1
|
Tian T, Dai S, Liu D, Wang Y, Qiao W, Yang M, Zhang Y. Occurrence and transfer characteristics of bla CTX-M genes among Escherichia coli in anaerobic digestion systems treating swine waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155321. [PMID: 35452730 DOI: 10.1016/j.scitotenv.2022.155321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Livestock waste is a known reservoir of Escherichia coli (E. coli) carrying clinically important CTX-M-type extended-spectrum β-lactamase genes (blaCTX-M), however, the occurrence and transfer characteristics of blaCTX-M genes during anaerobic digestion (AD) remain unclear. Herein, four full-scale and two parallel lab-scale AD systems treating swine waste under ambient and mesophilic conditions were investigated by both molecular- and culture-based methods to reveal the occurrence and transfer behaviors of blaCTX-M genes during AD. Real-time TaqMan polymerase chain reaction revealed 1.3 × 104-6.8 × 105 and 3.0 × 104-7.0 × 105 copies/mL of blaCTX-M groups 1 and 9 in all feeding substrates. While AD reduced the absolute abundance of groups 1 and 9 by 0.63-2.24 and 0.08-1.30 log (P < 0.05), 5.0 × 102-4.1 × 103 and 1.1 × 104-3.5 × 104 copies/mL of groups 1 and 9 remained in the anaerobic effluent, respectively. In total, 141 blaCTX-M-carrying E. coli isolates resistant to cefotaxime were obtained from the AD reactors. Whole-genome sequencing showed that blaCTX-M-65 mainly carried by E. coli ST155 was the most frequently detected group 9 subtype in the feeding substrate; whereas blaCTX-M-14 associated with the dominant clones E. coli ST6802 and ST155 became the major subtype in AD effluent. Furthermore, blaCTX-M-14 was flanked by ΔIS26 upstream and ΔIS903B downstream. The ΔIS26-blaCTX-M-14-ΔIS903B element was mainly located on the IncHI2 plasmid in E. coli ST48 and ST6802 and also the IncFIB plasmid in ST155 in anaerobic effluent. Conjugation assays showed that the plasmids harboring blaCTX-M-14 could be successfully transferred at a frequency of 10-3-10-2 cells per recipient cell. This study revealed that blaCTX-M genes remained in both the full-scale and lab-scale AD effluents of swine waste. Thus, additional efforts should be implemented to block the discharge and spread of antibiotic resistance genes to the environment.
Collapse
Affiliation(s)
- Tiantian Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Vassallo A, Kett S, Purchase D, Marvasi M. The Bacterial Urban Resistome: Recent Advances. Antibiotics (Basel) 2022; 11:512. [PMID: 35453263 PMCID: PMC9030810 DOI: 10.3390/antibiotics11040512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cities that are densely populated are reservoirs of antibiotic resistant genes (ARGs). The overall presence of all resistance genes in a specific environment is defined as a resistome. Spatial proximity of surfaces and different hygienic conditions leads to the transfer of antibiotic resistant bacteria (ARB) within urban environments. Built environments, public transportation, green spaces, and citizens' behaviors all support persistence and transfer of antimicrobial resistances (AMR). Various unique aspects of urban settings that promote spread and resilience of ARGs/ARB are discussed: (i) the role of hospitals and recreational parks as reservoirs; (ii) private and public transportation as carriers of ARGs/ARB; (iii) the role of built environments as a hub for horizontal gene transfer even though they support lower microbial biodiversity than outdoor environments; (iv) the need to employ ecological and evolutionary concepts, such as modeling the fate of a specific ARG/ARB, to gain enhanced health risk assessments. Our understanding and our ability to control the rise of AMR in an urban setting is linked to our knowledge of the network connecting urban reservoirs and the environment.
Collapse
Affiliation(s)
- Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Steve Kett
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | | |
Collapse
|
3
|
Li M, Li Z, Zhong Q, Liu J, Han G, Li Y, Li C. Antibiotic resistance of fecal carriage of Escherichia coli from pig farms in China: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22989-23000. [PMID: 34797542 DOI: 10.1007/s11356-021-17339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Fecal carriage of bacteria is a major source of antibiotic resistance genes (ARGs) and a public health risk, but the antibiotic resistance of Escherichia coli (E. coli) in Chinese pig farms remains a major gap in the available literature. Our goal was to conduct a meta-analysis of studies reporting antibiotic resistance of fecal carriage of E. coli from pig farms in China, calculating the pooled resistance rates and summarizing factors associated with it. We searched PubMed and Web of Science for studies published in English up to February 28, 2021. We also searched bibliographic indices and corresponded with the authors. We chose ciprofloxacin, gentamicin, tetracycline, ampicillin, and florfenicol from five major types of antibiotics to comprehensively evaluate the resistance rate of E. coli. We used a random-effects model and Freeman-Tukey double arcsine transformation to calculate the resistance rate and 95% confidence interval. Among the 120 retrieved manuscripts, 16 studies (1985 E. coli isolates) were deemed eligible for our analysis. The combined resistance rate of E. coli from feces was 58.8% (95% CI: 45.3-71.7%) to ciprofloxacin, 54.3% (95% CI: 35.3-72.6%) to gentamicin, 91.0% (95% CI: 83.1-96.7%) to tetracycline, 81.4% (95% CI: 62.0-95.1%) to ampicillin, and 65.4% (95% CI: 33.9-90.9%) to florfenicol. In conclusion, fecal carriage of E. coli in Chinese pig farms shows high resistance to ciprofloxacin, gentamicin, tetracycline, ampicillin, and florfenicol. Subgroup analysis showed that the resistance of E. coli to antibiotics was closely related to the sample size and the health condition of the pigs. Specifically, ESBL-producing E. coli has a higher ratio of resistance to other antibiotics. Future collection of antibiotic resistance and other information in pig farms should be more precise and depend on local surveys.
