1
|
Mohammadi I, Sadeghi M, Tajmiri G, Brühl AB, Sadeghi Bahmani L, Brand S. Evaluation of Blood Levels of Omentin-1 and Orexin-A in Adults with Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. Life (Basel) 2023; 13:245. [PMID: 36676194 PMCID: PMC9865616 DOI: 10.3390/life13010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Background and objective: Obstructive sleep apnea (OSA) can be related to changes in the levels of adipokines and neuropeptides, which in turn may affect the energy balance components of neuronal cells. Herein, a systematic review and meta-analysis checked the changes in serum/plasma levels of omentin-1 (OM-1: an adipokine) and orexin-A (OXA: a neuropeptide) in adults (age > 18 years old) with OSA (aOSA) compared to controls. Materials and methods: Four databases (Cochrane Library, PubMed, Web of Science, and Scopus) were systematically searched until 14 November 2022, without any restrictions. The Joanna Briggs Institute (JBI) critical appraisal checklist adapted for case−control studies was used to assess the quality of the papers. The effect sizes were extracted using the Review Manager 5.3 software for the blood levels of OM-1 and OXA in aOSA compared with controls. Results: Thirteen articles, with six studies for OM-1 levels and eight for OXA levels, were included. The pooled standardized mean differences were −0.85 (95% confidence interval (CI): −2.19, 0.48; p = 0.21; I2 = 98%) and −0.20 (95%CI: −1.16, 0.76; p = 0.68; I2 = 96%) for OM-1 and OXA levels, respectively. Among the studies reporting OM-1, five were high and one was moderate quality. Among the studies reporting OXA, six were moderate, one was high, and one was low quality. Based on the trial sequential analysis, more participants are needed to confirm the pooled results of the analyses of blood levels of OM-1 and OXA. In addition, the radial plot showed outliers as significant factors for high heterogeneity. Conclusions: The main findings indicated a lack of association between the blood levels of OM-1 and OXA and OSA risk. Therefore, OM-1 and OXA did not appear to be suitable biomarkers for the diagnosis and development of OSA.
Collapse
Affiliation(s)
- Iman Mohammadi
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Masoud Sadeghi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Golnaz Tajmiri
- Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Annette Beatrix Brühl
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland
| | - Laleh Sadeghi Bahmani
- Department of Education and Psychology, Shahid Ashrafi Esfahani University, Ishafan 8179949999, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, University of Basel, 4052 Basel, Switzerland
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran 25529, Iran
- Center for Disaster Psychiatry and Disaster Psychology, Psychiatric University Hospital Basel, 4002 Basel, Switzerland
| |
Collapse
|
2
|
Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines. Int J Mol Sci 2022; 23:ijms23031706. [PMID: 35163627 PMCID: PMC8835888 DOI: 10.3390/ijms23031706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022] Open
Abstract
Adipokines are a growing group of peptide or protein hormones that play important roles in whole body metabolism and metabolic diseases. Sleep is an integral component of energy metabolism, and sleep disturbance has been implicated in a wide range of metabolic disorders. Accumulating evidence suggests that adipokines may play a role in mediating the close association between sleep disorders and systemic metabolic derangements. In this review, we briefly summarize a group of selected adipokines and their identified function in metabolism. Moreover, we provide a balanced overview of these adipokines and their roles in sleep physiology and sleep disorders from recent human and animal studies. These studies collectively demonstrate that the functions of adipokine in sleep physiology and disorders could be largely twofold: (1) adipokines have multifaceted roles in sleep physiology and sleep disorders, and (2) sleep disturbance can in turn affect adipokine functions that likely contribute to systemic metabolic derangements.
