1
|
Hůnová I, Brabec M, Malý M. Ambient ozone at a rural Central European site and its vertical concentration gradient close to the ground. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80014-80028. [PMID: 37291343 DOI: 10.1007/s11356-023-28016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
The representativeness of ambient air quality of an in situ measurement is key in the use and correct interpretation of the measured concentration values. Though the horizontal representativeness aspect is generally not neglected in air pollution studies, a detailed, high-resolution vertical distribution of ambient air pollutant concentrations is rarely addressed. The aim of this study is twofold: (i) to explore the vertical distribution of ground-level ozone (O3) concentrations measured at four heights above the ground-namely at 2, 8, 50, and 230 m-and (ii) to examine in detail the vertical O3 concentration gradient in air columns between 2 and 8, 8 and 50, and 50 and 230 m above the ground. We use the daily mean O3 concentrations measured continuously at the Košetice station, representing the rural Central European background ambient air quality observed during 2015-2021. We use the semiparametric GAM (generalised additive model) approach (with complexity or roughness-penalised splines implementation) to analyse the data with sufficient flexibility. Our models for both O3 concentrations and O3 gradients use (additive) decomposition into annual trend and seasonality (plus an overall intercept). The seasonal and year-to-year patterns of the modelled O3 concentrations look very similar at first glance. Nevertheless, a more detailed look through O3 gradients shows that they differ substantially with respect to their seasonal and long-term dynamics. The vertical O3 concentration gradient in 2-230 m is not uniform but changes substantially with increasing height and shows by far the highest dynamics near the ground between 2 and 8 m, differing in both the seasonal and annual aspects for all the air columns inspected. We speculate that non-linear changes of both seasonal and annual components of vertical O3 gradients are due to atmospheric-terrestrial interactions and to meteorological factors, which we will explore in a future study.
Collapse
Affiliation(s)
- Iva Hůnová
- Czech Hydrometeorological Institute, Na Sabatce 17, 143 06, Prague 4, Czech Republic.
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, 128 00, Prague 2, Czech Republic.
| | - Marek Brabec
- Institute of Computer Science of the Czech Academy of Sciences, Pod Vodarenskou vezi 2, 182 07, Prague 8, Czech Republic
- National Institute of Public Health, Srobarova 48, 100 00, Prague 10, Czech Republic
| | - Marek Malý
- Institute of Computer Science of the Czech Academy of Sciences, Pod Vodarenskou vezi 2, 182 07, Prague 8, Czech Republic
- National Institute of Public Health, Srobarova 48, 100 00, Prague 10, Czech Republic
| |
Collapse
|
2
|
Reif J, Gamero A, Flousek J, Hůnová I. Ambient ozone - New threat to birds in mountain ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162711. [PMID: 36906038 DOI: 10.1016/j.scitotenv.2023.162711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Mountain ecosystems are inhabited by species with specific characteristics enabling survival at high altitudes, which make them at risk from various pressures. In order to study these pressures, birds represent excellent model organisms due to their high diversity and position at the top of food chains. The pressures upon mountain bird populations include climate change, human disturbance, land abandonment, and air pollution, whose impacts are little understood. Ambient ozone (O3) is one of the most important air pollutants occurring in elevated concentrations in mountain conditions. Although laboratory experiments and indirect course-scale evidence suggest its negative effects on birds, population-level impacts remain unknown. To fill this knowledge gap, we analysed a unique 25-years long time series of annual monitoring of bird populations conducted at fixed sites under constant effort in a Central European mountain range, the Giant Mountains, Czechia. We related annual population growth rates of 51 bird species to O3 concentrations measured during the breeding season and hypothesized (i) an overall negative relationship across all species, and (ii) more negative O3 effects at higher altitudes due to increasing O3 concentration along altitudinal gradient. After controlling for the influence of weather conditions on bird population growth rates, we found an indication of the overall negative effect of O3 concentration, but it was insignificant. However, the effect became stronger and significant when we performed a separate analysis of upland species occupying the alpine zone above treeline. In these species, populations growth rates were lower after the years experiencing higher O3 concentration indicating an adverse impact of O3 on bird breeding. This impact corresponds well to O3 behaviour and mountain bird ecology. Our study thus represents the first step towards mechanistic understanding of O3 impacts on animal populations in nature linking the experimental results with indirect indications at the country-level.
