1
|
Bi H, Mulligan CN, Lee K, An C, Wen J, Yang X, Lyu L, Qu Z. Preparation, characteristics, and performance of the microemulsion system in the removal of oil from beach sand. MARINE POLLUTION BULLETIN 2023; 193:115234. [PMID: 37399736 DOI: 10.1016/j.marpolbul.2023.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Oil deposited on shoreline substrates has serious adverse effects on the coastal environment and can persist for a long time. In this study, a green and effective microemulsion (ME) derived from vegetable oil was developed as a washing fluid to remove stranded oil from beach sand. The pseudo-ternary phase diagrams of the castor oil/water (without or without NaCl)/Triton X-100/ethanol were constructed to determine ME regions, and they also demonstrated that the phase behaviors of ME systems were almost independent of salinity. ME-A and ME-B exhibited high oil removal performance, low surfactant residues, and economic benefits, which were determined to be the W/O microstructure. Under optimal operation conditions, the oil removal efficiencies for both ME systems were 84.3 % and 86.8 %, respectively. Moreover, the reusability evaluation showed that the ME system still had over 70 % oil removal rates, even though it was used six times, implying its sustainability and reliability.
Collapse
Affiliation(s)
- Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| | - Jiyuan Wen
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zhaonian Qu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
2
|
Patowary R, Patowary K, Kalita MC, Deka S, Borah JM, Joshi SJ, Zhang M, Peng W, Sharma G, Rinklebe J, Sarma H. Biodegradation of hazardous naphthalene and cleaner production of rhamnolipids - Green approaches of pollution mitigation. ENVIRONMENTAL RESEARCH 2022; 209:112875. [PMID: 35122743 DOI: 10.1016/j.envres.2022.112875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Toxic and hazardous waste poses a serious threat to human health and the environment. Green remediation technologies are required to manage such waste materials, which is a demanding and difficult task. Here, effort was made to explore the role of Pseudomonas aeruginosa SR17 in alleviating naphthalene via catabolism and simultaneously producing biosurfactant. The results showed up to 89.2% naphthalene degradation at 35 °C and pH 7. The GC/MS analysis revealed the generation of naphthalene degradation intermediates. Biosurfactant production led to the reduction of surface tension of the culture medium to 34.5 mN/m. The biosurfactant was further characterized as rhamnolipids. LC-MS of the column purified biosurfactant revealed the presence of both mono and di rhamnolipid congeners. Rhamnolipid find tremendous application in medical field and as well as in detergent industry and since they are of biological origin, they can be used as favorable alternative against their chemical counterparts. The study demonstrated that catabolism of naphthalene and concurrent formation of rhamnolipid can result in a dual activity process, namely environmental cleanup and production of a valuable microbial metabolite. Additionally, the present-day application of rhamnolipids is highlighted.
Collapse
Affiliation(s)
- Rupshikha Patowary
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology (IASST), Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Kaustuvmani Patowary
- Environmental Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology (IASST), Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Mohan Chandra Kalita
- Department of Biotechnology, Gauhati University, Guwahati, 781 014, Assam, India
| | - Suresh Deka
- Faculty of Sciences, Assam Down Town University, Guwahati, Assam, 781026, India
| | - Jayanta Madhab Borah
- Department of Chemistry, Nandanath Saikia College, Titabar, 785630, Assam, India
| | - Sanket J Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit, Sultan Qaboos University, Oman
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, No. 258 Xueyuan Street, Hangzhou, 310018, Zhejiang, China
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab. for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China; School of Science and Technology, Shoolini University, Saharanpur, India
| | - Jörg Rinklebe
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Laboratory of Soil- and Groundwater-Management, Institute of Soil Engineering, Waste and Water Science, Faculty of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| |
Collapse
|
3
|
Tomasino MP, Aparício M, Ribeiro I, Santos F, Caetano M, Almeida CMR, de Fátima Carvalho M, Mucha AP. Diversity and Hydrocarbon-Degrading Potential of Deep-Sea Microbial Community from the Mid-Atlantic Ridge, South of the Azores (North Atlantic Ocean). Microorganisms 2021; 9:microorganisms9112389. [PMID: 34835516 PMCID: PMC8620031 DOI: 10.3390/microorganisms9112389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Deep-sea sediments (DSS) are one of the largest biotopes on Earth and host a surprisingly diverse microbial community. The harsh conditions of this cold environment lower the rate of natural attenuation, allowing the petroleum pollutants to persist for a long time in deep marine sediments raising problematic environmental concerns. The present work aims to contribute to the study of DSS microbial resources as biotechnological tools for bioremediation of petroleum hydrocarbon polluted environments. Four deep-sea sediment samples were collected in the Mid-Atlantic Ridge, south of the Azores (North Atlantic Ocean). Their autochthonous microbial diversity was investigated by 16S rRNA metabarcoding analysis. In addition, a total of 26 deep-sea bacteria strains with the ability to utilize crude oil as their sole carbon and energy source were isolated from the DSS samples. Eight of them were selected for a novel hydrocarbonoclastic-bacterial consortium and their potential to degrade petroleum hydrocarbons was tested in a bioremediation experiment. Bioaugmentation treatments (with inoculum pre-grown either in sodium acetate or petroleum) showed an increase in degradation of the hydrocarbons comparatively to natural attenuation. Our results provide new insights into deep-ocean oil spill bioremediation by applying DSS hydrocarbon-degrading consortium in lab-scale microcosm to simulate an oil spill in natural seawater.