Collapse
Affiliation(s)
- Mingyang Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhi Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Qiuming Zhong
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Junze Liu
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guofeng Han
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yansen Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chunmei Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
4
|
Pereira AR, Paranhos AGDO, de Aquino SF, Silva SDQ. Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26380-26403. [PMID: 33835340 DOI: 10.1007/s11356-021-13784-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Aline Gomes de Oliveira Paranhos
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Sérgio Francisco de Aquino
- Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil.
| |
Collapse
|
5
|
Teng CH, Wu PC, Tang SL, Chen YC, Cheng MF, Huang PC, Ko WC, Wang JL. A Large Spatial Survey of Colistin-Resistant Gene mcr-1-Carrying E. coli in Rivers across Taiwan. Microorganisms 2021; 9:722. [PMID: 33807253 PMCID: PMC8066897 DOI: 10.3390/microorganisms9040722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Colistin is one of the last-line antimicrobial agents against life-threatening infections. The distribution of the colistin resistance gene mcr-1 has been reported worldwide. However, most studies have focused on the distribution of mcr-1-positive bacteria in humans, animals, food, and sewage; few have focused on their distribution in natural environments. METHOD We conducted a large spatial survey of mcr-1-positive Escherichia coli at 119 sites in 48 rivers, covering the entire island of Taiwan. We investigated the relationship between the livestock or poultry density in the surveyed riverine area and the number of mcr-1-positive E. coli in the river water. We then sequenced and characterized the isolated mcr-1-positive plasmids. RESULTS Seven mcr-1 positive E. coli were isolated from 5.9% of the sampling sites. The mcr-1-positive sites correlated with high chicken and pig stocking densities but not human population density or other river parameters. Four of the mcr-1-positive E. coli strains harbored epidemic IncX4 plasmids, and three of them exhibited identical sequences with a size of 33,309 bp. One of the plasmids contained identical 33,309 bp sequences but carried an additional 5711-bp transposon (Tn3 family). To our knowledge, this is the first demonstration that mcr-1-carrying IncX4 plasmids can contain an insertion of such transposons. All mcr-1-positive isolates belonged to phylogenetic group A and harbored few known virulence genes. CONCLUSION This study showed a positive relationship between the number of mcr-1-positive sites and high livestock and poultry density. The sequencing analyses indicated that the epidemic plasmid in the mcr-1 isolates circulates not only in humans, animals, and food but also in the associated environments or natural habitats in Taiwan, suggesting that the surveillance of antibiotics-resistance genes for livestock or poultry farm quality control should include their associated environments.
Collapse
Affiliation(s)
- Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (C.-H.T.); (Y.-C.C.)
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 704, Taiwan
| | - Pin-Chieh Wu
- Department of Physical Examination Center, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Nursing, Meiho University, Pingtung 912, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yi-Chen Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (C.-H.T.); (Y.-C.C.)
| | - Ming-Fang Cheng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Chemical Engineering, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 840, Taiwan
- Department of Nursing, Fooyin University, Kaohsiung 831, Taiwan
| | - Ping-Chih Huang
- Department of Cosmetics and Fashion Styling, Cheng-Shiu University, Kaohsiung 833, Taiwan;
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
6
|
Dawangpa A, Lertwatcharasarakul P, Ramasoota P, Boonsoongnern A, Ratanavanichrojn N, Sanguankiat A, Phatthanakunanan S, Tulayakul P. Genotypic and phenotypic situation of antimicrobial drug resistance of Escherichia coli in water and manure between biogas and non-biogas swine farms in central Thailand. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111659. [PMID: 33310234 DOI: 10.1016/j.jenvman.2020.111659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/11/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Currently, Thai livestock is rapidly expanding, especially the production of ruminants, chicken, and swine. The improper use of antibiotics will probably lead to an antimicrobial resistance problem. It has long been suspected that wastewater released from swine farms is a crucial aspect of the spread of antimicrobial resistance to the environment. Biogas systems are wastewater treatment systems commonly used on swine farms; however, little is known about the roles they play in the occurrence and transmission of resistant bacteria between biogas and non-biogas systems. This study collected pooled water, wastewater, and feces samples from five biogas farms and three non-biogas farms in Central Thailand. The samples were isolated to hemolytic E. coli (HEC) and non-hemolytic E. coli (NHEC) to test the drug resistance by using VITEK® 2 Compact (BioMérieux, USA) and detect resistant genes by using the polymerase chain reaction (PCR) technique to correlate the determined phenotypic and genotypic patterns. The results demonstrated that enumeration levels of E. coli ranged from 20.1 to 70.4 (MPN/100 ml), 105 to 107 (cfu/ml), and 105 to 109 (cfu/g), while they were 0-148.7 (MPN/100 ml), 105 to 107 (cfu/ml) and 105 to 109 (cfu/g) for water, wastewater and manure from biogas and non-biogas swine farms, respectively. The amount of E. coli in the sow feces samples was higher than the samples of nursery piglets on biogas farms at a 0.05 significant level (p < 0.05). The antimicrobial resistance indicated the relevant resistance characteristics of E. coli: the highest antimicrobial resistance was for ampicillin (AMP), followed by amoxicillin (AMX), tetracyclines (TET), chloramphenicol (C), and piperacillin (PIP), respectively. Multidrug resistance (MDR) of E. coli was 15 drugs: AMP-AMX-AMC-PIP-CEX-CEV-CPD-XNL-GM-IMP-SXT-C-TE (11.9%) and AMP-AMX-AMC-PIP-CEX-CEV-CPD-XNL-GM-IMP-SXT-C-ENR-MBR-TE (18.55%), which were the most commonly found in biogas and non-biogas swine farms, respectively. The blaTEM, tetA, sul2, and sul3 were dominantly resistant genes isolated from the water from both types of farm; while, blaTEM, aadA1, tetA, dfrA12, sul2, sul3, and cmlA were isolated from feces. The amount of E. coli in the final effluent from biogas swine farms was higher than the non-biogas swine farms; however, it was not significantly different at (p > 0.05). Furthermore, the findings of study found that genotypic characteristic of HEC showed similarity 100%. Thus, it was concluded that the levels of E. coli were accelerated in biogas wastewater treatment systems, and isolated E. coli demonstrated multidrug resistance. Even though E. coli was found in different locations, it showed relevant resistance characteristics. Therefore, regular monitoring of antimicrobial resistance on livestock farms is necessary for efficient management and drug uses on farms.