Collapse
|
3
|
Imani MM, Sadeghi M, Farokhzadeh F, Khazaie H, Brand S, Dürsteler KM, Brühl A, Sadeghi-Bahmani D. Evaluation of Blood Levels of C-Reactive Protein Marker in Obstructive Sleep Apnea: A Systematic Review, Meta-Analysis and Meta-Regression. Life (Basel) 2021; 11:life11040362. [PMID: 33921787 PMCID: PMC8073992 DOI: 10.3390/life11040362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/08/2023] Open
Abstract
(1) Introduction: High sensitivity C-reactive protein (hs-CRP) and CRP are inflammatory biomarkers associated with several inflammatory diseases. In both pediatric and adult individuals with Obstructive Sleep Apnea (OSA) higher hs-CRP and CRP were observed, compared to controls. With the present systematic review, meta-analysis and meta-regression we expand upon previous meta-analyses in four ways: (1) We included 109 studies (96 in adults and 13 in children); (2) we reported subgroup and meta-regression analyses in adults with OSA compared to controls on the serum and plasma levels of hs-CRP; (3) we reported subgroup and meta-regression analyses in adults with OSA compared to controls on the serum and plasma levels of CRP; (4) we reported serum and plasma levels of both hs-CRP and CRP in children with OSA, always compared to controls. (2) Materials and Methods: The PubMed/Medline, Scopus, Cochrane Library, and Web of Science databases were searched to retrieve articles published until 31 May 2020, with no restrictions. The data included basic information involving the first author, publication year, country of study, ethnicity of participants in each study, age, BMI, and AHI of both groups, and mean and standard deviation (SD) of plasma and serum levels of CRP and hs-CRP. (3) Results: A total of 1046 records were retrieved from the databases, and 109 studies were selected for the analysis (96 studies reporting the blood levels of hs-CRP/CRP in adults and 13 studies in children). For adults, 11 studies reported plasma hs-CRP, 44 serum hs-CRP, 9 plasma CRP, and 32 serum CRP levels. For children, 6 studies reported plasma hs-CRP, 4 serum hs-CRP, 1 plasma CRP, and 2 serum CRP levels. Compared to controls, the pooled MD of plasma hs-CRP levels in adults with OSA was 0.11 mg/dL (p < 0.00001). Compared to controls, the pooled MD of serum hs-CRP levels in adults with OSA was 0.09 mg/dL (p < 0.00001). Compared to controls, the pooled MD of plasma CRP levels in adults with OSA was 0.06 mg/dL (p = 0.72). Compared to controls, the pooled MD of serum CRP levels in adults with OSA was 0.36 mg/dL (p < 0.00001). Compared to controls, the pooled MD of plasma hs-CRP, serum hs-CRP, plasma hs-CRP, and serum hs-CRP in children with OSA was 1.17 mg/dL (p = 0.005), 0.18 mg/dL (p = 0.05), 0.08 mg/dL (p = 0.10), and 0.04 mg/dL (p = 0.33), respectively. The meta-regression showed that with a greater apnea-hypapnea index (AHI), serum hs-CRP levels were significantly higher. (4) Conclusions: The results of the present systematic review, meta-analysis and meta-regression showed that compared to healthy controls plasma and serum levels of hs-CRP and serum CRP level were higher in adults with OSA; for children, and compared to controls, just plasma hs-CRP levels in children with OSA were higher.
Collapse
Affiliation(s)
- Mohammad Moslem Imani
- Department of Orthodontics, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Farid Farokhzadeh
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; (H.K.); (D.S.-B.)
| | - Serge Brand
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; (H.K.); (D.S.-B.)
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, University of Basel, 4052 Basel, Switzerland
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran 25529, Iran
- Correspondence:
| | - Kenneth M. Dürsteler
- Psychiatric Clinics, Division of Substance Use Disorders, University of Basel, 4002 Basel, Switzerland;
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8001 Zurich, Switzerland
| | - Annette Brühl
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
| | - Dena Sadeghi-Bahmani
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; (H.K.); (D.S.-B.)
