1
|
Lancioni N, Szelag B, Sgroi M, Barbusiński K, Fatone F, Eusebi AL. Novel extended hybrid tool for real time control and practically support decisions to reduce GHG emissions in full scale wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121502. [PMID: 38936025 DOI: 10.1016/j.jenvman.2024.121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
In this paper, a novel methodology and extended hybrid model for the real time control, prediction and reduction of direct emissions of greenhouse gases (GHGs) from wastewater treatment plants (WWTPs) is proposed to overcome the lack of long-term data availability in several full-scale case studies. A mechanistic model (MCM) and a machine learning (ML) model are combined to real time control, predict the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) as well as effluent quality (COD - chemical oxygen demand, NH4-N - ammonia, NO3-N - nitrate) in activated sludge method. For methane (CH4), using the MCM model, predictions are performed on the input data (VFA, CODs for aerobic and anaerobic compartments) to the MLM model. Additionally, scenarios were analyzed to assess and reduce the GHGs emissions related to the biological processes. A real WWTP, with a population equivalent (PE) of 125,000, was studied for the validation of the hybrid model. A global sensitivity analysis (GSA) of the MCM and a ML model were implemented to assess GHGs emission mechanisms the biological reactor. Finally, an early warning tool for the prediction of GHGs errors was implemented to assess the accuracy and the reliability of the proposed algorithm. The results could support the wastewater treatment plant operators to evaluate possible mitigation scenarios (MS) that can reduce direct GHG emissions from WWTPs by up to 21%, while maintaining the final quality standard of the treated effluent.
Collapse
Affiliation(s)
- Nicola Lancioni
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Bartosz Szelag
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; Department of Geotechnics and Water Engineering, Kielce University of Technology, Al. Tysiąclecia Pa' nstwa Polskiego 7, 25-314, Kielce, Poland.
| | - Massimiliano Sgroi
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Krzysztof Barbusiński
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18 St., 44-100, Gliwice, Poland
| | - Francesco Fatone
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Anna Laura Eusebi
- Dipartimento SIMAU, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
2
|
Han K, Yu P, Lu J, Hao Z, Jiao Y, Ren Y, Zhao Y, Jiang H, Wang J, Hu Z. Nitrogen and nitrous oxides emission characteristics of anoxic/oxic wastewater treatment process under different oxygen regulation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170802. [PMID: 38342469 DOI: 10.1016/j.scitotenv.2024.170802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Nitrous oxide (N2O) and nitrogen oxides (NOx) (i.e., nitric oxide (NO) and nitrogen dioxide (NO2)), which could be produced in wastewater treatment process and result in greenhouse effect and atmospheric pollution, respectively, have been studied limitedly in their emission characteristics and transformation mechanisms. In this study, intelligent oxygen regulation was applied in anoxic/oxic wastewater treatment process (I-A/O), and its effects on regulating NOx and N2O transformations were extensively explored by comparing it with conventional A/O process (C-A/O). Results showed that the average emission amounts of N2O and NOx in I-A/O were 7.45 ± 0.66 mg and 1.88 ± 0.10 mg, respectively. Satisfactory reduction of N2O by 29.28 %-45.08 % was achieved in I-A/O compared to that of C-A/O, but together with increased NOx emission by 83.19 %-120.57 %. Pearson correlation and transcriptional analysis suggested that NO2--N reduction in the anoxic phase dominated N2O production, while no significant N2O production in the oxic phase was found. Hence, the reduced N2O production in I-A/O was mainly attributed to its efficient denitrification process. On the other hand, both the anoxic and oxic phases played important roles in NO production. More importantly, sufficient oxygen in I-A/O promoted the ammonia oxidation process, resulting in higher NO emission in I-A/O in the oxic phase. The imbalance in NO and N2O emissions was then amplified by the NOR enzyme, which mediates the conversion of NO to N2O in both the anoxic and oxic phases. Besides, carbon emission reduction by 31.32 %-36.50 % was obtained in I-A/O due to aeration consumption savings and greenhouse gas emissions reduction compared to C-A/O. Overall, intelligent oxygen regulation optimized the nitrogen transformation and achieved carbon emission reduction in A/O process, but special attention should be paid to the associated risk caused by increased NO emissions.
