1
|
Filatova TS, Kuzmin VS, Dzhumaniiazova I, Pustovit OB, Abramochkin DV, Shiels HA. 3-Methyl-phenanthrene (3-MP) disrupts the electrical and contractile activity of the heart of the polar fish, navaga cod (Eleginus nawaga). CHEMOSPHERE 2024; 357:142089. [PMID: 38643846 DOI: 10.1016/j.chemosphere.2024.142089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Alkylated polycyclic aromatic hydrocarbons are abundant in crude oil and are enriched during petroleum refinement but knowledge of their cardiotoxicity remains limited. Polycyclic aromatic hydrocarbons (PAHs) are considered the main hazardous components in crude oil and the tricyclic PAH phenanthrene has been singled out for its direct effects on cardiac tissue in mammals and fish. Here we test the impact of the monomethylated phenanthrene, 3-methylphenanthrene (3-MP), on the contractile and electrical function of the atrium and ventricle of a polar fish, the navaga cod (Eleginus nawaga). Using patch-clamp electrophysiology in atrial and ventricular cardiomyocytes we show that 3-MP is a potent inhibitor of the delayed rectifier current IKr (IC50 = 0.25 μM) and prolongs ventricular action potential duration. Unlike the parent compound phenanthrene, 3-MP did not reduce the amplitude of the L-type Ca2+ current (ICa) but it accelerated current inactivation thus reducing charge transfer across the myocyte membrane and compromising pressure development of the whole heart. 3-MP was a potent inhibitor (IC50 = 4.7 μM) of the sodium current (INa), slowing the upstroke of the action potential in isolated cells, slowing conduction velocity across the atrium measured with optical mapping, and increasing atrio-ventricular delay in a working whole heart preparation. Together, these findings reveal the strong cardiotoxic potential of this phenanthrene derivative on the fish heart. As 3-MP and other alkylated phenanthrenes comprise a large fraction of the PAHs in crude oil mixtures, these findings are worrisome for Arctic species facing increasing incidence of spills and leaks from the petroleum industry. 3-MP is also a major component of polluted air but is not routinely measured. This is also of concern if the hearts of humans and other terrestrial animals respond to this PAH in a similar manner to fish.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Oksana B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
2
|
Filatova TS, Mikhailova VB, Guskova VO, Abramochkin DV. The Effects of Phenanthrene on the Electrical Activity in the Heart of Shorthorn Sculpin (Myoxocephalus scorpio). J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Lucas J, Logeux V, Rodrigues AMS, Stien D, Lebaron P. Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29412-29420. [PMID: 33555472 DOI: 10.1007/s11356-021-12582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UV filters are widely used in many pharmaceutical and personal care products such as sunscreen and cosmetics to protect from UV irradiation. Due to their hydrophobic properties and relative stability, they have a high capacity to accumulate in sediment. Little information is available on their ecotoxicity on fish. In aquatic ecosystems, fish eggs could be directly affected by UV filters through contact with contaminated sediment. The aim of this study was to investigate the individual toxicity of four UV filters: benzophenone-3 (BP3), butyl methoxydibenzoylmethane (BM), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), in embryo-larval stages of zebrafish Danio rerio. Fish eggs were exposed to single UV filters by contact with spiked sediment during 96 h at a concentration of 10 μg g-1. Among the four UV filters tested, BP3 was the more toxic, reducing cardiac frequency and increasing standard metabolic rate of larvae.
