1
|
Liu Y, Guo L, Yang H, Wang Z. Short-term influence of polytetrafluoroethylene micro/nano-plastics on the inhibition of copper and/or ciprofloxacin on the nitrifying sludge activities based on concentration addition and independent action models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119844. [PMID: 38103424 DOI: 10.1016/j.jenvman.2023.119844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Short-term influence of polytetrafluoroethylene micro/nano-plastics (PTFE-MPs/NPs) on the inhibition of copper (Cu2+) and/or ciprofloxacin (CIP) on the nitrifying sludge activities was explored based on concentration addition (CA) and independent action (IA) models. The half maximal inhibitory concentration (IC50) of Cu2+, CIP, PTFE-MPs (3 μm), and PTFE-NPs (800 nm) on the specific ammonium oxidation rate (SAOR) of nitrifying sludge was 64.57, 51.29, 102.33 and 93.33 mg L-1, respectively, while those on the specific nitrite oxidation rate (SNOR) of nitrifying sludge were 77.62, 32.36, 104.70 and 97.72 mg L-1, respectively. Among the five binary mixtures and two ternary mixtures composed by Cu2+, CIP, and/or PTFE-MPs/NPs, it was found that the two joint inhibitory actions from ternary mixtures on the SAOR and SNOR of the sludge showed time-dependent characteristics by analyzing of CA and IA models, while the five combined inhibitory effects from different binary mixtures did not all have time-dependent features. The two joint inhibition actions from diverse ternary mixtures on the SAOR at the exposure time of 60 min and on the SNOR at 90 min showed always concentration-dependent features, while the combined inhibitions with concentration-dependent characteristics had never been observed in the binary Cu2+ and PTFE-NPs mixtures at different exposure time. The Cu2+, CIP, and PTFE-MPs mixtures (or Cu2+, CIP, and PTFE-NPs mixtures) had synergistic actions on the SAOR at 90 min and antagonistic effects on the SNOR at 60 min based on CA and IA models, and these combined inhibitions did not exhibit concentration-dependent characteristics. In contrast, the joint inhibitory effects (on the SAOR and SNOR) with concentration-dependent features were found in the binary mixtures of CIP and PTFE-MPs at different exposure time, and the join inhibition changed from synergism to antagonism as the increasing concentration of mixed CIP and PTFE-MPs. This study provides novel perspectives for understanding the combined influence of plastic particles with different sizes, antibiotics, and heavy metals on the biological wastewater treatment process.
Collapse
Affiliation(s)
- Yang Liu
- College of Environment Science, Liaoning University, Shenyang, China
| | - Liming Guo
- College of Environment Science, Liaoning University, Shenyang, China
| | - Huan Yang
- College of Environment Science, Liaoning University, Shenyang, China
| | - Zichao Wang
- College of Environment Science, Liaoning University, Shenyang, China.
| |
Collapse
|
2
|
Purba LDA, Zahra SA, Yuzir A, Iwamoto K, Abdullah N, Shimizu K, Lei Z, Hermana J. Algal-bacterial aerobic granular sludge for real municipal wastewater treatment: Performance, microbial community change and feasibility of lipid recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117374. [PMID: 36758398 DOI: 10.1016/j.jenvman.2023.117374] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Despite various research works on algal-bacterial aerobic granular sludge for wastewater treatment and resource recovery processes, limited information is available on its application in real wastewater treatment in terms of performance, microbial community variation and resource recovery. This study investigated the performance of algal-bacterial aerobic granular sludge on real low-strength wastewater treatment in addition to the characterization of microbial community and fatty acid compositions for biodiesel production. The results demonstrated 71% COD, 77% NH4+-N and 31% phosphate removal efficiencies, respectively. In addition, all the water parameters successfully met the effluent standard A, imposed by the Department of Environment (DOE) Malaysia. Core microbiome analyses revealed important microbial groups (i.e., Haliangium ochraceum, Burkholderiales and Chitinophagaceae) in bacterial community. Meanwhile the photosynthetic microorganisms, such as Oxyphotobacteria and Trebouxiophyceae dominated the algal-bacterial aerobic granular sludge, suggesting their important roles in granulation and wastewater treatment. Up to 12.51 mg/gSS lipid content was recovered from the granules. In addition, fatty acids composition showed high percetages of C16:0 and C18:0, demonstrating high feasibility to be used for biodiesel production application indicated by the cetane number, iodine value and oxidation stability properties.