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran
- Departments of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35209, USA
| |
Collapse
|
4
|
Abstract
Obstructive sleep apnea (OSA), characterized by recurrent episodes of apnea during sleep and daytime sleepiness, seriously affects human health and may lead to systemic organ dysfunction. The pathogenesis of OSA is complex and still uncertain, but multiple surveys have shown that obesity is an important factor, and the incidence of OSA in people with obesity is as high as 30%. Adipokines are a group of proteins secreted from adipocytes, which are dysregulated in obesity and may contribute to OSA. Here, we review the most important and representative research results regarding the correlation between obesity-related adipokines including leptin, adiponectin, omentin-1, chemerin, and resistin and OSA in the past 5 years, provide an overview of these key adipokines, and analyze possible intrinsic mechanisms and influencing factors. The existing research shows that OSA is associated with an increase in the serum levels of leptin, chemerin, and resistin and a decrease in the levels of adiponectin and omentin-1; the findings presented here can be used to monitor the development of OSA and obesity, prevent future comorbidities, and identify risk factors for cardiovascular and other diseases, while different adipokines can be linked to OSA through different pathways such as insulin resistance, intermittent hypoxia, and inflammation, among others. We hope our review leads to a deeper and more comprehensive understanding of OSA based on the relevant literature, which will also provide directions for future clinical research.
Collapse
Affiliation(s)
- Xiongye Xu
- The First Clinical Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Jixiong Xu
- The First Clinical Medical College of Nanchang University, Nanchang, People's Republic of China
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
5
|
Adiponectin, Omentin, Ghrelin, and Visfatin Levels in Obese Patients with Severe Obstructive Sleep Apnea. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3410135. [PMID: 30151379 PMCID: PMC6087603 DOI: 10.1155/2018/3410135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/29/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
Objectives Obstructive sleep apnea (OSA) is closely associated with obesity, insulin resistance, and inflammation. Adiponectin, omentin, ghrelin, and visfatin are adipokines involved in insulin sensitivity or regulation of inflammatory disease. This study aims to clarify the relationship between OSA and associated adipokines. Patients and Methods Thirty overweight male patients with severe OSA and twenty controls underwent standard diagnostic polysomnography (PSG), and 10 patients underwent overnight continuous positive airway pressure (CPAP) treatment. Blood samples were collected in the morning after PSG or CPAP procedures. Results Among the investigated adipokines, only plasma omentin levels of patients with OSA were significantly lower than those of control subjects (442.94 ± 191.89 ng/ml versus 573.52±228.67 ng/ml, p=0.034) and levels did not change after CPAP treatment. In patients with OSA, omentin levels were positively correlated with high-density lipoprotein cholesterol (HDL) levels (r=0.378, p=0.007), adiponectin levels (r=0.709, p<0.001), percentage of sleep at the rapid eye movement (REM) stage (r=0.307, p=0.003), and average and minimum SpO2 (p=0.041, 0.046, respectively) and negatively with hypersensitive C-reactive protein (hsCRP, r=-0.379, p=0.007) and apnea-hypopnea index (AHI, r=-0.315, p=0.026). However, plasma concentrations of adiponectin, ghrelin, and visfatin in patients with OSA did not significantly differ from those of the control or correlate with sleep parameters and CPAP treatment. Conclusions Patients with OSA have decreased omentin levels, which are associated with sleep parameters, including AHI, SpO2, percentage of REM sleep, hsCRP, HDL, and adiponectin levels.
Collapse
|
6
|
Omentin-A Novel Adipokine in Respiratory Diseases. Int J Mol Sci 2017; 19:ijms19010073. [PMID: 29283409 PMCID: PMC5796023 DOI: 10.3390/ijms19010073] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023] Open
Abstract
Adipokines, secreted by the adipose tissue, are extensively involved in the regulation and maintenance of various physiological and pathological processes, including insulin sensitivity, energy expenditure, glucose and lipid metabolism, inflammatory activity, neuroendocrine activity, immunity, cancer, homeostasis, angiogenesis, cardiovascular function, breeding and bone metabolism, and all functions of the endocrine-reproductive system axis. Omentin is a recently identified adipokine, which has become a research hotspot due to its pleiotropic effects on various diseases. However, the specific receptor for omentin has not been identified so far. In this study, we report that omentin levels fluctuate in various diseases. In addition, we have focused on the pleiotropic roles of omentin in pulmonary diseases, as it may act as a biomarker for malignant pleural mesothelioma (MPM) and is related to disease severity. Omentin may play significant roles in other pulmonary diseases, such as asthma, obstructive sleep apnea syndrome (OSAS), pulmonary arterial hypertension (PAH), acute respiratory distress syndrome (ARDS), and chronic obstructive pulmonary disease (COPD). This review summarizes the advances in current knowledge and future trends, which may provide a concise and general view on omentin and its effects on pulmonary biology.