Collapse
Affiliation(s)
- Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czechia.
| | - Anna Gamero
- Czech Society for Ornithology, Prague, Czechia
| | - Jiří Flousek
- Krkonoše National Park Administration, Vrchlabí, Czechia
| | - Iva Hůnová
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia; Czech Hydrometeorological Institute, Prague, Czechia
| |
Collapse
|
3
|
Janík R, Kubov M, Schieber B. The ground-level ozone concentration in forest and urban environments in central Slovakia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:24. [PMID: 36279021 PMCID: PMC9589882 DOI: 10.1007/s10661-022-10605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This paper analyses data by summarising the concentration values of ground-level ozone (GLO). The study area is situated in central Slovakia and is part of the Western Carpathians. These measurements were carried out between 2015 and 2020, implementing Werner's method working with passive samplers. The highest average and the highest absolute GLO deposition values were 30.93 ppb and 61.06 ppb, respectively, recorded in August 2015 in the forest in the Kremnické vrchy Mts. The lowest average GLO value in the whole measuring period was 17.72 ppb, measured in the town of Zvolen; the absolute minimum was 4.43 ppb, recorded in April 2016 on an open plot in the Kremnické vrchy Mts. The GLO formation over the study area has not yet reached a steady rate. Since 2007, the developmental trend has been increasing. Statistically significant differences in GLO concentrations were confirmed between the localities with different airborne pollutions. However, the analysis of the existing ozone concentration values showed considerable differences, especially related to the time pattern. The spatial variability was equalised. The extreme values, while remarkable, were dangerous, especially in the forest stands in the Kremnické vrchy Mts., where they were 14 times above the critical level of 32.5 ppb O3. The dominant factor influencing the GLO concentration was global radiation. The effects of average temperature and rainfall total were less important.
Collapse
Affiliation(s)
- Rastislav Janík
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovak Republic.
| | - Martin Kubov
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovak Republic
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Masaryka 24, 960 01, Zvolen, Slovakia
| | - Branislav Schieber
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovak Republic
| |
Collapse
|
4
|
Hůnová I, Brabec M, Malý M. Trends in ambient O 3 concentrations at twelve sites in the Czech Republic over the past three decades: Close inspection of development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141038. [PMID: 32745851 DOI: 10.1016/j.scitotenv.2020.141038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Ambient or ground-level ozone (O3), a key player in atmospheric chemistry, has been studied extensively throughout the world in recent decades due to its harmful effects on human health and the environment. The aim of this study is to examine in detail the time patterns of O3 in the Czech Republic, a Central European country with a long-term history of ambient air pollution. We have examined the interplay between annual trends and within-a-year seasonality in daily O3 concentrations at twelve stations representing different environments, geographical regions and altitudes in the Czech Republic in 1993-2018. We base our analysis on a generalised additive model (GAM) framework as a modern regression approach suitable for addressing non-linear trend shapes in a formalised and unified way. In particular, we use penalised splines. The inconsistent behaviour of the stations prior to 1998, two local maxima around 2003 and 2006 and a steady increase in O3 at all sites from 2014 to the present are the main features of our study. A seasonality O3 pattern with a clear maximum in May-June is similar for all stations. In parallel with the O3 concentration changes over the years, the deformation of seasonality profiles over a long period of time occurs, resulting in a shift of the peak O3 concentrations towards later days in the year. Our statistical modelling offers a detailed view of both long-term trend and seasonality components separately. Additionally, in a model with trend*seasonality interaction, we are able to study the gradual deformation of the seasonality profile over the years. Capsule: Our analysis of daily mean O3 concentrations at twelve Czech sites in 1993-2018 revealed a steady increase in O3 from 2014 and deformation of the seasonality O3 profiles over the year.