Collapse
Affiliation(s)
- Maria Paola Tomasino
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- Correspondence:
| | - Mariana Aparício
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Inês Ribeiro
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Filipa Santos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Miguel Caetano
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- Instituto Português do Mar e da Atmosfera, I.P. Avenida de Brasília, 1449-006 Lisboa, Portugal
| | - C. Marisa R. Almeida
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Maria de Fátima Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana P. Mucha
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| |
Collapse
|
4
|
Perdigão R, Almeida CMR, Magalhães C, Ramos S, Carolas AL, Ferreira BS, Carvalho MF, Mucha AP. Bioremediation of Petroleum Hydrocarbons in Seawater: Prospects of Using Lyophilized Native Hydrocarbon-Degrading Bacteria. Microorganisms 2021; 9:2285. [PMID: 34835411 PMCID: PMC8617842 DOI: 10.3390/microorganisms9112285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to develop a bioremediation product of lyophilized native bacteria to respond to marine oil spills. Three oil-degrading bacterial strains (two strains of Rhodococcus erythropolis and one Pseudomonas sp.), isolated from the NW Portuguese coast, were selected for lyophilization after biomass growth optimization (tested with alternative carbon sources). Results indicated that the bacterial strains remained viable after the lyophilization process, without losing their biodegradation potential. The biomass/petroleum ratio was optimized, and the bioremediation efficiency of the lyophilized bacterial consortium was tested in microcosms with natural seawater and petroleum. An acceleration of the natural oil degradation process was observed, with an increased abundance of oil-degraders after 24 h, an emulsion of the oil/water layer after 7 days, and an increased removal of total petroleum hydrocarbons (47%) after 15 days. This study provides an insight into the formulation and optimization of lyophilized bacterial agents for application in autochthonous oil bioremediation.
Collapse
Affiliation(s)
- Rafaela Perdigão
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - C. Marisa R. Almeida
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
| | - Catarina Magalhães
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
- Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| | - Sandra Ramos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
| | - Ana L. Carolas
- Biotrend S.A., Biocant Park, Núcleo 04 Lote 2, 3060-197 Cantanhede, Portugal; (A.L.C.); (B.S.F.)
| | - Bruno S. Ferreira
- Biotrend S.A., Biocant Park, Núcleo 04 Lote 2, 3060-197 Cantanhede, Portugal; (A.L.C.); (B.S.F.)