Collapse
Affiliation(s)
- Atchara Dawangpa
- Graduate Student in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Preeda Lertwatcharasarakul
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Alongkot Boonsoongnern
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand, 73140
| | - Nattavut Ratanavanichrojn
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand, 73140
| | - Arsooth Sanguankiat
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Sakuna Phatthanakunanan
- Kampangsaen Veterinary Diagnostic Unit, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
7
|
Mbanga J, Abia ALK, Amoako DG, Essack SY. Longitudinal Surveillance of Antibiotic Resistance in Escherichia coli and Enterococcus spp. from a Wastewater Treatment Plant and Its Associated Waters in KwaZulu-Natal, South Africa. Microb Drug Resist 2021; 27:904-918. [PMID: 33512279 DOI: 10.1089/mdr.2020.0380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We assessed the prevalence, distribution, and antibiotic resistance patterns of Escherichia coli and Enterococcus spp. isolated from raw and treated wastewater of a major wastewater treatment plant (WWTP) in KwaZulu-Natal, South Africa and the receiving river water upstream and downstream from the WWTP discharge point. Escherichia coli and enterococci were isolated and counted using the Colilert®-18 Quanti-Tray® 2000 and Enterolert®-18 Quanti-Tray 2000 systems, respectively. A total of 580 quantitative PCR-confirmed E. coli and 579 enterococci were randomly chosen from positive samples and tested for in vitro antibiotic susceptibility using the disk diffusion assay against 20 and 16 antibiotics, respectively. The removal success of the bacterial species through the treatment procedure at the WWTP was expressed as log removal values (LRVs). Most E. coli were susceptible to meropenem (94.8%) and piperacillin-tazobactam (92.9%), with most Enterococcus susceptible to ampicillin (97.8%) and vancomycin (96.7%). In total, 376 (64.8%) E. coli and 468 (80.8%) Enterococcus isolates showed multidrug resistance (MDR). A total of 42.4% (246/580) E. coli and 65.1% (377/579) enterococci isolates had multiple antibiotic resistance indices >0.2. The LRV for E. coli ranged from 2.97 to 3.99, and for enterococci the range was observed from 1.83 to 3.98. A high proportion of MDR E. coli and enterococci were present at all sampled sites, indicating insufficient removal during wastewater treatment. There is a need to appraise the public health risks associated with bacterial contamination of environmental waters arising from such WWTPs to protect the health of users of the receiving water bodies.
Collapse
Affiliation(s)
- Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Divya PS, Thajudeen J, Yousuf J, Madavan A, Abdulla MH. Genetic relatedness, phylogenetic groups, antibiotic resistance, and virulence genes associated with ExPEC in
Escherichia coli
isolates from finfish and shellfish. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Puthenkandathil Sukumaran Divya
- Department of Marine Biology, Microbiology and Biochemistry School of Marine Sciences Cochin University of Science and Technology Cochin India
| | - Jabir Thajudeen
- Department of Marine Biology, Microbiology and Biochemistry School of Marine Sciences Cochin University of Science and Technology Cochin India
| | - Jesmi Yousuf
- Department of Marine Biology, Microbiology and Biochemistry School of Marine Sciences Cochin University of Science and Technology Cochin India
| | - Anand Madavan
- School of Environmental Studies Cochin University of Science and Technology Cochin India
| | - Mohamed Hatha Abdulla
- Department of Marine Biology, Microbiology and Biochemistry School of Marine Sciences Cochin University of Science and Technology Cochin India
| |
Collapse
|
9
|
Isolation and purification of Escherichia coli bacteriophage from Tigris River, Baghdad, Iraq. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Tápparo DC, Viancelli A, Amaral ACD, Fongaro G, Steinmetz RLR, Magri ME, Barardi CRM, Kunz A. Sanitary effectiveness and biogas yield by anaerobic co-digestion of swine carcasses and manure. ENVIRONMENTAL TECHNOLOGY 2020; 41:682-690. [PMID: 30080477 DOI: 10.1080/09593330.2018.1508256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
The present study evaluated anaerobic co-digestion of swine manure and swine carcasses for biogas yield and inactivation/behaviour of pathogens purpose. Biochemical Methane Production tests were performed with samples containing ratios of 3, 7.5 and 15 kgcarcass m-3 manure. For pathogens inactivation experiments known amounts of model microrganisms (sensitive and resistant) were artificially inoculated in anaerobic reactors at 24°C and 37°C. The addition of carcass resulted in an increase until 119% of biogas yield compared to swine manure mono-digestion. Salmonella enterica, Escherichia coli and PCV2 were reduced >3log10 (24°C or 37°C) during 30 days. At 37°C, MS2 and PhiX-174 were reduced 3log10 and 1.8log10, respectively. At 24°C, MS2 reduced 1.5 log10 and PhiX-174 did not present any decay over 30 days. Considering the most resistant biomarkers pathogens, as bacteriophage, we recommend the swine carcasses pre-treatment, such as high temperatures, for sanitary security.