Collapse
Affiliation(s)
- Julie Lucas
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| | - Valentin Logeux
- Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| |
Collapse
|
4
|
Abramochkin DV, Kompella SN, Shiels HA. Phenanthrene alters the electrical activity of atrial and ventricular myocytes of a polar fish, the Navaga cod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105823. [PMID: 33906022 PMCID: PMC8121755 DOI: 10.1016/j.aquatox.2021.105823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Oil and gas exploration in the Arctic can result in the release of polycyclic aromatic hydrocarbons (PAHs) into relatively pristine environments. Following the recent spill of approximately 17 500 tonnes of diesel fuel in Norilsk, Russia, May 2020, our study focussed on the effects of phenanthrene, a low molecular weight PAH found in diesel and crude oil, on the isolated atrial and ventricular myocytes from the heart of the polar teleost, the Navaga cod (Eleginus nawaga). Acute exposure to phenanthrene in navaga cardiomyocytes caused significant action potential (AP) prolongation, confirming the proarrhythmic effects of this pollutant. We show AP prolongation was due to potent inhibition of the main repolarising current, IKr, with an IC50 value of ~2 µM. We also show a potent inhibitory effect (~55%) of 1 µM phenanthrene on the transient IKr currents that protects the heart from early-after-depolarizations and arrhythmias. These data, along with more minor effects on inward sodium (INa) (~17% inhibition at 10 µM) and calcium (ICa) (~17% inhibition at 30 µM) currents, and no effects on inward rectifier (IK1 and IKAch) currents, demonstrate the cardiotoxic effects exerted by phenanthrene on the atrium and ventricle of navaga cod. Moreover, we report the first data that we are aware of on the impact of phenanthrene on atrial myocyte function in any fish species.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya, 15a, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia; Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Shiva N Kompella
- Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
5
|
Ainerua MO, Tinwell J, Kompella SN, Sørhus E, White KN, van Dongen BE, Shiels HA. Understanding the cardiac toxicity of the anthropogenic pollutant phenanthrene on the freshwater indicator species, the brown trout (Salmo trutta): From whole heart to cardiomyocytes. CHEMOSPHERE 2020; 239:124608. [PMID: 31499312 PMCID: PMC6857438 DOI: 10.1016/j.chemosphere.2019.124608] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 05/05/2023]
Abstract
Freshwater systems are faced with a myriad of stressors including geomorphological alterations, nutrient overloading and pollution. Previous studies in marine fish showed polyaromatic hydrocarbons (PAHs) to be cardiotoxic. However, the cardiotoxicity of anthropogenic pollutants in freshwater fishes is unclear and has not been examined across multiple levels of cardiac organization. Here we investigated the effect of phenanthrene (Phe), a pervasive anthropogenic pollutant on a sentinel freshwater species, the brown trout (Salmo trutta). We first examined the electrical activity of the whole heart and found prolongation (∼8.6%) of the QT interval (time between ventricular depolarization and repolarization) of the electrocardiogram (ECG) and prolongation (∼13.2%) of the monophasic action potential duration (MAPD) following ascending doses of Phe. At the tissue level, Phe significantly reduced trabecular force generation by ∼24% at concentration 15 μM and above, suggesting Phe reduces cellular calcium cycling. This finding was supported by florescent microscopy showing a reduction (∼39%) in the intracellular calcium transient amplitude following Phe exposure in isolated brown trout ventricular myocytes. Single-cell electrophysiology was used to reveal the mechanism underlying contractile and electrical dysfunction following Phe exposure. A Phe-dependent reduction (∼38%) in the L-type Ca2+ current accounts, at least in part, for the lowered Ca2+ transient and force production. Prolongation of the MAPD and QT interval was explained by a reduction (∼70%) in the repolarising delayed rectifier K+ current following Phe exposure. Taken together, our study shows a direct impact of Phe across multiple levels of cardiac organization in a key freshwater salmonid.
Collapse
Affiliation(s)
- Martins Oshioriamhe Ainerua
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
| | - Jake Tinwell
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom
| | - Shiva Nag Kompella
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom
| | - Elin Sørhus
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Keith N White
- School of Earth Atmospheric and Environmental Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9GB, United Kingdom
| | - Bart E van Dongen
- School of Earth Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Science, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Holly A Shiels
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom.