Collapse
Affiliation(s)
- Iva Hůnová
- Czech Hydrometeorological Institute, Na Sabatce 17, 143 06 Prague 4, Komorany, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, 128 00 Prague 2, Czech Republic.
| | - Marek Brabec
- Institute of Computer Science of the Czech Academy of Sciences, Pod Vodarenskou vezi 2, 182 07 Prague 8, Czech Republic; National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic.
| | - Marek Malý
- Institute of Computer Science of the Czech Academy of Sciences, Pod Vodarenskou vezi 2, 182 07 Prague 8, Czech Republic; National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic.
| |
Collapse
|
5
|
Janík R, Kubov M, Schieber B. The ground-level ozone concentration in beech (Fagus sylvatica L.) forests in the West Carpathian Mountains. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:233. [PMID: 32166430 DOI: 10.1007/s10661-020-8176-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
The amount of ground-level ozone in beech forests depends not only on the pollution intensity but also on the other environmental factors. This paper presents the analysis of the concentrations of ground-level ozone during the growing season (April-September) of beech trees, which represent the main objects modifying the microclimate conditions inside the forest. The research was localized in the Kremnické vrchy Mountains in Slovakia and realized during the period of 2004-2013. The study was carried out on four research plots with different stand structure which was caused by various intensities of cuts. Our results showed that the maximum concentration of ozone during this period was observed on the plot where the original beech stand (without management intervention) grown-maximal concentration reached the values from 44.0 to 50.0 ppb (in the sub-periods 2004-2008 and 2009-2013, respectively). On the other hand, the minimum concentration, 14.0 ppb, was found immediately after the cutting in 2004 on the plot, where all adult trees were removed. A similar course was found within average values of the ozone concentration on the research plots. Despite the fact that the results did not confirm significant differences among the plots, temporal trend showed an increasing concentration of ozone on all plots during the study period.
Collapse
Affiliation(s)
- Rastislav Janík
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia.
| | - Martin Kubov
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Branislav Schieber
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| |
Collapse
|
6
|
Abstract
Based on an analysis of related core papers and reports, this review presents a historical perspective on ambient air pollution and ambient air quality development in the modern-day Czech Republic (CR) over the past seven decades, i.e., from the 1950s to the present. It offers insights into major air pollution problems, reveals the main hot spots and problematic regions and indicates the principal air pollutants in the CR. Air pollution is not presented as a stand-alone problem, but in the wider context of air pollution impacts both on human health and the environment in the CR. The review is arranged into three main parts: (1) the time period until the Velvet Revolution of 1989, (2) the transition period of the 1990s and (3) the modern period after 2000. Obviously, a major improvement in ambient air quality has been achieved since the 1970s and 1980s, when air pollution in the former Czechoslovakia culminated. Nevertheless, new challenges including fine aerosol, benzo[a]pyrene and ground-level ozone, of which the limit values are still vastly exceeded, have emerged. Furthermore, in spite of a significant reduction in overall emissions, the atmospheric deposition of nitrogen, in particular, remains high in some regions.