Collapse
Affiliation(s)
- Laila Dina Amalia Purba
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Sasmitha Aulia Zahra
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Ali Yuzir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Koji Iwamoto
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Norhayati Abdullah
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Ora-gun Itakura Gunma, 374-0193, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Joni Hermana
- Department of Environmental Engineering, Faculty of Civil, Planning and Geoengineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| |
Collapse
|
3
|
Wang X, Wang J, Liu SY, Guo JS, Fang F, Chen YP, Yan P. Mechanisms of survival mediated by the stringent response in Pseudomonas aeruginosa under environmental stress in drinking water systems: Nitrogen deficiency and bacterial competition. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130941. [PMID: 36758433 DOI: 10.1016/j.jhazmat.2023.130941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Pseudomonas aeruginosa causes public health problems in drinking water systems. This study investigated the potential role of the stringent response in regulating the adaptive physiological metabolic behaviors of P. aeruginosa to low nitrogen stress and bacterial competition in drinking water systems. The results indicated that guanosine tetraphosphate (ppGpp) concentrations in P. aeruginosa increased to 135.5 pmol/g SS under short-term nitrogen deficiency. Meanwhile, the expression levels of the ppGpp synthesis genes (ppx, relA) and degradation gene (spoT) were upregulated by 37.0% and downregulated by 26.8%, respectively, indicating that the stringent response was triggered. The triggered stringent response inhibited the growth of P. aeruginosa and enhanced the metabolic activity of P. aeruginosa to adapt to nutrient deprivation. The interspecific competition significantly affected the regulation of the stringent response in P. aeruginosa. During short-term nitrogen deficiency, the extracellular polymeric substances concentration of P. aeruginosa decreased significantly, leading to desorption and diffusion of attached bacteria and increased ecological risks. The regulatory effect of stringent response on P. aeruginosa gradually weakened under long-term nitrogen deficiency. However, the expression of pathogenic genes (nalD/PA3310) and flagellar assembly genes (fliC) in P. aeruginosa was upregulated by the stringent response, which increased the risk of disease.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing 400072, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL 36082, USA
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
4
|
Qiu T, Wu D, Zhang L, Zou D, Sun Y, Gao M, Wang X. A comparison of antibiotics, antibiotic resistance genes, and bacterial community in broiler and layer manure following composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14707-14719. [PMID: 33219508 DOI: 10.1007/s11356-020-11469-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Animal manure is an important source of antibiotics and antibiotic resistance genes (ARGs) in the environment. However, the difference of antibiotic residues and ARG profiles in layer and broiler manure as well as their compost remains unexplored. In this study, we investigated the profiles of twelve antibiotics, seventeen ARGs, and class 1 integrase gene (intI1) in layer and broiler manure, and the corresponding compost at large-scale. Compared with layer manure, broiler manure exhibited approximately six times more residual tetracyclines, especially chlortetracycline. The relative abundances of qnrS and ermA genes in broiler manure were significantly higher than those in layer manure. The concentration of tetracyclines not only had a significantly positive correlation with tetracycline resistance genes (tetA and tetC) but was also positively correlated with quinolone resistance (qepA, qnrB, and qnrS) and macrolide resistance (ermA and ermT). Most ARGs in manure were reduced after composting. However, the relative abundance of sulfonamide resistance gene sul1 increased up to 2.41% after composting, which was significantly higher than that of broiler (0.41%) and layer (0.62%) manure. The associated bacterial community was characterized by high-throughput 16S rRNA gene sequencing. The relative abundances of thermophilic bacteria had significant positive correlations with the abundance of sul1 in compost. The composting has a significant impact on the ARG-associated gut microbes in poultry manure. Variation partitioning analysis indicated that the change of bacterial community compositions and antibiotics contributed partially to the shift in ARG profiles. The results indicate that at industry-scale production broiler manure had more antibiotics and ARGs than layer manure did, and composting decreased most ARG abundances in poultry manure except for sulfonamide resistance genes.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dan Wu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dexun Zou
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yanmei Sun
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
| | - Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China.