Collapse
Affiliation(s)
| | | | | | - Gislaine Fongaro
- Universidade Federal de Santa Catarina - PPGBB, Florianópolis, Brazil
- Universidade Federal da Fronteira Sul - PPGCTA, Erechim, Brazil
| | | | - Maria Elisa Magri
- Universidade Federal de Santa Catarina - PPGBB, Florianópolis, Brazil
| | | | - Airton Kunz
- Western Paraná State University - UNIOESTE/CCET/PGEAGRI, Cascavel, Brazil
- Embrapa Suínos e Aves, Concórdia, Brazil
| |
Collapse
|
11
|
Lee S, Mir RA, Park SH, Kim D, Kim HY, Boughton RK, Morris JG, Jeong KC. Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. Crit Rev Microbiol 2020; 46:1-14. [PMID: 31976793 DOI: 10.1080/1040841x.2020.1715339] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effectiveness of antibiotics has been challenged by the increasing frequency of antimicrobial resistance (AR), which has emerged as a major threat to global health. Despite the negative impact of AR on health, there are few effective strategies for reducing AR in food-producing animals. Of the antimicrobial resistant microorganisms (ARMs), extended-spectrum β-lactamases (ESBLs)-producing Enterobacteriaceae are an emerging global threat due to their increasing prevalence in livestock, even in animals raised without antibiotics. Many reviews are available for the positive selection of AR associated with antibiotic use in livestock, but less attention has been given to how other factors including soil, water, manure, wildlife, and farm workers, are associated with the emergence of ESBL-producing bacteria. Understanding of antibiotic resistance genes and bacteria transfer at the interfaces of livestock and other potential reservoirs will provide insights for the development of mitigation strategies for AR.
Collapse
Affiliation(s)
- Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Raies A Mir
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, School of Biological Sciences, and Korean Genomics Industrialization and Commercialization Center, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung-Hee University, Yongin, Korea
| | - Raoul K Boughton
- Range Cattle Research and Education Center, Department of Wildlife Ecology and Conservation, University of Florida, Ona, FL, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung-Hee University, Yongin, Korea
| |
Collapse
|
12
|
Fagerström A, Mölling P, Khan FA, Sundqvist M, Jass J, Söderquist B. Comparative distribution of extended-spectrum beta-lactamase-producing Escherichia coli from urine infections and environmental waters. PLoS One 2019; 14:e0224861. [PMID: 31697734 PMCID: PMC6837386 DOI: 10.1371/journal.pone.0224861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli have been reported in natural environments, and may be released through wastewater. In this study, the genetic relationship between ESBL-producing E. coli collected from patient urine samples (n = 45, both hospitalized patients and out-patients) and from environmental water (n = 82, from five locations), during the same time period, was investigated. Three independent water samples were collected from the municipal wastewater treatment plant, both incoming water and treated effluent water; the receiving river and lake; and a bird sanctuary near the lake, on two different occasions. The water was filtered and cultured on selective chromID ESBL agar plates in order to detect and isolate ESBL-producing E. coli. Illumina whole genome sequencing was performed on all bacterial isolates (n = 127). Phylogenetic group B2 was more common among the clinical isolates than the environmental isolates (44.4% vs. 17.1%, p < 0.01) due to a significantly higher prevalence of sequence type (ST) 131 (33.3% vs. 13.4%, p < 0.01). ST131 was, however, one of the most prevalent STs among the environmental isolates. There was no significant difference in diversity between the clinical isolates (DI 0.872 (0.790-0.953)) and the environmental isolates (DI 0.947 (0.920-0.969)). The distribution of ESBL genes was similar: blaCTX-M-15 dominated, followed by blaCTX-M-14 and blaCTX-M-27 in both the clinical (60.0%, 8.9%, and 6.7%) and the environmental isolates (62.2%, 12.2%, and 8.5%). Core genome multi-locus sequence typing showed that five environmental isolates, from incoming wastewater, treated wastewater, Svartån river and Hjälmaren lake, were indistinguishable or closely related (≤10 allele differences) to clinical isolates. Isolates of ST131, serotype O25:H4 and fimtype H30, from the environment were as closely related to the clinical isolates as the isolates from different patients were. This study confirms that ESBL-producing E. coli are common in the aquatic environment even in low-endemic regions and suggests that wastewater discharge is an important route for the release of ESBL-producing E. coli into the aquatic environment.