Collapse
Affiliation(s)
- Ke Han
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peihan Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiaxing Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zeyu Hao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yang Jiao
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yangang Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanhui Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huiqi Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jinhe Wang
- Resources and Environment Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zhen Hu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
James SN, Vijayanandan A. Recent advances in simultaneous nitrification and denitrification for nitrogen and micropollutant removal: a review. Biodegradation 2023; 34:103-123. [PMID: 36899211 DOI: 10.1007/s10532-023-10015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023]
Abstract
Simultaneous Nitrification and Denitrification (SND) is a promising process for biological nitrogen removal. Compared to conventional nitrogen removal processes, SND is cost-effective due to the decreased structural footprint and low oxygen and energy requirements. This critical review summarizes the current knowledge on SND related to fundamentals, mechanisms, and influence factors. The creation of stable aerobic and anoxic conditions within the flocs, as well as the optimization of dissolved oxygen (DO), are the most significant challenges in SND. Innovative reactor configurations coupled with diversified microbial communities have achieved significant carbon and nitrogen reduction from wastewater. In addition, the review also presents the recent advances in SND for removing micropollutants. The micropollutants are exposed to various enzymes due to the microaerobic and diverse redox conditions present in the SND system, which would eventually enhance biotransformation. This review presents SND as a potential biological treatment process for carbon, nitrogen, and micropollutant removal from wastewater.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
4
|
Asadi M, McPhedran KN. Greenhouse gas emission estimation from municipal wastewater using a hybrid approach of generative adversarial network and data-driven modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149508. [PMID: 34391143 DOI: 10.1016/j.scitotenv.2021.149508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Greenhouse gas (GHG) emissions including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) created via wastewater treatment processes are not easily modeled given the non-linearity and complexity of biological processes. These factors are also impacted by limited data availability making the development of artificial data generation algorithms, such as a generative adversarial network (GAN), useful for determination of GHG emission rate estimates (EREs). The main objective of this study was to develop a hybrid approach of using GAN and regression modelling to determine GHG EREs from a cold-region biological nutrient removal (BNR) municipal wastewater treatment plant (MWTP) in which the aerobic reactor has previously been established as the main GHG emission source. To our knowledge, this is the first application of GAN used for MWTP modelling purposes. The EREs were generated from laboratory-scale reactors used in conjunction with facility-monitored operating parameters to develop the GAN and regression models. Results showed that regression models provided reasonable EREs using parameters including hydraulic retention time (HRT), temperature, total organic carbon, and dissolved oxygen (DO) concentrations for CO2 EREs; HRT, temperature, DO and phosphate (PO43-) concentrations for CH4 EREs; and temperature, DO, and nitrogen (nitrite, nitrate, and ammonium) concentrations for N2O EREs. Additionally, the addition of 100 GAN-created virtual data points improved regression model metrics including increased correlation coefficient and index agreement values, and decreased root mean square error values. Clearly, virtual data augmentation using GAN is a valuable resource in supplementation of limited data for improved modelling outcomes. Genetic algorithm optimization was also used to determine operating parameter modifications resulting in potential for minimization (or maximization) of GHG emissions.
Collapse
Affiliation(s)
- Mohsen Asadi
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerry Neil McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
5
|
Zheng Z, Ali A, Su J, Fan Y, Zhang S. Layered double hydroxide modified biochar combined with sodium alginate: A powerful biomaterial for enhancing bioreactor performance to remove nitrate. BIORESOURCE TECHNOLOGY 2021; 323:124630. [PMID: 33418348 DOI: 10.1016/j.biortech.2020.124630] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
A novel layered double hydroxide (LDH)-orange peel (OP) biochar/sodium alginate (SA) (LBSA) synthetic material was prepared as an immobilized carrier for Acinetobacter sp. FYF8 to improve the removal of nitrogen and phosphorus in the bioreactor. Results demonstrated that under optimum conditions, the nitrate and phosphate removal efficiency reached 95.32 and 86.11%, respectively. The response surface methodology was used to illustrate the adsorption properties of the material and obtained optimal conditions for the removal of nitrate. The adsorption kinetics and isotherm were well fitted with the pseudo-second-order and Langmuir isotherm model, respectively, indicating that the adsorption process was mainly controlled by chemical adsorption and was favorable. Moreover, the morphology and composition of LBSA immobilized bacteria were analyzed and the mechanism of removing nitrate and phosphate was the synergistic effect of biological metabolism and adsorption. Community structure analysis and microbial distribution showed that FYF8 might was the dominant strain in bioreactors.