| |
Collapse
|
5
|
An Q, Zhou Y, Zhao B, Huang XL. Efficient ammonium removal through heterotrophic nitrification-aerobic denitrification by Acinetobacter baumannii strain AL-6 in the presence of Cr(VI). J Biosci Bioeng 2020; 130:622-629. [DOI: 10.1016/j.jbiosc.2020.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022]
|
6
|
Yu C, Liu Y, Jia Y, Su X, Lu L, Ding L, Shen C. Extracellular organic matter from Micrococcus luteus containing resuscitation-promoting factor in sequencing batch reactor for effective nutrient and phenol removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138627. [PMID: 32325316 DOI: 10.1016/j.scitotenv.2020.138627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Culture supernatant containing resuscitation-promoting factor (SRpf) from Micrococcus luteus was added to the sequencing batch reactor (SBR) for effective treatment of phenol-containing wastewater. SRpf acclimation significantly improved combined removal of phenol and nutrients. Moreover, the Illumina high-throughput sequencing analysis revealed that the SRpf boosted bacteria diversity, which enhanced the stability of the system under phenol stress. Addition of SRpf increased the abundances of Actinobacteria and Proteobacteria phyla which are involved in nutrient and phenol removal. Specifically, SRpf promoted Nitrosomonas and Nitrospira which participate in nitrification, family Comamonadaceae, genera Dechloromonas and Pseudomonas involved in denitrification, and Acinetobacter, Pseudomonas and Rhodocyclus which remove phosphorus elements. Moreover, the abundances of Bacillus and Klebsiella responsible for phenol removal as well as Pseudomonas and Acinetobacter were significantly increased after SRpf acclimation. These results show that SBR combined with SRpf acclimation provide optimal nutrient and phenol removal.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yindong Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Environmental Protection Bureau of Zhejiang Province, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Su
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lian Lu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linxian Ding
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Lin WH, Chen SC, Chien CC, Tsang DCW, Lo KH, Kao CM. Application of enhanced bioreduction for hexavalent chromium-polluted groundwater cleanup: Microcosm and microbial diversity studies. ENVIRONMENTAL RESEARCH 2020; 184:109296. [PMID: 32146214 DOI: 10.1016/j.envres.2020.109296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/19/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Hexavalent chromium (Cr6+) is a commonly found heavy metal at polluted groundwater sites. In this study, the effectiveness of Cr6+ bioreduction by the chromium-reducing bacteria was evaluated to remediate Cr6+-contaminated groundwater. Microcosms were constructed using indigenous microbial consortia from a Cr6+-contaminated aquifer as the inocula, and slow-releasing emulsified polycolloid-substrate (ES), cane molasses (CM), and nutrient broth (NB) as the primary substrates. The genes responsible for the bioreduction of Cr6+ and variations in bacterial diversity were evaluated using metagenomics assay. Complete Cr6+ reduction via the biological mechanism was observed within 80 days using CM as the carbon source under anaerobic processes with the increased trivalent chromium (Cr3+) concentrations. Cr6+ removal efficiencies were 83% and 59% in microcosms using ES and NB as the substrates, respectively. Increased bacterial communities associated with Cr6+ bioreduction was observed in microcosms treated with CM and ES. Decreased bacterial communities were observed in NB microcosms. Compared to ES, CM was more applicable by indigenous Cr6+ reduction bacteria and resulted in effective Cr6+ bioreduction, which was possibly due to the growth of Cr6+-reduction related bacteria including Sporolactobacillus, Clostridium, and Ensifer. While NB was applied for specific bacterial selection, it might not be appropriate for electron donor application. These results revealed that substrate addition had significant impact on microbial diversities, which affected Cr6+ bioreduction processes. Results are useful for designing a green and sustainable bioreduction system for Cr6+-polluted groundwater remediation.