Collapse
Affiliation(s)
- Anna Fagerström
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- * E-mail:
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Faisal Ahmad Khan
- The Life Science Centre–Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Martin Sundqvist
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jana Jass
- The Life Science Centre–Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Bo Söderquist
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Zou H, Zheng B, Sun M, Ottoson J, Li Y, Berglund B, Chi X, Ji X, Li X, Stålsby Lundborg C, Nilsson LE. Evaluating Dissemination Mechanisms of Antibiotic-Resistant Bacteria in Rural Environments in China by Using CTX-M-Producing Escherichia coli as an Indicator. Microb Drug Resist 2019; 25:975-984. [PMID: 30942653 DOI: 10.1089/mdr.2018.0431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is becoming increasingly recognized that the environment plays an important role both in the emergence and in dissemination of antibiotic-resistant bacteria (ARB), Mechanisms and factors facilitating this development are, however, not yet well understood. The high detection rate of CTX-M genes in environmental sources provides an opportunity to explore this issue. In this study, 88 CTX-M-producing Escherichia coli were isolated from 30 pig feces samples from 30 pig farms and 201 environmental samples. CTX-M-producing E. coli was detected with the following frequencies in the different types of samples: pig feces, 73%; river water, 64%; river sediment, 52%; wastewater, 31%; drinking water, 23%; outlet sediment, 21%; soil, 17%; and vegetables, 4.4%. Dissemination of CTX-M-producing E. coli to different environmental matrices was evaluated by analyzing the genetic relatedness of isolates from different environmental sources, and putative transmission routes through bird feces, pig feces, drinking water, river sediment, river water, and wastewater were hypothesized. Dissemination through these routes is likely facilitated by anthropogenic activities and environmental factors. Wild birds as potential vectors for dissemination of CTX-M-producing E. coli have the capacity to spread ARB across long distances. Regional dissemination between different environmental matrices of CTX-M-producing E. coli increases the exposure risk of humans and animals in the area.
Collapse
Affiliation(s)
- Huiyun Zou
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingli Sun
- Center of Disease Prevention and Control, Zhucheng City, Shandong Province, China
| | - Jakob Ottoson
- National Food Agency, Department of Risk and Benefit Assessment, Uppsala, Sweden
| | - Yubo Li
- Center of Disease Prevention and Control, Zhucheng City, Shandong Province, China
| | - Björn Berglund
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xiaohui Chi
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, China
| | - Xiang Ji
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Shandong University, Jinan, China
| | - Cecilia Stålsby Lundborg
- Global Health-Health Systems and Policy: Medicines, Focusing Antibiotics, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Lennart E Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Bommer A, Böhler O, Johannsen E, Dobrindt U, Kuczius T. Effect of chlorine on cultivability of Shiga toxin producing Escherichia coli (STEC) and β-lactamase genes carrying E. coli and Pseudomonas aeruginosa. Int J Med Microbiol 2018; 308:1105-1112. [PMID: 30262431 DOI: 10.1016/j.ijmm.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 09/13/2018] [Indexed: 11/15/2022] Open
Abstract
The worldwide spread of toxin-producing and multi-drug resistant bacteria in water, food and the environment is considered a major threat to human health. Drinking water quality is controlled by inspection of fecal indicators presence whereby viable contaminants will be efficiently reduced by chlorination which is a common process for disinfection. However, the all-out efficiency is arguable, because bacterial regrowth has been documented after disinfection. In this study, we investigated the stability of Shiga toxin producing Escherichia coli (STEC) and β-lactamase expressing E. coli and Pseudomonas aeruginosa isolates, both equipped with multiple or single β-lactamase resistance genes. The aim of the study was to analyze the efficiency of chlorine (Cl2) disinfection against shigatoxigenic or β-lactamase producing bacteria. Cl2 reacts with the bacterial cells after first contact. Counts of antibiotic resistant E. coli were lower after short than upon extended Cl2 treatment. P. aeruginosa counts decreased moderately upon 15-60 min treatment with 1.2 mg Cl2/l, while cells adapted to tap water were not cultivable anymore. We assume that the bacterial physiology changed to a temporary non-cultivatable state at first Cl2 contact followed by resuscitation of some cells at later stages. STEC viability went down continuously at low Cl2 concentrations and these toxigenic E. coli isolates exhibited slightly increased stability to Cl2 treatment compared with non-toxigenic E. coli. Controlling the efficiency of disinfection, realistic counts of cultivatable cells are achieved after extended Cl2 action.
Collapse
Affiliation(s)
- Anni Bommer
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Olga Böhler
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Eva Johannsen
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany
| | - Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany.