Collapse
Affiliation(s)
- Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuanyuan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Asadi M, McPhedran K. Estimation of greenhouse gas and odour emissions from a cold region municipal biological nutrient removal wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111864. [PMID: 33385907 DOI: 10.1016/j.jenvman.2020.111864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Seasonal temperature variations in cold regions worldwide lead to variable gas emissions from municipal wastewater treatment plants (MWTPs) due to changing wastewater temperatures in open-to-air treatment processes. The objective of this study was to determine the greenhouse gas (including carbon dioxide, CO2; methane, CH4; and nitrous oxide, N2O) and odour (including ammonia, NH3; and hydrogen sulphide, H2S) emission rate estimates (EREs) from the open-to-air processes of a biological nutrient removal (BNR) type MWTP in Saskatoon, SK, Canada. This MWTP experiences seasonal temperatures from -40 °C to 30 °C with the resultant wastewater temperatures considered herein of 13 °C and 17 °C being chosen based on monitoring data for winter and summer, respectively. Laboratory-scale reactors simulating anaerobic, anoxic, aerobic, and settling treatment processes were used to monitor gas EREs using wastewater samples taken from the analogous MWTP processes during the winter and summer seasons. Results indicated that the overall winter EREs for CO2, CH4, and N2O were 45,129 kg CO2/d, 21.9 kg CH4/d, and 3.20 kg N2O/d, respectively, while the H2S EREs were insignificant. The higher temperature for the summer samples resulted in increased EREs for CH4, N2O, and H2S EREs of 33.0 kg CH4/d, 3.87 kg N2O/d, and 2.29 kg H2S/d, respectively. However, the CO2 EREs were reduced to 37,794 kg CO2/d. Overall, the aerobic reactor was the dominant source of the GHG emissions for both seasons. In addition, studied changes in the aerobic reactor aeration rates (in reactor) and BNR treatment configurations (from site) further impacted the EREs.
Collapse
Affiliation(s)
- Mohsen Asadi
- Ph.D. Candidate, Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerry McPhedran
- Associate Professor, Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
7
|
Zhou X, Song J, Wang G, Yin Z, Cao X, Gao J. Unravelling nitrogen removal and nitrous oxide emission from mainstream integrated nitrification-partial denitrification-anammox for low carbon/nitrogen domestic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110872. [PMID: 32507736 DOI: 10.1016/j.jenvman.2020.110872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/05/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Stable supply of nitrite is often a major obstacle for achieving mainstream anammox due to washout failure of nitrite oxidizers (NOB) at low influent ammonia of municipal wastewater. In this study, an integrated nitrification, partial denitrification and anammox (INPDA) as a one-stage mainstream nitrogen removal alternative was established in a low-oxygen sequencing batch biofilm reactor treating synthetic sewage. The overall nitrogen removal and nitrous oxide (N2O) emission were mainly investigated at 50 mg/L NH4+-N influent with a low carbon/nitrogen (C/N) of 2.5. Continuous operation demonstrated that as high as 98.8% NH4+-N and 94.1% TN were removed in SBBR system. Cyclic experiment verified sequential completion of nitrification, partial denitrification and anammox were responsible for high-rate TN removal. During one typical cycle, the trend of N2O emission was characterized by firstly rapid rise, then fluctuant decrease followed by rapid decrease and finally slow disappearance. The maximum N2O emission rate reached up to 6.7 μg/(L·min) occurred at 75 min. High-throughput sequencing revealed the co-existence of nitrifying, denitrifying and anammox species and large detection of key functional genes (Hzs, Hdh, Hao, Nor) in an oxygen-limited SBBR, thereby highly correlating nitrogen removal and N2O emission characteristics. Nitrogen metabolic pathways analysis further suggest denitratation(NO3--N to NO2--N)-based anammox is a main route for mainstream nitrogen removal. Moreover, N2O might be generated by both hydroxylamine oxidation step in nitrification and also heterotrophic denitrification pathway. The research findings provide more deep understandings of enhanced nitrogen removal and mitigated N2O footprint from a single mainstream anammox-based system.