Collapse
Affiliation(s)
- Wei-Han Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Zhong C, Zhang P, Liu C, Liu M, Chen W, Fu J, Qi X, Cao G. The PolS-PolR Two-Component System Regulates Genes Involved in Poly-P Metabolism and Phosphate Transport in Microlunatus phosphovorus. Front Microbiol 2019; 10:2127. [PMID: 31572333 PMCID: PMC6754071 DOI: 10.3389/fmicb.2019.02127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/29/2019] [Indexed: 12/03/2022] Open
Abstract
Microlunatus phosphovorus NM-1 is a polyphosphate (poly-P)-accumulating bacterium that accumulates poly-P under aerobic conditions and degrades poly-P under anaerobic conditions. In this study, the two-component system (TCS) PolS-PolR was identified in NM-1, and the response regulator PolR was found to directly bind to the promoters of genes related to phosphate transport (MLP_RS00235, MLP_RS23035, and MLP_RS24590); poly-P catabolism (MLP_RS12905) and poly-P synthesis (MLP_RS23025). RT-qPCR assays showed that ppgk (MLP_RS12905), ppk (MLP_RS23025), pstS (MLP_RS23035), and pit (MLP_RS24590) were down-regulated during the aerobic-anaerobic shift. The sequence GTTCACnnnnnGTTCaC was identified as a recognition sequence for PolR by MEME analysis and DNase I footprinting. EMSAs and ChIP-qPCR assays indicated that PolR binds to the promoters of pit (MLP_RS00235), ppgk (MLP_RS12905), ppk (MLP_RS23025), pstS (MLP_RS23035) and pit (MLP_RS24590), and ChIP-qPCR further suggested that the binding affinity of PolR was lower under anaerobic conditions than under aerobic conditions in vivo. These findings indicate that the PolS-PolR TCS in M. phosphovorus may be involved in the regulation of poly-P metabolism in response to levels of dissolved oxygen in the environment, and our results provide insights into new approaches for understanding the mechanisms of phosphorus accumulation and release.
Collapse
Affiliation(s)
- Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Peipei Zhang
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China.,Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China
| | - Cheng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Meng Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao, China
| | - Wenbing Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Jiafang Fu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China.,Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China
| | - Xiaoyu Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China.,Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China
| |
Collapse
|
9
|
Zheng Q, Na S, Li X, Li N, Hai R, Wang X. Acute effects of hexavalent chromium on the performance and microbial community of activated sludge in aerobiotic reactors. ENVIRONMENTAL TECHNOLOGY 2019; 40:1871-1880. [PMID: 29364049 DOI: 10.1080/09593330.2018.1432695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/20/2018] [Indexed: 06/07/2023]
Abstract
This study investigated the acute effects of hexavalent chromium (Cr(VI)) shock load at 2.5, 6 and 25 mg/L on the performance and bacterial community structures in aerobiotic activated sludge reactors. The results showed that eight-day Cr(VI) toxicity made the removal rates of COD and NH3-N to obviously decrease in all reactors. Furthermore, the higher the Cr(VI) concentration was, the more severe the influence on the whole system would be. The effect of Cr(VI) on NH3-N removal was more serious than that on COD and the function of nitrification was harder to recover. The specific oxygen uptake rate (SOUR) values dropped by 73%, 68% and 31% at 2.5, 6 and 25 mg Cr(VI)/L, respectively. The data of SOUR showed that though the concentration of Cr(VI) was low, the whole respiratory activity of bacteria was much affected. The relative abundance change of genus between the initial stage and the last showed that the bacterial community structure changed significantly. Comparing with the initial stage, the phyla of Proteobacteria, Acidobacteria and Planctomycetes were markedly reduced at the end stage. The genera of Ferruginibacter, Coxiella and Rhodanobacter were also markedly reduced. Although the performance of activated sludge can be restored at the end, the whole respiratory activity of bacteria was still at a low level according to the data of SOUR.