| |
Collapse
|
15
|
Diab M, Hamze M, Bonnet R, Saras E, Madec JY, Haenni M. Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in water sources in Lebanon. Vet Microbiol 2018; 217:97-103. [PMID: 29615264 DOI: 10.1016/j.vetmic.2018.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
Extended-spectrum beta-lactamases (ESBLs) have been recurrently reported in both human and veterinary medicine, and carbapenemases have also emerged in these two sectors. Such resistance phenotypes were increasingly reported in the environment, which both receives and further disseminates multidrug-resistant (MDR) bacteria. Here, we report the high contamination of water samples (68.2%; 15/22) collected in estuaries in Lebanon. From these 15 contaminated sites, a total of 21 ESBL-producing (mostly harbouring the blaCTX-M-15 gene) and four carbapenemase-producing (two blaOXA-48 and two blaOXA-244) Enterobacteriaceae were recovered. ESBL contamination was also identified in water samples collected from rural wells and spring water, although at a lower frequency. Indeed, 1.9% (3/155) and 6.1% (7/115) of the wells and springs were contaminated, respectively, and all identified isolates were CTX-M-15-producing E. coli. Interestingly, sequence types (STs) previously associated both with animal and human reservoirs were detected (ST38, ST10 and ST131), suggesting a complex source of contamination. This situation is alarming since water drawn from wells or springs is directly intended for human consumption in Lebanon without any further treatment. Moreover, even though water from estuaries is not intended for human consumption, it is used to water animals and irrigate crops. Consequently, water contamination by ESBLs and carbapenemases in Lebanon is potentially a major risk to public health. Part of this work was presented at the 7th Symposium on Antimicrobial Resistance in Animals and the Environment (ARAE).
Collapse
Affiliation(s)
- Mohamad Diab
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale en Sciences et Technologies, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon; Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Lyon, France; Clermont Université, Université d'Auvergne, Inserm U1071, INRA USC2018, Clermont-Ferrand, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale en Sciences et Technologies, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Richard Bonnet
- Clermont Université, Université d'Auvergne, Inserm U1071, INRA USC2018, Clermont-Ferrand, France
| | - Estelle Saras
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Lyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Lyon, France.
| |
Collapse
|
16
|
Bueno I, Williams-Nguyen J, Hwang H, Sargeant JM, Nault AJ, Singer RS. Systematic Review: Impact of point sources on antibiotic-resistant bacteria in the natural environment. Zoonoses Public Health 2018; 65:e162-e184. [PMID: 29205899 DOI: 10.1111/zph.12426] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 11/02/2023]
Abstract
Point sources such as wastewater treatment plants and agricultural facilities may have a role in the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG). To analyse the evidence for increases in ARB in the natural environment associated with these point sources of ARB and ARG, we conducted a systematic review. We evaluated 5,247 records retrieved through database searches, including both studies that ascertained ARG and ARB outcomes. All studies were subjected to a screening process to assess relevance to the question and methodology to address our review question. A risk of bias assessment was conducted upon the final pool of studies included in the review. This article summarizes the evidence only for those studies with ARB outcomes (n = 47). Thirty-five studies were at high (n = 11) or at unclear (n = 24) risk of bias in the estimation of source effects due to lack of information and/or failure to control for confounders. Statistical analysis was used in ten studies, of which one assessed the effect of multiple sources using modelling approaches; none reported effect measures. Most studies reported higher ARB prevalence or concentration downstream/near the source. However, this evidence was primarily descriptive and it could not be concluded that there is a clear impact of point sources on increases in ARB in the environment. To quantify increases in ARB in the environment due to specific point sources, there is a need for studies that stress study design, control of biases and analytical tools to provide effect measure estimates.
Collapse
Affiliation(s)
- I Bueno
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - J Williams-Nguyen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - H Hwang
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - J M Sargeant
- Department of Population Medicine and Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - A J Nault
- Veterinary Medical Library, University of Minnesota, St. Paul, MN, USA
| | - R S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
17
|
Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 2018; 72:2145-2155. [PMID: 28541467 DOI: 10.1093/jac/dkx146] [Citation(s) in RCA: 498] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Globally, rates of ESBL-producing Enterobacteriaceae are rising. We undertook a literature review, and present the temporal trends in blaCTX-M epidemiology, showing that blaCTX-M-15 and blaCTX-M-14 have displaced other genotypes in many parts of the world. Explanations for these changes can be attributed to: (i) horizontal gene transfer (HGT) of plasmids; (ii) successful Escherichia coli clones; (iii) ESBLs in food animals; (iv) the natural environment; and (v) human migration and access to basic sanitation. We also provide explanations for the changing epidemiology of blaCTX-M-2 and blaCTX-M-27. Modifiable anthropogenic factors, such as poor access to basic sanitary facilities, encourage the spread of blaCTX-M and other antimicrobial resistance (AMR) genes, such as blaNDM, blaKPC and mcr-1. We provide further justification for novel preventative and interventional strategies to reduce transmission of these AMR genes.
Collapse
Affiliation(s)
- Edward R Bevan
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.,Public Health England, West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham B5 9SS, UK
| | - Annie M Jones
- Magus Strategic Communications Ltd, Marr House, Scagglethorpe, Malton YO17?8ED, UK
| | - Peter M Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.,Public Health England, West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham B5 9SS, UK
| |
Collapse
|
18
|
Skaradzińska A, Śliwka P, Kuźmińska-Bajor M, Skaradziński G, Rząsa A, Friese A, Roschanski N, Murugaiyan J, Roesler UH. The Efficacy of Isolated Bacteriophages from Pig Farms against ESBL/AmpC-Producing Escherichia coli from Pig and Turkey Farms. Front Microbiol 2017; 8:530. [PMID: 28405193 PMCID: PMC5370273 DOI: 10.3389/fmicb.2017.00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases are plasmid (but also chromosomally) encoded enzymes found in Enterobacteriaceae, determining resistance to a variety of important antibiotics including penicillins, cephalosporins, and monobactams. In recent decades, the prevalence of ESBL/AmpC-producing bacteria has increased rapidly across the world. Here, we evaluate the potential use of bacteriophages in terms of a reduction of antibiotic-resistant bacteria in healthy animals. The aim of our studies was to isolate bacteriophages capable of destroying ESBL/AmpC-producing Escherichia coli isolated from livestock habitats. The efficacy of isolated phages against ESBL/AmpC E. coli strains varies, but creation of a phage cocktail with broad activity spectrum is possible. This may indicate that the role of phages may not be limited to phage therapy, but bacterial viruses may also be applied against spread of bacteria with antibiotic resistance genes in the environment. We also addressed the hypothesis, that phages, effective for therapeutic purposes may be isolated from distant places and even from different environments other than the actual location of the targeted bacteria. This may be beneficial for practical purposes, as the construction of effective phage preparations does not require access to disease outbreaks.