| | - Maria F. Carvalho
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana P. Mucha
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
- Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| |
Collapse
|
5
|
Optimization of an Autochthonous Bacterial Consortium Obtained from Beach Sediments for Bioremediation of Petroleum Hydrocarbons. WATER 2020. [DOI: 10.3390/w13010066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oil spill pollution remains a serious concern in marine environments and the development of effective oil bioremediation techniques are vital. This work is aimed at developing an autochthonous hydrocarbon-degrading consortium with bacterial strains with high potential for hydrocarbons degradation, optimizing first the growth conditions for the consortium, and then testing its hydrocarbon-degrading performance in microcosm bioremediation experiments. Bacterial strains, previously isolated from a sediment and cryopreserved in a georeferenced microbial bank, belonged to the genera Pseudomonas, Rhodococcus and Acinetobacter. Microcosms were assembled with natural seawater and petroleum, for testing: natural attenuation (NA); biostimulation (BS) (nutrients addition); bioaugmentation with inoculum pre-grown in petroleum (BA/P) and bioaugmentation with inoculum pre-grown in acetate (BA/A). After 15 days, a clear blending of petroleum with seawater was observed in BS, BA/P and BA/A but not in NA. Acetate was the best substrate for consortium growth. BA/A showed the highest hydrocarbons degradation (66%). All bacterial strains added as inoculum were recovered at the end of the experiment. This study provides an insight into the capacity of autochthonous communities to degrade hydrocarbons and on the use of alternative carbon sources for bacterial biomass growth for the development of bioremediation products to respond to oil spills.
Collapse
|
6
|
Gouveia V, Almeida CMR, Almeida T, Teixeira C, Mucha AP. Indigenous microbial communities along the NW Portuguese Coast: Potential for hydrocarbons degradation and relation with sediment contamination. MARINE POLLUTION BULLETIN 2018; 131:620-632. [PMID: 29886989 DOI: 10.1016/j.marpolbul.2018.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/12/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Hydrocarbon degradation (HD) potential by autochthonous microorganisms in the coastal sediments of the NW area of Portugal (coastal sandy beaches and estuaries of the rivers Minho and Douro) was evaluated, investigating if water and sediment contamination/characteristics influence it. Sediments were characterized for microbial abundance (by DAPI), HD microorganisms' abundance (by MPN), microbial community structure (by ARISA), hydrocarbons (by FTIR and SPME-GC-MS), hazardous and noxious substances (SPME-GC-MS) and metals (by AAS). To our knowledge, this is the first time all these pollutants, including the selected HNS, were measured simultaneously in sediments of the selected coastal area. Higher contaminants concentrations were, generally, registered in Douro samples. A clear differentiation of the microbial community structure between beaches and estuaries was observed, as well as, between Douro and Minho river estuaries. BIO-ENV analysis indicated both sediment characteristics (e.g. OM content) and contaminants presence/concentrations (e.g. tetrachloroethylene presence) affected the structure of the microbial community along the studied areas. In all the selected sites, the characterized autochthonous microbial communities showed potential for hydrocarbons degradation, with HD microorganisms being found in all collected sediments. These microorganisms can be a valuable asset to recover contaminated areas, but sediment characteristics and contaminants presence/levels need to be taken into account as they can affect their bioremediation potential and the success of their application as biotechnological tool.
Collapse
Affiliation(s)
- Vanessa Gouveia
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - C Marisa R Almeida
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Tânia Almeida
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Catarina Teixeira
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana P Mucha
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Liao X, Li B, Zou R, Dai Y, Xie S, Yuan B. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7911-7918. [PMID: 26762935 DOI: 10.1007/s11356-016-6054-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Antibiotic ciprofloxacin is ubiquitous in the environment. However, little is known about ciprofloxacin dissipation by microbial community. The present study investigated the biodegradation potential of ciprofloxacin by mixed culture and the influential factors and depicted the structure of ciprofloxacin-degrading microbial community. Both the original microbiota from drinking water biofilter and the microbiota previously acclimated to high levels of ciprofloxacin could utilize ciprofloxacin as sole carbon and nitrogen sources, while the acclimated microbiota had a much stronger removal capacity. Temperature rise and the presence of carbon or nitrogen sources favored ciprofloxacin biodegradation. Many novel biotransformation products were identified, and four different metabolic pathways for ciprofloxacin were proposed. Bacterial community structure illustrated a profound shift with ciprofloxacin biodegradation. The ciprofloxacin-degrading bacterial community was mainly composed of classes Gammaproteobacteria, Bacteroidia, and Betaproteobacteria. Microorganisms from genera Pseudoxanthomonas, Stenotrophomonas, Phenylobacterium, and Leucobacter might have links with the dissipation of ciprofloxacin. This work can provide some new insights towards ciprofloxacin biodegradation.