Collapse
Affiliation(s)
- Quan Zheng
- a Department of Environmental Science and Engineering , Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Situ Na
- a Department of Environmental Science and Engineering , Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Xinhui Li
- a Department of Environmental Science and Engineering , Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Nankun Li
- b Appraisal Center for Environment & Engineering, Ministry of Environmental Protection of the People's Republic of China , Beijing , People's Republic of China
| | - Reti Hai
- a Department of Environmental Science and Engineering , Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Xiaohui Wang
- a Department of Environmental Science and Engineering , Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing , People's Republic of China
| |
Collapse
|
10
|
Zhang L, Ding L, He X, Ma H, Fu H, Wang J, Ren H. Effect of continuous and intermittent electric current on lignin wastewater treatment and microbial community structure in electro-microbial system. Sci Rep 2019; 9:805. [PMID: 30692563 PMCID: PMC6349836 DOI: 10.1038/s41598-018-34379-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, complex structured soluble lignin wastewater was treated by electro-microbial system (EMS) using different direct current (DC) application modes (CR (continuous ON), IR12h (12 h-ON/12 h-OFF) and IR2h (2 h-ON/2 h-OFF)), and physiological characteristics and microbial communities were investigated. Results showed that CR, IR12h and IR2h had higher lignin removals, which were almost two times that of the control reactor (R0′, no current), and IR2h performed best and stably. Furthermore, IR2h exhibited the lowest ohmic resistance (Rs) of electrode biofilms, which could be explained by its higher abundance of electroactive bacteria. In the activated sludge of EMS, the concentration of dehydrogenase activity (DHA) and electronic transport system (ETS) in IR2h were the highest (1.48 and 1.28 times of R0′), which contributed to its high content of adenosine triphosphate (ATP). The viability of activated sludge was not affected by different DC application modes. Phospholipid fatty acids (PLFA) analysis indicated that IR2h had the maximum content of C15:1 anteiso A, C16:0 and C18:0; CR increased the content of C15:0 anteiso and decreased the content of saturated fatty acids. Genus-level results revealed that lignin-degrading bacteria, Pseudoxanthomonas and Mycobacterium, could be enriched in IR2h and CR, respectively.
Collapse
Affiliation(s)
- Lulu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Xuemeng He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haijun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Huimin Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
11
|
Dong J, Yu J, Bao Q. Simulated reactive zone with emulsified vegetable oil for the long-term remediation of Cr(VI)-contaminated aquifer: dynamic evolution of geological parameters and groundwater microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34392-34402. [PMID: 30306441 DOI: 10.1007/s11356-018-3386-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Cr(VI), which is highly toxic and soluble, is one of the most challenging groundwater contaminants. Previous work has indicated that emulsified vegetable oil (EVO) is an effective in situ amendment for removing Cr(VI) from groundwater. However, the spatial and temporal changes in geological parameters and microbial community structures throughout the remediation period are poorly understood. In this study, a large laboratory-scale sand-packed chamber (reactive zone of 100 × 50 × 30 cm) was used to simulate the bioremediation of Cr(VI)-contaminated aquifer by EVO over a 512-day period. Various geological parameters and microbial communities were monitored during both the establishment and remediation stages. The results indicate that several biogeochemical reactions occurred in a specific sequence following the injection of EVO, creating an acidic and reducing environment. A shift in the community structure and a decrease in the community diversity were observed. The abundance of microbes involved in the degradation of EVO and reduction of electron acceptors significantly increased. Then, the EVO reactive zone was flushed with Cr(VI)-contaminated groundwater. Biogeochemical reactions were inhibited after the inflow of Cr(VI) and subsequently recovered a month later. The pH of the aquifer returned to the initial neutral condition (approximately 7.2). The EVO reactive zone could remediate Cr(VI)-contaminated groundwater at an efficiency exceeding 97% over 480 days. Biogeochemistry played a major role in the early period (0~75 days). In the later period (240~480 days), the remediation of Cr(VI) in the reactive zone depended mostly on bio-reduction by Cr(VI)-reducing bacteria.
Collapse
Affiliation(s)
- Jun Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jinqiu Yu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qiburi Bao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Zhang H, Han X, Tian Y, Li Y, Yang K, Hao H, Chai Y, Xu X. Process analysis of anaerobic fermentation of Phragmites australis straw and cow dung exposing to elevated chromium (VI) concentrations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:414-424. [PMID: 30075309 DOI: 10.1016/j.jenvman.2018.07.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic fermentation is considered as a cost-effective way of biomass waste disposal. Chromium (Cr) is one of the heavy metals that often been blamed for unsatisfactory operation or failure of anaerobic fermentation. The impact of Cr (added as K2Cr2O7) on mesophilic anaerobic fermentation of Phragmites australis straw and cow dung was demonstrated by investigating the biogas properties, process stability, substrate degradation and enzyme activities during the fermentation process. The results showed that 30, 100 and 500 mg/L Cr6+ addition increased the cumulative biogas yields by up to 19.00%, 14.85% and 7.68% respectively, and brought forward the daily biogas yield peak. Meanwhile, the methane (CH4) content in the 30 (52.47%) and 100 (40.57%) mg/L Cr6+-added groups were generally higher than the control group (37.70%). Higher pH values (close to pH 7) and lower oxidation-reduction potential (ORP) values in the Cr6+-added groups after the 15th day indicated the better process stability compared to the control group. Taking the whole fermentation process into account, the promoting effect of Cr6+ addition on biogas yields was mainly attributable to better process stability, the enhanced degradation of lignin and hemicellulose, the transformation of intermediates into VFA, the higher coenzyme F420 activities and the efficient generation of CH4. These results demonstrate that an appropriate addition of Cr6+ could enhance the anaerobic fermentation which support the regulations utilizing of the Cr6+ contaminated biowaste.
