1
|
Kološa K, Žegura B, Štampar M, Filipič M, Novak M. Adverse Toxic Effects of Tyrosine Kinase Inhibitors on Non-Target Zebrafish Liver (ZFL) Cells. Int J Mol Sci 2023; 24:ijms24043894. [PMID: 36835302 PMCID: PMC9965539 DOI: 10.3390/ijms24043894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past 20 years, numerous tyrosine kinase inhibitors (TKIs) have been introduced for targeted therapy of various types of malignancies. Due to frequent and increasing use, leading to eventual excretion with body fluids, their residues have been found in hospital and household wastewaters as well as surface water. However, the effects of TKI residues in the environment on aquatic organisms are poorly described. In the present study, we investigated the cytotoxic and genotoxic effects of five selected TKIs, namely erlotinib (ERL), dasatinib (DAS), nilotinib (NIL), regorafenib (REG), and sorafenib (SOR), using the in vitro zebrafish liver cell (ZFL) model. Cytotoxicity was determined using the MTS assay and propidium iodide (PI) live/dead staining by flow cytometry. DAS, SOR, and REG decreased ZFL cell viability dose- and time-dependently, with DAS being the most cytotoxic TKI studied. ERL and NIL did not affect viability at concentrations up to their maximum solubility; however, NIL was the only TKI that significantly decreased the proportion of PI negative cells as determined by the flow cytometry. Cell cycle progression analyses showed that DAS, ERL, REG, and SOR caused the cell cycle arrest of ZFL cells in the G0/G1 phase, with a concomitant decrease of cells in the S-phase fraction. No data could be obtained for NIL due to severe DNA fragmentation. The genotoxic activity of the investigated TKIs was evaluated using comet and cytokinesis block micronucleus (CBMN) assays. The dose-dependent induction of DNA single strand breaks was induced by NIL (≥2 μM), DAS (≥0.006 μM), and REG (≥0.8 μM), with DAS being the most potent. None of the TKIs studied induced micronuclei formation. These results suggest that normal non-target fish liver cells are sensitive to the TKIs studied in a concentration range similar to those previously reported for human cancer cell lines. Although the TKI concentrations that induced adverse effects in exposed ZFL cells are several orders of magnitude higher than those currently expected in the aquatic environment, the observed DNA damage and cell cycle effects suggest that residues of TKIs in the environment may pose a hazard to non-intentionally exposed organisms living in environments contaminated with TKIs.
Collapse
Affiliation(s)
- Katja Kološa
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Elersek T, Novak M, Mlinar M, Virant I, Bahor N, Leben K, Žegura B, Filipič M. Lethal and Sub-Lethal Effects and Modulation of Gene Expression Induced by T Kinase Inhibitors in Zebrafish (Danio Rerio) Embryos. TOXICS 2021; 10:toxics10010004. [PMID: 35051046 PMCID: PMC8781212 DOI: 10.3390/toxics10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are designed for targeted cancer therapy. The consumption of these drugs during the last 20 years has been constantly rising. In the zebrafish (Danio rerio) embryo toxicity test, we assessed the toxicity of six TKIs: imatinib mesylate, erlotinib, nilotinib, dasatinib, sorafenib and regorafenib. Imatinib mesylate and dasatinib induced lethal effects, while regorafenib, sorfenib and dasatinib caused a significant increase of sub-lethal effects, predominantly oedema, no blood circulation and formation of blood aggregates. The analyses of the changes in the expression of selected genes associated with the hormone system after the exposure to imatinib mesylate, dasatinib and regorafenib demonstrated that all three tested TKIs deregulated the expression of oestrogen receptor esr1, cytochrome P450 aromatase (cypa19b) and hydroxysteroid-dehydrogenase (hsd3b), regorafenib, and also thyroglobulin (tg). The expression of genes involved in the DNA damage response (gadd45 and mcm6) and apoptosis (bcl2) was deregulated only by exposure to regorafenib. The data indicate that common mechanisms, namely antiangiogenic activity and interference with steroidogenesis are involved in the TKI induced sub-lethal effects and potential hormone disrupting activity, respectively. The residues of TKIs may represent an environmental hazard; therefore, further ecotoxicological studies focusing also on the effects of their mixtures are warranted.