| |
Collapse
|
6
|
Lucas J, Percelay I, Larcher T, Lefrançois C. Effects of pyrolytic and petrogenic polycyclic aromatic hydrocarbons on swimming and metabolic performance of zebrafish contaminated by ingestion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:145-152. [PMID: 27318196 DOI: 10.1016/j.ecoenv.2016.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/23/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
Depending on their origins, polycyclic aromatic hydrocarbons (PAH) are characterized by different chemical properties. Petrogenic PAH (e.g. from fossil fuels) and pyrolytic PAH (e.g. those produced by incineration processes) are therefore expected to affect organisms differently. The impact of trophic exposure to these PAH was investigated on swimming and metabolic performance of zebrafish Danio rerio. Two-month-old juveniles and six-month-old adults were individually challenged following a swimming step protocol. While pyrolytic exposure did not affect fish whatever the duration of exposure, it appeared that petrogenic PAH impaired adults' performance. Indeed, the active metabolic rate in petrogenic PAH-contaminated adults was significantly reduced by 35%, and critical swimming speed by 26.5%. This was associated with cardiac abnormalities, which are expected to contribute to the reduction of oxygen transport, particularly during intensive effort. These results may be due to the different composition and toxicity of PAH mixtures.
Collapse
Affiliation(s)
- J Lucas
- UMR 7266 Littoral Environnement Sociétés (LIENSs), Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Ifremer, Place Gaby Coll, BP7, 17137 L'Houmeau, France.
| | - I Percelay
- UMR 7266 Littoral Environnement Sociétés (LIENSs), Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - T Larcher
- INRA UMR 703, APEX, Oniris, La Chantrerie, 44300 Nantes, France
| | - C Lefrançois
- UMR 7266 Littoral Environnement Sociétés (LIENSs), Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
7
|
Lucas J, Bonnieux A, Lyphout L, Cousin X, Miramand P, Lefrançois C. Trophic contamination by pyrolytic polycyclic aromatic hydrocarbons does not affect aerobic metabolic scope in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2016; 88:433-442. [PMID: 26768980 DOI: 10.1111/jfb.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
The effect of trophic exposure to pyrolitic polycyclic aromatic hydrocarbons (PAH) on aerobic metabolism of zebrafish Danio rerio was investigated. There were no significant differences in standard metabolic rate (SMR), active metabolic rate (AMR) or aerobic metabolic scope (AS) at any sublethal concentration of PAH in the diet of adult or juvenile fish. This suggests that under these experimental conditions, exposure to PAH in food did not influence aerobic metabolism of this species.
Collapse
Affiliation(s)
- J Lucas
- UMR 7266 Littoral Environnement Sociétés (LIENSs), Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- IFREMER, Place Gaby Coll, BP7, 17137 L'Houmeau, France
| | - A Bonnieux
- UMR 7266 Littoral Environnement Sociétés (LIENSs), Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - L Lyphout
- IFREMER, Place Gaby Coll, BP7, 17137 L'Houmeau, France
| | - X Cousin
- IFREMER, Place Gaby Coll, BP7, 17137 L'Houmeau, France
- INRA LPGP, Campus de Beaulieu, Bâtiment 16A, 35042 Rennes Cedex, France
| | - P Miramand
- UMR 7266 Littoral Environnement Sociétés (LIENSs), Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - C Lefrançois
- UMR 7266 Littoral Environnement Sociétés (LIENSs), Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
8
|
Vignet C, Joassard L, Lyphout L, Guionnet T, Goubeau M, Le Menach K, Brion F, Kah O, Chung BC, Budzinski H, Bégout ML, Cousin X. Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16371-16383. [PMID: 25639250 DOI: 10.1007/s11356-015-4157-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades. PAHs are hydrophobic molecules which can accumulate in high concentrations in sediments acting then as major secondary sources. Fish contamination can occur through contact or residence nearby sediments or though dietary exposure. In this study, we analyzed certain physiological traits in unexposed fish (F1) issued from parents (F0) exposed through diet to three PAH mixtures at similar and environmentally relevant concentrations but differing in their compositions. For each mixture, no morphological differences were observed between concentrations. An increase in locomotor activity was observed in larvae issued from fish exposed to the highest concentration of a pyrolytic (PY) mixture. On the contrary, a decrease in locomotor activity was observed in larvae issued from heavy oil mixture (HO). In the case of the third mixture, light oil (LO), a reduction of the diurnal activity was observed during the setup of larval activity. Behavioral disruptions persisted in F1-PY juveniles and in their offspring (F2). Endocrine disruption was analyzed using cyp19a1b:GFP transgenic line and revealed disruptions in PY and LO offspring. Since no PAH metabolites were dosed in larvae, these findings suggest possible underlying mechanisms such as altered parental signaling molecule and/or hormone transferred in the gametes, eventually leading to early imprinting. Taken together, these results indicate that physiological disruptions are observed in offspring of fish exposed to PAH mixtures through diet.