Collapse
|
7
|
Hůnová I, Kurfürst P, Baláková L. Areas under high ozone and nitrogen loads are spatially disjunct in Czech forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:567-575. [PMID: 30529961 DOI: 10.1016/j.scitotenv.2018.11.371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
It is widely accepted that excessive loads of nitrogen (N) deposition and ambient ozone (O3) endanger natural ecosystems and the environment. Despite substantial reductions in emissions since the early 1990s both in the Czech Republic and in neighbouring countries, neither O3 exposures nor N deposition have yet decreased to acceptable levels relative to the recommended thresholds. Based on long-term monitoring and high-quality data, we have indicated the areas of special risk due to high N deposition and O3 exposures in Czech forests in 2000-2015. The areas of potential risk denote those forests under the highest loads of N deposition and O3 exposure on a regular basis. The underlying classification approach is relativistic, i.e. based ultimately on quartiles of pollution intensities and not derived from critical limits or loads. The forest areas under the highest O3 exposures and N deposition are spatially disjunct. The highest O3 exposures are in the southern and the highest N deposition is in the northern Czech Republic. In contrast to our assumption, only 1322 km2, i.e. 4.6% of the total forested area (28,782 km2) are overlapping areas with a potential risk due both to high O3 exposures and to N deposition. Our results provide valuable input information for a more detailed environmental analysis, anticipated in the future, addressing to what extent the indicated areas at potential risk are associated with the actual negative impacts on forests.
Collapse
Affiliation(s)
- Iva Hůnová
- Czech Hydrometeorological Institute, Prague, Czech Republic; Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Czech Republic.
| | - Pavel Kurfürst
- Czech Hydrometeorological Institute, Prague, Czech Republic
| | - Lea Baláková
- Czech Hydrometeorological Institute, Prague, Czech Republic
| |
Collapse
|
8
|
Grivas G, Dimakopoulou K, Samoli E, Papakosta D, Karakatsani A, Katsouyanni K, Chaloulakou A. Ozone exposure assessment for children in Greece - Results from the RESPOZE study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:518-529. [PMID: 28062110 DOI: 10.1016/j.scitotenv.2016.12.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Ozone exposure of 179 children in Athens and Thessaloniki, Greece was assessed during 2013-2014, by repeated weekly personal measurements, using passive samplers. O3 was also monitored at school locations of participants to characterize community-level ambient exposure. Average personal concentrations in the two cities (5.0 and 2.8ppb in Athens and Thessaloniki, respectively) were considerably lower than ambient concentrations (with mean personal/ambient ratios of 0.13-0.15). The temporal variation of personal concentrations followed the -typical for low-latitude areas- pattern of cold-warm seasons. However, differences were detected between temporal distributions of personal and ambient concentrations, since personal exposures were affected by additional factors which present seasonal variability, such as outdoor activity and house ventilation. Significant spatial contrasts were observed between urban and suburban areas, for personal concentrations in Athens, with higher exposure for children residing in the N-NE part of the area. In Thessaloniki, spatial variations in personal concentrations were less pronounced, echoing the spatial pattern of ambient concentrations, a result of complex local meteorology and the smaller geographical expansion of the study area. Ambient concentration was identified as the most important factor influencing personal exposures (correlation coefficients between 0.36 and 0.67). Associations appeared to be stronger with ambient concentrations measured at school locations of children, than to those reported by the nearest site of the air quality monitoring network, indicating the importance of community-representative outdoor monitoring for characterization of personal-ambient relationships. Time spent outdoors by children was limited (>90% of the time they remained indoors), but -due to the lack of indoor sources- it was found to exert significant influence on personal concentrations, affecting inter-subject and spatiotemporal variability. Additional parameters that were identified as relevant for the determination of personal concentrations were indoor ventilation conditions (specifically indoor times with windows open) and the use of wood-burning in open fireplaces for heating as an ozone sink.
Collapse
Affiliation(s)
- Georgios Grivas
- School of Chemical Engineering, National Technical University of Athens, GR 15780, Greece.
| | - Konstantina Dimakopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, School of Medicine, 75, Mikras Asias Street, 115 27 Athens, Greece
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, School of Medicine, 75, Mikras Asias Street, 115 27 Athens, Greece
| | - Despina Papakosta
- Pulmonary Department, G. Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Karakatsani
- 2nd Pulmonary Department, "ATTIKON" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, School of Medicine, 75, Mikras Asias Street, 115 27 Athens, Greece; Department of Primary Care & Public Health Sciences and MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | | |
Collapse
|