coupled fit K1/k2 across brain regions stabilized the quantification, and confirmed a lower specific signal of [18F]UCB-H compared to the newest SV2A-ligands. However, the measures of VND and the influx parameter (K1) are similar to what has been reported for other SV2A ligands. These data were reinforced by displacement studies using [19F]UCB-H, demonstrating only 50% displacement of the total [18F]UCB-H signal at maximal occupancy of SV2A. As previously demonstrated in clinical studies, the graphical method of Logan provided a more robust estimate of VT with only a small bias compared to 2TCM. Conclusions Modeling issues with a 2TCM due to a slow component have previously been reported for other SV2A ligands with low specific binding, or after blocking of specific binding. As all SV2A ligands share chemical structural similarities, we hypothesize that this slow binding component is common for all SV2A ligands, but only hampers quantification when specific binding is low. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00777-8.
Collapse
Affiliation(s)
- Sébastien Goutal
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Martine Guillermier
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Guillaume Becker
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Mylène Gaudin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Yann Bramoullé
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - André Luxen
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Christian Lemaire
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Alain Plenevaux
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Eric Salmon
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege, Allee du 6 Aout, 8, Sart Tilman B30, 4000, Liege, Belgium
| | - Philippe Hantraye
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Olivier Barret
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Nadja Van Camp
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire Des Maladies Neurodégénératives, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
14
|
Becker G, Dammicco S, Bahri MA, Salmon E. The Rise of Synaptic Density PET Imaging. Molecules 2020; 25:molecules25102303. [PMID: 32422902 PMCID: PMC7288098 DOI: 10.3390/molecules25102303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022] Open
Abstract
Many neurological disorders are related to synaptic loss or pathologies. Before the boom of positrons emission tomography (PET) imaging of synapses, synaptic quantification could only be achieved in vitro on brain samples after autopsy or surgical resections. Until the mid-2010s, electron microscopy and immunohistochemical labelling of synaptic proteins were the gold-standard methods for such analyses. Over the last decade, several PET radiotracers for the synaptic vesicle 2A protein have been developed to achieve in vivo synapses visualization and quantification. Different strategies were used, namely radiolabelling with either 11C or 18F, preclinical development in rodent and non-human primates, and binding quantification with different kinetic modelling methods. This review provides an overview of these PET tracers and underlines their perspectives and limitations by focusing on radiochemical aspects, as well as preclinical proof-of-concept and the main clinical outcomes described so far.
Collapse
|