Collapse
Affiliation(s)
- Caroline Vignet
- Ecotoxicology Laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Lucette Joassard
- Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Laura Lyphout
- Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Tiphaine Guionnet
- Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Manon Goubeau
- Ecotoxicology Laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Karyn Le Menach
- University of Bordeaux 1, EPOC, UMR CNRS 5805, 33405, Talence, France
| | - François Brion
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques, INERIS, 60550, Verneuil-en-Halatte, France
| | - Olivier Kah
- INSERM U1085, Research Institute in Health, Environment and Occupation, Team NEED, Case 1302Université de Rennes 1 Campus de Beaulieu, 35 042, Rennes cedex, France
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hélène Budzinski
- University of Bordeaux 1, EPOC, UMR CNRS 5805, 33405, Talence, France
| | - Marie-Laure Bégout
- Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | - Xavier Cousin
- Ecotoxicology Laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France.
- INRA LPGP, Campus de Beaulieu, 35042, Rennes, France.
| |
Collapse
|
9
|
Perrichon P, Akcha F, Le Menach K, Goubeau M, Budzinski H, Cousin X, Bustamante P. Parental trophic exposure to three aromatic fractions of polycyclic aromatic hydrocarbons in the zebrafish: Consequences for the offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:52-62. [PMID: 25889544 DOI: 10.1016/j.scitotenv.2015.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/04/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
In recent decades, PAH emissions due to extensive anthropogenic activities have risen sharply causing considerable pollution of aquatic ecosystems. This pollution represents a threat for organisms, among them are fish. Consequently, prenatal stress can have important repercussions, and may impact survival and population recruitment. To investigate this point, eggs were collected from zebrafish exposed during 6 months by trophic route to three aromatic fractions from two different origins, pyrolytic (PY) and petrogenic (light (BAL) and heavy (HFO) fractions) sources. Chronic dietary exposure of the parents was performed at environmentally relevant concentrations (0.3×, 1× and 3×; 1× represents an environmental concentration measured in French estuary). In order to explore the consequences of parental exposure for the next first generation, toxic responses were studied in both embryos and larvae using a multiscale approach. Toxic effects were assessed by looking at hatching success, developmental abnormalities, photomotor response and heartbeat. The level of PAH metabolites and EROD activity in fish larvae were measured to assess exposure to PAHs. Egg production of parents was significantly reduced compared to the Control; hence little information was available for BAL and HFO offspring. The size of larvae from PY parents was found to increase despite a reduced yolk sac compared to Control larvae. Furthermore, a high level of behavioral stress was observed in larvae originating from parents exposed to three-fold the environmental concentration. The cardiac activity was reduced in a concentration-dependent manner for the PY exposure group. No effect was however observed on biotransformation markers (cyp1a, EROD), nor on the level of DNA damage for all PY, BAL and HFO offspring. The absence of significant differences in metabolite levels may indicate a potential early depuration of transferred compounds or no PAH-transmission. The disruptions observed at the individual level in the next generation could impact on the longer-term, surviving population.