Collapse
Affiliation(s)
- Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China.
| | - Xiaoxi Han
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Ying Li
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Kun Yang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - He Hao
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Yang Chai
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Xiang Xu
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
13
|
Zheng XY, Lu D, Wang MY, Chen W, Zhou G, Zhang Y. Effect of chromium (VI) on the multiple nitrogen removal pathways and microbial community of aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2018; 39:1682-1696. [PMID: 28562229 DOI: 10.1080/09593330.2017.1337230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The frequent appearance of Cr(VI) significantly impacts the microbial metabolism in wastewater. In this study, long-term effects of Cr(VI) on microbial community, nitrogen removal pathways and mechanism of aerobic granular sludge (AGS) were investigated. AGS had strong resistance ability to 1.0 mg/L Cr(VI). 3.0 mg/L Cr(VI) increased the heterotrophic-specific ammonia uptake rate (HSAUR) and heterotrophic-specific nitrate uptake rate (HSNUR) transiently, whereas 5.0 mg/L Cr(VI) sharply decreased the specific ammonia uptake rate (SAUR), specific nitrate uptake rate (SNUR) and simultaneous nitrification denitrification rate (SNDR). It was found that Cr (VI) has a greater inhibitory effect on autotrophic nitrification (ASAUR), and the maximal inhibition rate (IR) was 139.19%. Besides, the inhibition of Cr (VI) on nitrogen removal process belongs to non-competitive inhibition. Cr(VI) had a weaker negative impact on heterotrophic bacteria compared with that on autotrophic bacteria. Denaturing gradient gel electrophoresis analyses suggest that Acidovorax sp., flavobacterium sp., uncultured soil bacterium, uncultured nitrosospira sp., uncultured prokaryote, uncultured β-proteobacterium and uncultured pseudomonas sp. were the dominant species. The inhibition of Cr(VI) on nitrite-oxidizing bacteria was the strongest, followed by ammonia-oxidizing bacteria and denitrifying bacteria. Linear correlations between bacterial count and biomass-specific uptake rate were observed when the Cr(VI) concentration exceeded 3 mg/L. This study revealed the effect of Cr(VI) on nitrification is more serious than that on denitrification. Autotrophic and heterotrophic nitrification, heterotrophic denitrification and simultaneous nitrification denitrification played a significant role on nitrogen removal under Cr(VI) stress.