Collapse
Affiliation(s)
- Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Bingxin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Rusen Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Baoling Yuan
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China.
| |
Collapse
|
8
|
Acosta-González A, Martirani-von Abercron SM, Rosselló-Móra R, Wittich RM, Marqués S. The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the Prestige oil spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15200-14. [PMID: 25869434 DOI: 10.1007/s11356-015-4458-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/27/2015] [Indexed: 05/20/2023]
Abstract
The accident of the Prestige oil tanker in 2002 contaminated approximately 900 km of the coastline along the northern Spanish shore, as well as parts of Portugal and France coast, with a mixture of heavy crude oil consisting of polycyclic aromatic hydrocarbons, alkanes, asphaltenes and resins. The capacity of the autochthonous bacterial communities to respond to the oil spill was assessed indirectly by determining the hydrocarbon profiles of weathered oil samples collected along the shore, as well as through isotope ratios of seawater-dissolved CO2, and directly by analyses of denaturing gradient gel electrophoresis fingerprints and 16S rRNA gene libraries. Overall, the results evidenced biodegradation of crude oil components mediated by natural bacterial communities, with a bias towards lighter and less substituted compounds. The changes observed in the Proteobacteria, the most abundant phylum in marine sediments, were related to the metabolic profiles of the sediment. The presence of crude oil in the supratidal and intertidal zones increased the abundance of Alpha- and Gammaproteobacteria, dominated by the groups Sphingomonadaceae, Rhodobacteraceae and Chromatiales, whilst Gamma- and Deltaproteobacteria were more relevant in subtidal zones. The phylum Actinobacteria, and particularly the genus Rhodococcus, was a key player in the microbial response to the spill, especially in the degradation of the alkane fraction. The addition of inorganic fertilizers enhanced total biodegradation rates, suggesting that, in these environments, nutrients were insufficient to support significant growth after the huge increase in carbon sources, as evidenced in other spills. The presence of bacterial communities able to respond to a massive oil input in this area was consistent with the important history of pollution of the region by crude oil.
Collapse
Affiliation(s)
- Alejandro Acosta-González
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain
- Facultad de Ingeniería, Universidad de La Sabana, Autopista Norte km 7, Chía, Cundinamarca, Colombia
| | - Sophie-Marie Martirani-von Abercron
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain
| | - Ramon Rosselló-Móra
- Institut Mediterrani d'Estudis Avançats, IMEDEA, CSIC-UIB, C/. Miquel Marqués 21, 07190, Esporles, Illes Balears, Spain
| | - Regina-Michaela Wittich
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain
| | - Silvia Marqués
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
9
|
Fernández-Fernández S, Bernabeu AM, Rey D, Mucha AP, Almeida CMR, Bouchette F. The effect of sand composition on the degradation of buried oil. MARINE POLLUTION BULLETIN 2014; 86:391-401. [PMID: 25044040 DOI: 10.1016/j.marpolbul.2014.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/16/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
The potential effects of the mineralogical composition of sediment on the degradation of oil buried on sandy beaches were investigated. Toward that purpose, a laboratory experiment was carried out with sandy sediment collected along NW Iberian Peninsula beaches, tar-balls from the Prestige oil spill (NW Spain) and seawater. The results indicate that the mineralogical composition is important for the physical appearance of the oil (tar-balls or oil coatings). This finding prompted a reassessment of the current sequence of degradation for buried oil based on compositional factors. Moreover, the halo development of the oil coatings might be enhanced by the carbonate concentration of the sand. These findings open new prospects for future monitoring and management programs for oiled sandy beaches.
Collapse
Affiliation(s)
| | - Ana M Bernabeu
- GEOMA.NET, Dpt. Geociencias Marinas, Universidad de Vigo, 36310 Vigo, Spain.
| | - Daniel Rey
- GEOMA.NET, Dpt. Geociencias Marinas, Universidad de Vigo, 36310 Vigo, Spain
| | - Ana P Mucha
- CIMAR/CIIMAR - Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal
| | - C Marisa R Almeida
- CIMAR/CIIMAR - Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal
| | - Frédéric Bouchette
- Institute of Mathematics, cc 51, University of Montpellier/CNRS, 34095 Montpellier, France; Geosciences-Montpellier, cc 60, University of Montpellier/CNRS, 34095 Montpellier, France
| |
Collapse
|