Collapse
Affiliation(s)
- Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences Wrocław, Poland
| | - Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences Wrocław, Poland
| | - Grzegorz Skaradziński
- Department of Fermentation and Cereals Technology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences Wrocław, Poland
| | - Anna Rząsa
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences Wrocław, Poland
| | - Anika Friese
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin Berlin, Germany
| | - Nicole Roschanski
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin Berlin, Germany
| | - Jayaseelan Murugaiyan
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin Berlin, Germany
| | - Uwe H Roesler
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin Berlin, Germany
| |
Collapse
|
19
|
Osińska A, Korzeniewska E, Harnisz M, Niestępski S. The prevalence and characterization of antibiotic-resistant and virulent Escherichia coli strains in the municipal wastewater system and their environmental fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 577:367-375. [PMID: 27816226 DOI: 10.1016/j.scitotenv.2016.10.203] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Antibiotics are widely used in human and veterinary medicine and in animal production, which increases their concentrations in aquatic ecosystems and contributes to selective pressure on environmental microorganisms. The objective of this study was to identify antibiotic resistance determinants in Escherichia coli strains isolated from untreated and treated wastewater (UWW and TWW) and from river water sampled downstream and upstream (URW and DRW) from the effluent discharge point. The analyzed antibiotic groups were beta-lactams, tetracyclines and fluoroquinolones which are widely used in human and veterinary medicine. The virulence of the isolated E. coli strains was also analyzed, and their clonal relatedness was determined by ERIC (enterobacterial repetitive intergenic consensus sequence) PCR. The highest counts of bacteria resistant to beta-lactams, tetracyclines and fluoroquinolones were noted in UWW at 6.4×104, 4.2×104 and 3.1×103CFU/mL, respectively. A total of 317 E. coli isolates resistant to at least one group of antibiotics were selected among bacterial isolates from river water and wastewater samples. Nearly 38% of those isolates were resistant to all of the tested antibiotics. The highest percent (43%) of multidrug-resistant isolates was noted in UWW samples. Isolates resistant to beta-lactams most frequently harbored blaTEM and blaOXA genes. The group of genes encoding resistance to tetracyclines was most frequently represented by tetA, tetB and tetK, whereas the qnrS gene was noted in isolates resistant to fluoroquinolones. Virulence genes bfpA (65%), ST (56%) and eae (39%) were most widely distributed in all isolates, regardless of their origin. The results of this experiment reveal the dangers associated with environmental contamination by drug-resistant and virulent E. coli strains distributed with treated wastewater. Multidrug resistance was determined more frequently in strains isolated from DRW than in isolates from URW samples. Our findings provide valuable inputs for evaluating public health hazards associated with bacterial contamination.
Collapse
Affiliation(s)
- Adriana Osińska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland.
| | - Sebastian Niestępski
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland.
| |
Collapse
|
20
|
Comparison of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Drinking Well Water and Pit Latrine Wastewater in a Rural Area of China. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4343564. [PMID: 27965975 PMCID: PMC5124634 DOI: 10.1155/2016/4343564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/20/2016] [Indexed: 01/07/2023]
Abstract
The present study was conducted to gain insights into the occurrence and characteristics of extended-spectrum beta-lactamase- (ESBL-) producing Escherichia coli (E. coli) from drinking well water in the rural area of Laiwu, China, and to explore the role of the nearby pit latrine as a contamination source. ESBL-producing E. coli from wells were compared with isolates from pit latrines in the vicinity. The results showed that ESBL-producing E. coli isolates, with the same antibiotic resistance profiles, ESBL genes, phylogenetic group, plasmid replicon types, and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) fingerprints, were isolated from well water and the nearby pit latrine in the same courtyard. Therefore, ESBL-producing E. coli in the pit latrine may be a likely contributor to the presence of ESBL-producing E. coli in rural well water.