Collapse
Affiliation(s)
- Xiao-Ying Zheng
- a Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing , People's Republic of China
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Dan Lu
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Ming-Yang Wang
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Wei Chen
- a Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes , Hohai University , Nanjing , People's Republic of China
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Gan Zhou
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| | - Yuan Zhang
- b College of Environment , Hohai University , Nanjing , People's Republic of China
| |
Collapse
|
14
|
He S, Ding L, Pan Y, Hu H, Ye L, Ren H. Nitrogen loading effects on nitrification and denitrification with functional gene quantity/transcription analysis in biochar packed reactors at 5 °C. Sci Rep 2018; 8:9844. [PMID: 29959416 PMCID: PMC6026168 DOI: 10.1038/s41598-018-28305-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/05/2018] [Indexed: 11/09/2022] Open
Abstract
This study investigated the nitrogen transformation rates of different nitrogen-loading (20, 30, and 50 mg TN/L) biochar packed reactors (C:N:P = 100:5:1) within 125 days at 5 °C. The results showed that high nitrogen loading resulted in an NH4+ (TN) removal efficiency decline from 98% (57%) to 83% (29%), with biochar yielding a higher NH4+, TN and DON removal rate than conventional activated sludge. Moreover, all biochar packed reactors realized a quick start-up by dropping in temperature stage by stage, and the effluent dissolved organic nitrogen (DON) concentrations of R20, R30, and R50 were 0.44 ± 0.18, 0.85 ± 0.35, and 0.66 ± 0.26 mg/L, respectively. The nirS/amoA, nxrA/amoA, and amoA/(narG + napA) were deemed to be the markers of ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR), respectively. Compared with functional gene quantity data, transcription data (mRNA) introduced into stepwise regression analyses agreed well with nitrogen transformation rates. High nitrogen loading also resulted in the cell viability decreased in R50. Nitrogen loadings and operation time both led to a significant variation in cell membrane composition, and unsaturated fatty acids (UFAs) significantly increased in R30 (46.49%) and R50 (36.34%). High-throughput sequencing revealed that nitrogen loadings increased the abundance of nitrifying bacteria (e.g., Nitrospira) and reduced the abundance of denitrifying bacteria (e.g., Nakamurella, Thermomonas, and Zoogloea) through linear discriminant analysis (LDA).
Collapse
Affiliation(s)
- Su He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yao Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
15
|
Zhong C, Fu J, Jiang T, Zhang C, Cao G. Polyphosphate metabolic gene expression analyses reveal mechanisms of phosphorus accumulation and release in Microlunatus phosphovorus strain JN459. FEMS Microbiol Lett 2018; 365:4898011. [DOI: 10.1093/femsle/fny034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/21/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jiafang Fu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Chunming Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
16
|
Unraveling the Long-Term Effects of Cr(VI) on the Performance and Microbial Community of Nitrifying Activated Sludge System. WATER 2017. [DOI: 10.3390/w9120909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Min X, Wang Y, Chai L, Yang Z, Liao Q. High-resolution analyses reveal structural diversity patterns of microbial communities in Chromite Ore Processing Residue (COPR) contaminated soils. CHEMOSPHERE 2017; 183:266-276. [PMID: 28550784 DOI: 10.1016/j.chemosphere.2017.05.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
To explore how heavy metal contamination in Chromite Ore Processing Residue (COPR) disposal sites determine the dissimilarities of indigenous microbial communities, 16S rRNA gene MiSeq sequencing and advanced statistical methods were applied. 13 soil samples were collected from three COPR disposal sites in Mouding of southwestern, Shangnan of northwestern and Yima of central China. The results of analyses of variance (ANOVA), similarities (ANOSIM), and non-metric multidimensional scaling (NMDS) showed that the structural diversity of the microbial communities in the samples with high total chromium (Cr) content (more than 300 mg kg-1; High group) were significantly lesser than in the Low group (less than 90 mg kg-1) regardless of their geographical distribution. But their diversity had virtually rehabilitated under the pressures of long-term metal contamination. Furthermore, the similarity percentage (SIMPER) analysis indicated that the major dissimilarity contributors Micrococcaceae, Delftia, and Streptophyta, possibly having Cr(VI)-resistant and/or Cr(VI)-reducing capability, were dominant in the High group, while Ramlibacter and Gemmatimonas with potential resistances to other heavy metals were prevalent in the Low group. In addition, the multivariate regression tree (MRT), aggregated boosted tree (ABT), and Mantel test revealed that total Cr content affiliated with Cr(VI) was the principal factor shaping the dissimilarities between the soil microbial communities in the COPR sites. Our findings provide a deep insight of the influence of these heavy metals on the microbial communities in the COPR disposal sites and will facilitate bioremediation on such site.