Collapse
Affiliation(s)
- Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Jingjing Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China
| | - Gonglei Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China
| | - Zeyang Yin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China
| | - Xiwei Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province,Taiyuan, 030024, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
8
|
Su JF, Bai YH, Huang TL, Wei L, Gao CY, Wen Q. Multifunctional modified polyvinyl alcohol: A powerful biomaterial for enhancing bioreactor performance in nitrate, Mn(II) and Cd(II) removal. WATER RESEARCH 2020; 168:115152. [PMID: 31614240 DOI: 10.1016/j.watres.2019.115152] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/12/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The co-existence of multiple pollutants in wastewater such as nitrate and heavy metal, is of high concern due to the potential environmental impact. In this study, a novel biomaterial PPy@Fe3O4/PVA was synthesized as a multifunctional bacteria immobilized carrier, to enhance simultaneous denitrification, Cd(II) and Mn(II) removal efficiency in bioreactor environments. The morphology and main components of the PPy@Fe3O4/PVA material were characterized by SEM and XRD. Using PPy@Fe3O4/PVA as a carrier, the maximum removal efficiencies for nitrate (0.207 mg L-1·h-1), Mn(II) (90.98%) and Cd(II) (98.78%) were increased by 27.05%, 30.27%, and 16.48%, respectively, compared to in the absence of PPy@Fe3O4/PVA. Regeneration experiments were performed, demonstrating the excellent stability and reusability of the PPy@Fe3O4/PVA material. Furthermore, effects of key factors were investigated on the performance of the PPy@Fe3O4/PVA bioreactor in simultaneous denitrification, Mn(II) and Cd(II) removal. Experimental results indicate that the highest nitrate, Mn(II) and Cd(II) removal efficiencies were obtained under the conditions of HRT of 10 h, initial Mn(II) concentration of 40 mg/L and initial Cd(II) concentration of 10 mg/L. Gas chromatography analysis indicated that N2 was the mainly final gaseous product. Moreover, the bioreactor community diversity was markedly influenced by the initial concentration of Cd(II) and Pseudomonas sp. H117 played a primary role in the process of simultaneous denitrification, Mn(II) and Cd(II) removal.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yi Han Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ting Lin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chun Yu Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiong Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
9
|
Jia W, Chen Y, Zhang J, Li C, Wang Q, Li G, Yang W. Response of greenhouse gas emissions and microbial community dynamics to temperature variation during partial nitrification. BIORESOURCE TECHNOLOGY 2018; 261:19-27. [PMID: 29653330 DOI: 10.1016/j.biortech.2018.03.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the greenhouse gas emission characteristics and microbial community dynamics with the variation of temperature during partial nitrification. Low temperature weakened nitrite accumulation, and partial nitrification would shift to complete nitrification easily at 15 °C. Based on CO2 equivalents (CO2-eq), partial nitrification process released 2.7 g of greenhouse gases per gMLSS per cycle, and N2O accounted for more than 98% of the total CO2-eq emission. The total CO2-eq emission amount at 35 °C was 45.6% and 153.4% higher than that at 25 °C and 15 °C, respectively. During partial nitrification, the microbial community diversity greatly declined compared with seed sludge. However, the diversity was enhanced at low temperature. The abundance of Betaproteobacteria at class level increased greatly during partial nitrification. Proteobacteria abundance declined while Nitrospira raised at low temperature. The nosZ community abundance was not affected by temperature, although N2O emission was varied with the operating temperature.
Collapse
Affiliation(s)
- Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yunfan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Cong Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangchao Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
10
|
Yan X, Zheng J, Han Y, Liu J, Sun J. Effect of influent C/N ratio on N 2O emissions from anaerobic/anoxic/oxic biological nitrogen removal processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23714-23724. [PMID: 28864852 DOI: 10.1007/s11356-017-0019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
The problem of producing strong greenhouse gas of nitrous oxide (N2O) from biological nitrogen removal (BNR) process in wastewater treatment plants (WWTP) has elicited great concern from various sectors. In this study, three laboratory-scale wastewater treatment systems, with influent C/N ratios of 3.4, 5.4, and 7.5, were set up to study the effect of influent C/N ratio on N2O generation in anaerobic/anoxic/oxic (A2O) process. Results showed, with the increased influent C/N ratio, N2O generation from both nitrification and denitrification process was decreased, and the N2O-N conversion ratio of the process was obviously reduced from 2.23 to 0.05%. Nitrification rate in oxic section was reduced, while denitrification rate in anaerobic and anoxic section was elevated and the removal efficiency of COD, NH4+-N, TN, and TP was enhanced in different extent. As the C/N ratio increased from 3.4 to 7.5, activities of three key denitrifying enzymes of nitrate reductase, nitrite reductase, and nitrous oxide reductase were increased. Moreover, microorganism analysis indicated that the relative abundance of ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were positively correlated with N2O generation, which was reduced from (8.42 ± 3.65) to (3.61 ± 1.66)% and (10.38 ± 4.12) to (4.67 ± 1.62)%, respectively. NosZ gene copy numbers of the A2O system were increased from (1.19 ± 0.49) × 107 to (2.84 ± 0.54) × 108 copies/g MLSS with the influent C/N ratio elevated from 3.4 to 7.5. Hence, appropriate influent C/N condition of A2O process could optimize the microbial community structure that simultaneously improve treatment efficiency and decrease the N2O generation.
Collapse
Affiliation(s)
- Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Jiaxi Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
11
|
Wu H, Lin L, Zhang J, Guo W, Liang S, Liu H. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent. BIORESOURCE TECHNOLOGY 2016; 219:768-772. [PMID: 27544264 DOI: 10.1016/j.biortech.2016.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions.