Collapse
|
21
|
Prevalence and Characteristics of Salmonella Isolated from Free-Range Chickens in Shandong Province, China. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8183931. [PMID: 27800493 PMCID: PMC5075293 DOI: 10.1155/2016/8183931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/24/2016] [Indexed: 12/04/2022]
Abstract
Compared with chickens raised in intensively managed breeding farms, free-range chickens in China are quite popular due to lower breeding density and less antibiotics usage. However, investigations about Salmonella enterica from free-range chickens are quite rare. The aim of the present study was to investigate prevalence and characteristics of Salmonella in free-range chickens in Shandong province, China. During the period of August and November 2015, 300 fresh fecal swabs from different broilers in three free-range chicken farms (100 samples per farm) were collected to isolate Salmonella, and then these isolates were subjected to serotyping, antibiotic sensitivity testing, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), and multilocus sequence typing (ST). A total of 38 Salmonella isolates (38/300, 12.7%) were recovered. The most common serotype was Enteritidis (81.6%), followed by Indiana (13.2%) and Typhimurium (5.3%). Twenty-two out of 38 isolates (57.9%) were resistant to ampicillin, the highest resistance rate, but resistance rates to cefazolin, cefotaxime, and ceftazidime were only 7.9%. The multidrug resistance (MDR) rate was 26.3%. Additionally, the Salmonella isolates could be classified into 25 genotypes by ERIC-PCR and were divided into three ST types (ST11, ST17, and ST19), with ST11 the highest isolation rate (81.6%). In summary, as with other poultry, free-ranging chickens may also serve as potential reservoir for antibiotic resistant Salmonella, thereby posing a threat to public health.
Collapse
|
22
|
Zhang H, Zhai Z, Li Q, Liu L, Guo S, Li Q, Yang L, Ye C, Chang W, Zhai J. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pigs and Farm Workers. J Food Prot 2016; 79:1630-1634. [PMID: 28221927 DOI: 10.4315/0362-028x.jfp-16-093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food-producing animals can serve as reservoirs for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli . The present study aimed to characterize and compare ESBL-carrying E. coli isolates from both pigs and farm workers. Rectal swabs were obtained from 60 pigs on four pig-fattening farms (15 samples per farm), and rectal swabs were taken from 40 farm workers on these farms (10 samples per farm). ESBL-carrying E. coli isolates from the workers and pigs were characterized by ESBL genotype, antibiotic susceptibility, enterobacterial repetitive intergenic consensus type, and multilocus sequence type. ESBL-producing E. coli was detected in 34 (56.7%) of 60 pigs, and 20.0% (8 of 40) of the farm workers were positive for ESBL-producing E. coli . More importantly, ESBL-producing E. coli isolates with the same β-lactamase genes, antibiotic resistance profiles, enterobacterial repetitive intergenic consensus types, and multilocus sequence types were detected in both pigs and workers on the same pig farm. These findings were suggestive for transfer of ESBL-producing E. coli between animals and humans.
Collapse
Affiliation(s)
- Hongna Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, People's Republic of China
| | - Zhenzhen Zhai
- Digestive Disease Institute, Central Hospital of Tai'an City, Tai'an 271000, People's Republic of China
| | - Qing Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, People's Republic of China
| | - Linghong Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, People's Republic of China
| | - Shuyuan Guo
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, People's Republic of China
| | - Qimeng Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, People's Republic of China
| | - Lingling Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, People's Republic of China
| | - Chaoqun Ye
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, People's Republic of China
| | - Weishan Chang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, People's Republic of China
| | - Jing Zhai
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, People's Republic of China
| |
Collapse
|
23
|
Osińska A, Harnisz M, Korzeniewska E. Prevalence of plasmid-mediated multidrug resistance determinants in fluoroquinolone-resistant bacteria isolated from sewage and surface water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10818-10831. [PMID: 26893181 PMCID: PMC4884563 DOI: 10.1007/s11356-016-6221-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/31/2016] [Indexed: 05/04/2023]
Abstract
Fluoroquinolones (FQs) are fully synthetic broad-spectrum antibacterial agents that are becoming increasingly popular in the treatment of clinical and veterinary infections. Being excreted during treatment, mostly as active compounds, their biological action is not limited to the therapeutic site, but it is moved further as resistance selection pressure into the environment. Water environment is an ideal medium for the aggregation and dissemination of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs), which can pose a serious threat to human health. Because of this, the aim of this study was to determine the number of fluoroquinolone-resistant bacteria (FQRB) and their share in total heterotrophic plate counts (HPC) in treated wastewater (TWW), and upstream and downstream river water (URW, DRW) samples where TWW is discharged. The spread of plasmid-mediated quinolone resistance (PMQR) determinants and the presence/absence of resistance genes to other most popular antibiotic groups (against tetracyclines and beta-lactams) in selected 116 multiresistant isolates were investigated. The share of FQRB in total HPC in all samples was rather small and ranged from 0.7 % in URW samples to 7.5 % in TWW. Bacteria from Escherichia (25.0 %), Acinetobacter (25.0 %), and Aeromonas (6.9 %) genera were predominant in the FQRB group. Fluoroquinolone resistance was mostly caused by the presence of the gene aac(6')-1b-cr (91.4 %). More rarely reported was the occurrence of qnrS, qnrD, as well as oqxA, but qnrA, qnrB, qepA, and oqxB were extremely rarely or never noted in FQRB. The most prevalent bacterial genes connected with beta-lactams' resistance in FQRB were bla TEM, bla OXA, and bla CTX-M. The bla SHV was less common in the community of FQRB. The occurrence of bla genes was reported in almost 29.3 % of FQRB. The most abundant tet genes in FQRB were tet(A), tet(L), tet(K), and tet(S). The prevalence of tet genes was observed in 41.4 % of FQRB. The highest prevalence of multidrug-resistant (MDR) microorganisms was detected in TWW and DRW samples. It indicates that discharged TWW harbors multiresistant bacterial strains and that mobile PMQR and ARGs elements may have a selective pressure for species affiliated to bacteria in the river water.
Collapse
Affiliation(s)
- Adriana Osińska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720, Olsztyn, Poland.
| |
Collapse
|