Collapse
Affiliation(s)
- Xiaobo Min
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Yangyang Wang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; College of Environment and Planning, Henan University, 475004, Kaifeng, China
| | - Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China.
| |
Collapse
|
18
|
Zhang Y, Geng J, Ma H, Ren H, Xu K, Ding L. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:479-86. [PMID: 27395074 DOI: 10.1016/j.scitotenv.2016.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 05/28/2023]
Abstract
To investigate the microbial community characteristics, antibiotic resistance genes (ARGs), and bioreactor effluent quality change under tetracycline (TC) and sulfamethoxazole (SMX) selection pressure, sequencing batch reactors (SBRs) were used with environmentally relevant concentration and high-level of TC and SMX concentrations (0, 5ppb, 50ppb and 10ppm). Chemical oxygen demand (COD) and ammonia nitrogen (NH4(+)N) removals appeared unchanged (p>0.05) with 5 and 50ppb, but decreased significantly with 10ppm (p<0.05). Extracellular polymeric substances (EPS) concentrations increased significantly with increasing TC or SMX concentrations (p<0.05). High-throughput 16S rRNA gene sequencing results suggested that Proteobacteria, Actinobacteria and Bacteroidetes were the three most abundant phyla in sludge samples. The Actinobacteria percentages increased with increasing TC or SMX concentration, while Proteobacteria and Bacteroidetes decreased. The microbial diversity achieved its maximum at 5ppb and decreased with higher concentrations. The total ARGs abundances in sludge increased with addition of TC or SMX, and the higher relative abundances were in the order of sul1>tetG>sul2>tetA>intI1>tetS>tetC. Pearson correlation analysis showed most ARGs (tetA, tetC, tetG, tetK, tetM, sul1) were significantly correlated with intI1 (p<0.01).
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.
| | - Haijun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
19
|
Wang Z, Gao M, Wei J, Ma K, Zhang J, Yang Y, Yu S. Extracellular polymeric substances, microbial activity and microbial community of biofilm and suspended sludge at different divalent cadmium concentrations. BIORESOURCE TECHNOLOGY 2016; 205:213-221. [PMID: 26829529 DOI: 10.1016/j.biortech.2016.01.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
The differences between biofilm and suspended sludge (S-sludge) in extracellular polymeric substances (EPS), microbial activity, and microbial community in an anoxic-aerobic sequencing batch biofilm reactor (SBBR) at different concentrations of divalent cadmium (Cd(II)) were investigated. As the increase of Cd(II) concentration from 0 to 50mgL(-1), the specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR) of biofilm decreased from 4.85, 5.22 and 45mgNg(-1) VSSh(-1) to 1.54, 2.38 and 26mgNg(-1)VSSh(-1), respectively, and the SAOR, SNOR and SNRR of S-sludge decreased from 4.80, 5.02 and 34mgNg(-1)VSSh(-1) to 1.46, 2.20 and 17mgNg(-1)VSSh(-1), respectively. Biofilm had higher protein (PN) content in EPS than S-sludge. Contrast to S-sludge, biofilm could provide Nitrobacter vulgaris, beta proteobacterium INBAF015, and Pseudoxanthomonas mexicana with the favorable conditions of growth and reproduction.
Collapse
Affiliation(s)
- Zichao Wang
- College of Environment and Chemical Engineering, Dalian University, Dalian, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Junfeng Wei
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| | - Kedong Ma
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| | - Jing Zhang
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| | - Yusuo Yang
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| | - Shuping Yu
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| |
Collapse
|
20
|
Liu Y, Su X, Lu L, Ding L, Shen C. A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4498-4508. [PMID: 26514565 DOI: 10.1007/s11356-015-5603-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition. The Illumina high-throughput sequencing analysis showed that SRpf played an essential role in shifts in the composition and diversity of bacterial community. The phyla of Proteobacteria and Actinobacteria, which were closely related to biological nutrient removal, were greatly abundant after SRpf addition. This study demonstrates that SRpf acclimation or addition might hold great potential as an efficient and cost-effective alternative for wastewater treatment plants (WWTPs) to meet more stringent operation conditions and legislations.
Collapse
Affiliation(s)
- Yindong Liu
- Department of Environmental Engineering, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058, People's Republic of China.
| | - Xiaomei Su
- Department of Environmental Engineering, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058, People's Republic of China
| | - Lian Lu
- Department of Environmental Engineering, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058, People's Republic of China
| | - Linxian Ding
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
21
|
Shan L, Yu Y, Zhu Z, Zhao W, Wang H, Ambuchi JJ, Feng Y. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17789-17798. [PMID: 26160121 DOI: 10.1007/s11356-015-4938-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.
Collapse
Affiliation(s)
- Lili Shan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yanling Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| | - Zebing Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haiman Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - John J Ambuchi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|