Collapse
|
7
|
Zhou Q, Fu Y, Hu L, Li Q, Jin M, Jiang E. Relationship of circulating chemerin and omentin levels with Th17 and Th9 cell immune responses in patients with asthma. J Asthma 2017; 55:579-587. [PMID: 28771382 DOI: 10.1080/02770903.2017.1355378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Adipokines are correlated with immune responses in asthma, but data on the roles of chemerin and omentin in asthma are limited. This study explored the relationship of chemerin and omentin levels with Th17 and Th9 cells in asthma. METHODS Seventy-six asthmatics were divided into intermittent-to-mild persistent (n = 28), moderate persistent (n = 26) and severe persistent (n = 22) and were enrolled in the study. Additionally, 20 healthy subjects were enrolled as controls. Clinical characteristics of the subjects, the Asthma Control Test, lung function, fractional exhaled nitric oxide score, and plasma chemerin and omentin levels were evaluated, and the percentages of Th17 and Th9 cells were determined by flow cytometry. RESULTS The percentages of Th17 and Th9 cells were higher in the moderate-to-severe persistent asthmatics than in the intermittent-to-mild persistent asthmatics or healthy controls (p < 0.05). The severe persistent asthma group had a higher chemerin level but lower omentin levels than the control group (p < 0.05). Chemerin levels were positively correlated with Th17 and Th9 cell percentages, while omentin levels were negatively correlated with Th17 and Th9 cell percentages (p < 0.01). CONCLUSIONS The regulatory functions of adipokines on immune responses may be associated with pathogenesis and processes of asthma.
Collapse
Affiliation(s)
- Qing Zhou
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Yu Fu
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Liangan Hu
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Qian Li
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Meng Jin
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - E Jiang
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| |
Collapse
|
8
|
Watanabe T, Watanabe-Kominato K, Takahashi Y, Kojima M, Watanabe R. Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr Physiol 2017. [PMID: 28640441 DOI: 10.1002/cphy.c160043] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Omentin-1, also known as intelectin-1, is a recently identified novel adipocytokine of 313 amino acids, which is expressed in visceral (omental and epicardial) fat as well as mesothelial cells, vascular cells, airway goblet cells, small intestine, colon, ovary, and plasma. The level of omentin-1 expression in (pre)adipocytes is decreased by glucose/insulin and stimulated by fibroblast growth factor-21 and dexamethasone. Several lines of experimental evidence have shown that omentin-1 plays crucial roles in the maintenance of body metabolism and insulin sensitivity, and has anti-inflammatory, anti-atherosclerotic, and cardiovascular protective effects via AMP-activated protein kinase/Akt/nuclear factor-κB/mitogen-activated protein kinase (ERK, JNK, and p38) signaling. Clinical studies have indicated the usage of circulating omentin-1 as a biomarker of obesity, metabolic disorders including insulin resistance, diabetes, and metabolic syndrome, and atherosclerotic cardiovascular diseases. It is also possible to use circulating omentin-1 as a biomarker of bone metabolism, inflammatory diseases, cancers, sleep apnea syndrome, preeclampsia, and polycystic ovary syndrome. Decreased omentin-1 levels are generally associated with these diseases. However, omentin-1 increases to counteract the acute phase after onset of these diseases. These findings indicate that omentin-1 may be a negative risk factor for these diseases, and also act as an acute-phase reactant by its anti-inflammatory and atheroprotective effects. Therapeutic strategies to restore omentin-1 levels may be valuable for the prevention or treatment of these diseases. Weight loss, olive oil-rich diet, aerobic training, and treatment with atorvastatin and antidiabetic drugs (metformin, pioglitazone, and exenatide) are effective means of increasing circulating omentin-1 levels. This review provides insights into the potential use of omentin-1 as a biomarker and therapeutic target for these diseases. © 2017 American Physiological Society. Compr Physiol 7:765-781, 2017.
Collapse
Affiliation(s)
- Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Kaho Watanabe-Kominato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Yui Takahashi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Miho Kojima
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Rena Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| |
Collapse
|