Collapse
Affiliation(s)
- Haiming Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Li Lin
- Department of Water Environment Research, Changjiang River Scientific Research Institute, Wuhan 430010, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Hai Liu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
12
|
Tambo E, Duo-Quan W, Zhou XN. Tackling air pollution and extreme climate changes in China: Implementing the Paris climate change agreement. ENVIRONMENT INTERNATIONAL 2016; 95:152-6. [PMID: 27107974 DOI: 10.1016/j.envint.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 05/24/2023]
Abstract
China still depends on coal for more than 60% of its power despite big investments in the process of shifting to nuclear, solar and wind power renewable energy resources alignment with Paris climate change agreement (Paris CCA). Chinese government through the Communist Party Central Committee (CPCC) ascribes great importance and commitment to Paris CCA legacy and history landmark implementation at all levels. As the world's biggest carbon dioxide emitter, China has embarked on "SMART" pollution and climate changes programs and measures to reduce coal-fired power plants to less than 50% in the next five years include: new China model of energy policies commitment on CO2 and greenhouse gas emissions reductions to less than 20% non-fossil energy use by 2030 without undermining their economic growth, newly introduced electric vehicles transportation benefits, interactive and sustained air quality index (AQI) monitoring systems, decreasing reliance on fossil fuel economic activities, revision of energy price reforms and renewable energy to less energy efficient technologies development. Furthermore, ongoing CPCC improved environmental initiatives, implemented strict regulations and penalties on local companies and firms' pollution production management, massive infrastructures such as highways to reduce CO2 expansion of seven regional emissions trading markets and programs for CO2 emissions and other pollutants are being documented. Maximizing on the centralized nature of the China's government, implemented Chinese pollution, climate changes mitigation and adaptation initiatives, "SMART" strategies and credible measures are promising. A good and practical example is the interactive and dynamic website and database covering 367 Chinese cities and providing real time information on environmental and pollution emissions AQI. Also, water quality index (WQI), radiation and nuclear safety monitoring and management systems over time and space. These are ongoing Chinese valuable and exemplary leadership in Paris CCA implementation to the global community. Especially to pragmatic and responsible efforts to support pollution and climate changes capacity development, technology transfer and empowerment in emissions surveillance and monitoring systems and "SMART" integrated climate changes mitigation packages in global Sustainable Development Goals (SDGs) context, citizenry health and wellbeing.
Collapse
Affiliation(s)
- Ernest Tambo
- Higher Institute of Health Sciences, Université des Montagnes, Bangangté, Cameroon; Africa Disease Intelligence and Surveillance, Communication and Response (Africa DISCoR) Foundation, Yaoundé, Cameroon.
| | - Wang Duo-Quan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, PR China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, PR China; WHO Collaborating Centre for Tropical Diseases Research, Shanghai 200025, PR China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, PR China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, PR China; WHO Collaborating Centre for Tropical Diseases Research, Shanghai 200025, PR China.
| |
Collapse
|
13
|
Li H, Pan M, Zhou S, Huang S, Zhang Y. Characterization of nitrous oxide emissions from a thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in an aerated sequencing batch reactor. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Kong Q, Wang ZB, Niu PF, Miao MS. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process. BIORESOURCE TECHNOLOGY 2016; 210:94-100. [PMID: 26935325 DOI: 10.1016/j.biortech.2016.02.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 05/20/2023]
Abstract
This study evaluates greenhouse gas emission and the microbial community dynamics during simultaneous nitrification and denitrification (SND) process. Based on CO2 equivalents, the SND reactor released 4.28g of greenhouse gases each cycle. 2.91% of the incoming nitrogen load was emitted as N2O. The CO2 and N2O emissions mainly occurred in the aerobic stage and CH4 emissions were consistently near zero. Extracellular polymeric substance (EPS) contents in activated sludge increased during start-up the SND process. High-throughput sequencing showed increases in bacterial species richness, leading to changes in EPS content and composition observed using 3D-EEM fluorescence spectra. For denitrifying bacteria, the relative abundance of Pseudomonas significantly increased during the SND process, while Paracoccus decreased significantly. For phosphorus-accumulating bacteria, the relative abundance of Rhodocyclaceae also significantly increased. The relative abundance of other functional microbes, such as Nitrosomonadaceae (ammonia oxidizer), Nitrospirales (nitrite oxidizer) and Planctomyces (anammox) decreased significantly during the SND process.
Collapse
Affiliation(s)
- Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China.
| | - Zhi-Bin Wang
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Peng-Fei Niu
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| | - Ming-Sheng Miao
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong, PR China
| |
Collapse
|