1
|
Wang T, Rovira J, Sierra J, Blanco J, Chen SJ, Mai BX, Schuhmacher M, Domingo JL. Characterization of airborne particles and cytotoxicity to a human lung cancer cell line in Guangzhou, China. ENVIRONMENTAL RESEARCH 2021; 196:110953. [PMID: 33667474 DOI: 10.1016/j.envres.2021.110953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 05/21/2023]
Abstract
Air pollution by airborne particles is a serious health problem worldwide. The present study was aimed at investigating the concentrations and composition of total suspended particles (TSPs) and PM2.5 at various industrial/commercial sites of Guangzhou, a megacity of Southern China. Major and trace elements, ions and carbonaceous fraction were determined and main components were calculated. In addition, in order to assess the potential toxic on the respiratory system of these PM, cytotoxicity of size-fractionated particles (PM10-5.6, PM5.6-3.3, PM3.3-1.1, PM1.1-0.43) for a human lung cancer cell line (A549) was also investigated. Correlations between PM constituents and toxicity were assessed. Median levels of TSPs and PM2.5 in industrial/commercial sites were 206 and 57.7 μg/m3, respectively. Nickel, Cu, Mo, Mn, Pb, and Ti were the most abundant metals in TSPs and PM2.5. Industrial activities and coal combustion were the most important sources of carbonaceous particles in the zone. MTT assays showed that PM10-5.6 and PM1.1-0.43 had the highest and the lowest cytotoxicity to A549 cell lines, respectively. Inhalable particles around the manufacturing of metal facilities and formal waste treatment plants showed a high cytotoxicity to A549 cell lines. In general terms, no significant correlations were found between main components of PM and toxicity. However, W showed a significant correlation with cell viability.
Collapse
Affiliation(s)
- Tao Wang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament D'Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain.
| | - Jordi Sierra
- Environmental Engineering Laboratory, Departament D'Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Soil Science, Faculty of Pharmacy, Universitat de Barcelona, Av. Joan XXIII S/n, 08028, Barcelona, Catalonia, Spain
| | - Jordi Blanco
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - She-Jun Chen
- Environmental Research Institute, South China Normal University, Guangzhou, 510006, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Marta Schuhmacher
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament D'Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
2
|
Rai P, Furger M, El Haddad I, Kumar V, Wang L, Singh A, Dixit K, Bhattu D, Petit JE, Ganguly D, Rastogi N, Baltensperger U, Tripathi SN, Slowik JG, Prévôt ASH. Real-time measurement and source apportionment of elements in Delhi's atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140332. [PMID: 33167294 DOI: 10.1016/j.scitotenv.2020.140332] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 05/05/2023]
Abstract
Delhi, the capital of India, suffers from heavy local emissions as well as regional transport of air pollutants, resulting in severe aerosol loadings. To determine the sources of these pollutants, we have quantified the mass concentrations of 26 elements in airborne particles, measured by an online X-ray fluorescence spectrometer with time resolution between 30 min and 1 h. Measurements of PM10 and PM2.5 (particulate matter <10 μm and < 2.5 μm) were conducted during two consecutive winters (2018 and 2019) in Delhi. On average, 26 elements from Al to Pb made up ~25% and ~19% of the total PM10 mass (271 μg m-3 and 300 μg m-3) in 2018 and 2019, respectively. Nine different aerosol sources were identified during both winters using positive matrix factorization (PMF), including dust, non-exhaust, an S-rich factor, two solid fuel combustion (SFC) factors and four industrial/combustion factors related to plume events (Cr-Ni-Mn, Cu-Cd-Pb, Pb-Sn-Se and Cl-Br-Se). All factors were resolved in both size ranges (but varying relative concentrations), comprising the following contributions to the elemental PM10 mass (in % average for 2018 and 2019): Cl-Br-Se (41.5%, 36.9%), dust (27.6%, 28.7%), non-exhaust (16.2%, 13.7%), S-rich (6.9%, 9.2%), SFC1 + SFC2 (4%, 7%), Pb-Sn-Se (2.3%, 1.66%), Cu-Cd-Pb (0.67%, 2.2%) and Cr-Ni-Mn (0.57%, 0.47%). Most of these sources had the highest relative contributions during late night (22:00 local time (LT)) and early morning hours (between 03:00 to 08:00 LT), which is consistent with enhanced emissions into a shallow boundary layer. Modelling of airmass source geography revealed that the Pb-Sn-Se, Cl-Br-Se and SFC2 factors prevailed for northwest winds (Pakistan, Punjab, Haryana and Delhi), while the Cu-Cd-Pb and S-rich factors originated from east (Nepal and Uttar Pradesh) and the Cr-Ni-Mn factor from northeast (Uttar Pradesh). In contrast, SFC1, dust and non-exhaust were not associated with any specific wind direction.
Collapse
Affiliation(s)
- Pragati Rai
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Markus Furger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Varun Kumar
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Liwei Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Atinderpal Singh
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| | - Kuldeep Dixit
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Deepika Bhattu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Dilip Ganguly
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Neeraj Rastogi
- Geosciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sachchida Nand Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | - Jay G Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
3
|
Stockwell WR, Saunders E, Goliff WS, Fitzgerald RM. A perspective on the development of gas-phase chemical mechanisms for Eulerian air quality models. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:44-70. [PMID: 31750791 DOI: 10.1080/10962247.2019.1694605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
An essential component of a three-dimensional air quality model is its gas-phase mechanism. We present an overview of the necessary atmospheric chemistry and a discussion of the types of mechanisms with some specific examples such as the Master Chemical Mechanism, the Carbon Bond, SAPRC and the Regional Atmospheric Chemistry Mechanism (RACM). The first versions of the Carbon Bond and SAPRC mechanisms were developed through a hierarchy of chemical species approach that relied heavily on chemical environmental chamber data. Now a new approach has been proposed where the first step is to develop a highly detailed explicit mechanism such as the Master Chemical Mechanism and the second step is to test the detailed explicit mechanism against laboratory and field data. Finally, the detailed mechanism is condensed for use in a three-dimensional air quality model. Here it is argued that the development of highly detailed explicit mechanisms is very valuable for research, but we suggest that combining the hierarchy of chemical species and the detailed explicit mechanism approaches would be better than either alone.Implication: Many gas-phase mechanisms are available for urban, regional and global air quality modeling. A "hierarchy of chemical species approach," relying heavily on smog-chamber data was used for the development of the early series of mechanisms. Now the development of large, explicit master mechanisms that may be condensed is a significant, trend. However, a continuing problem with air quality mechanism development is due to the high complexity of atmospheric chemistry and the current availability of laboratory measurements. This problem requires a balance between completeness and speculation so that models maintain their utility for policymakers.
Collapse
Affiliation(s)
- William R Stockwell
- Department of Physics, University of Texas El Paso, El Paso, TX, USA
- Division of Atmospheric Sciences, Desert Research Institute, Nevada System of Higher Education, Reno, NV, USA
| | - Emily Saunders
- Science Systems and Applications, Inc. and Global Modeling Assimilation Office (GMAO), NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Wendy S Goliff
- Chemistry Department, Riverside City College, Riverside, CA, USA
| | - Rosa M Fitzgerald
- Department of Physics, University of Texas El Paso, El Paso, TX, USA
| |
Collapse
|