Collapse
Affiliation(s)
- Prescilla Perrichon
- Ifremer, Laboratoire d'Écotoxicologie, L'Houmeau/Nantes, France; Littoral Environnement et Sociétés (LIENSs), CNRS-Université de La Rochelle, UMRi 7266, 2 rue Olympe de Gouges, F17042 La Rochelle Cedex 01, France.
| | - Farida Akcha
- Ifremer, Laboratoire d'Écotoxicologie, L'Houmeau/Nantes, France
| | - Karyn Le Menach
- Université de Bordeaux (EPOC, LPTC, UMR CNRS 5805), 351 Cours de la Libération, F33405 Talence Cedex, France
| | - Manon Goubeau
- Ifremer, Laboratoire d'Écotoxicologie, L'Houmeau/Nantes, France
| | - Hélène Budzinski
- Université de Bordeaux (EPOC, LPTC, UMR CNRS 5805), 351 Cours de la Libération, F33405 Talence Cedex, France
| | - Xavier Cousin
- Ifremer, Laboratoire d'Écotoxicologie, L'Houmeau/Nantes, France; INRA, Laboratoire de Physiologie et Génomique des Poissons, Campus Beaulieu, 35042 Rennes Cedex, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), CNRS-Université de La Rochelle, UMRi 7266, 2 rue Olympe de Gouges, F17042 La Rochelle Cedex 01, France
| |
Collapse
|
10
|
Gerger CJ, Weber LP. Comparison of the acute effects of benzo-a-pyrene on adult zebrafish (Danio rerio) cardiorespiratory function following intraperitoneal injection versus aqueous exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:19-30. [PMID: 26005921 DOI: 10.1016/j.aquatox.2015.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants. PAH exposure causes developmental toxicity in multiple fish species, while acute adult fish toxicity is thought to be minimal. The literature increasingly suggests sublethal PAH effects may occur, but differences in exposure route may confound conclusions. We hypothesized that acute PAH exposure in adult fish will cause cardiorespiratory impairment that will not differ with exposure route. In order to investigate this hypothesis, adult zebrafish (Danio rerio) were injected intraperitoneal (i.p.) twice with increasing concentrations of the prototypical PAH, benzo-a-pyrene (BaP; 0.1, 10, and 1000μg/kg) or exposed aqueously (static, renewal at 24h; 16.2 and 162μg/L) for 48h and compared to corresponding dimethylsulfoxide controls. No mortalities or significant effects on weight of the fish were noted at any exposure concentration or route. At 48h, fish were subjected to swimming tests with concurrent oxygen consumption measurement (n=10 fish/treatment) or echocardiography (n=12 fish/treatment). Oxygen consumption (MO2) was increased at three swimming speeds in BaP-injected groups compared to control (p<0.01 in Fisher's LSD tests after two-way ANOVA). In contrast, aqueously BaP-exposed fish showed increased MO2 under only basal conditions. Despite increased oxygen demand, ventricular heart rate was significantly decreased in BaP-exposed fish, both injected and aqueously-exposed. Analysis of BaP body burdens in fish tissue allowed for identification of an overlapping dose group between exposure routes, through which comparisons of cardiorespiratory toxicity were then made. This comparison revealed most effects were similar between the two exposures routes, although minor differences were noted. At similar BaP body burdens, injected fish suffered from more severe bradycardia than aqueously exposed fish and had greater levels of increases in cytochrome P4501A (CYP1A) mRNA levels in liver and heart tissue compared to aqueous exposed fish. In conclusion, acute BaP exposure in adult zebrafish had negative effects on cardiorespiratory function. Differences in effect between exposure routes were attributed primarily to differences in bioavailability, since overall, similar effects were noted between the two exposure routes when similar BaP body burdens were achieved.
Collapse
Affiliation(s)
- Courtney J Gerger
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Lynn P Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
11
|
Cousin X, Cachot J. PAHs and fish--exposure monitoring and adverse effects--from molecular to individual level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13685-13688. [PMID: 24981031 DOI: 10.1007/s11356-014-3161-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Xavier Cousin
- IFREMER, Laboratoire d'écotoxicologie, Place Gaby Coll, BP7, 17137, L'Houmeau, France,
| | | |
Collapse
|