Collapse
Affiliation(s)
- Tina Elersek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Mateja Mlinar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Igor Virant
- Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Nika Bahor
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Karin Leben
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Correspondence:
| |
Collapse
|
3
|
Pintarič R, Matela J, Pintarič Š, Novak M, Filipič M. Evaluation of potential toxicity of Steriplant ©N aerosolization toward human alveolar cells A459 in vitro. Toxicol Ind Health 2021; 37:520-527. [PMID: 34353172 DOI: 10.1177/07482337211031681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protection of patients against hospital-acquired infections is of major importance. Disinfection of magnetic resonance imaging suites is, due to their unique properties and environment particularly, difficult to implement. We developed an OPTI-JET CS MD 2ZE aerosolizator for disinfection of a magnetic resonance imaging suite using the electrolyzed oxidizing water biocide Steriplant©N. The disinfection of the magnetic resonance imaging suite with this system reduced from the number of colony formed unit/m3 air by 87% and 96% in 6 and 15 min of disinfection, respectively. It is well known that exposure of personnel or patients to aerosols may represent risk to the respiratory system; therefore, the aim of this study was to assess potential cytotoxicity and genotoxicity of Steriplant©N aerosolization toward human alveolar cells A459 in vitro. The A459 cells were exposed to aerosol containing different concentrations (50% and 100% v/v) of Steripalnt©N for 6 min in a chamber that had been constructed to simulate the conditions in the magnetic resonance imaging suite. The cytotoxicity was evaluated by measuring iodide uptake, and the genotoxicity was determined by measuring formation of phosphorylated H2AX histones, a marker for deoxyribonucleic acid double-strand breaks, immediately after the aerosolization and after 1, 4, and 24 h postincubation. The results demonstrated that aerosolization with Steriplant©N at conditions reflecting aerosolization in a magnetic resonance imaging suite is not cytotoxic and does not exhibit genotoxic potential in vitro.
Collapse
Affiliation(s)
- Robert Pintarič
- Department of Radiology, 112806University Medical Centre Maribor, Maribor, Slovenia
| | - Jože Matela
- Department of Radiology, 112806University Medical Centre Maribor, Maribor, Slovenia
| | - Štefan Pintarič
- Department for Sampling and Coordination, Veterinary Faculty, 54767University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Novak
- Department for Genetic Toxicology and Cancer Biology, 54766National Institute of Biology, Večna, Slovenia
| | - Metka Filipič
- Department for Genetic Toxicology and Cancer Biology, 54766National Institute of Biology, Večna, Slovenia
| |
Collapse
|
4
|
Novak M, Baebler Š, Žegura B, Rotter A, Gajski G, Gerić M, Garaj-Vrhovac V, Bakos K, Csenki Z, Kovács R, Horváth Á, Gazsi G, Filipič M. Deregulation of whole-transcriptome gene expression in zebrafish (Danio rerio) after chronic exposure to low doses of imatinib mesylate in a complete life cycle study. CHEMOSPHERE 2021; 263:128097. [PMID: 33297093 DOI: 10.1016/j.chemosphere.2020.128097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Imatinib mesylate (IM) is an anticancer drug that belongs to tyrosine kinase inhibitors. We report the results of the first investigation of the chronic exposure of zebrafish (Danio rerio) to IM. The exposure to IM (0.01, 1 and 100 μg/L) was initiated in adult fish and continued through hatching and the offspring generation for seven months. In addition to standard toxicological endpoints, induction of genotoxic effects and whole-genome transcriptome of liver samples of offspring generation of zebrafish were analysed. Exposure to IM did not affect the survival and growth of zebrafish, did not cause any histopathological changes, but it induced a marginal increase in the chromosomal damage in blood cells. The whole-genome transcriptome analyses demonstrated dose-dependent increase in the number of differentially expressed genes with a significantly higher number of deregulated genes in female fish compared to male. Differentially expressed genes included genes involved in response to DNA damage, cell cycle control and regulation of circadian rhythm. Based on the low genotoxic activity and the pattern of the changes in DNA damage responsive genes we consider that at current environmental exposure levels, IM represents low risk for genotoxic effects in aquatic organisms. Exposure to IM also induced deregulation of the expression of genes associated with steroidogenesis and hormone metabolism and function, which indicates hormone-disrupting activity of IM that has not been studied so far. The study provide new information on the potential consequences of chronic exposure to the residues of tyrosine kinase inhibitors, which remain to be further explored.
Collapse
Affiliation(s)
- Matjaž Novak
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia.
| | - Špela Baebler
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Ana Rotter
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska Cesta 2, 10000, Zagreb, Croatia
| | - Katalin Bakos
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Zsolt Csenki
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Róbert Kovács
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Ákos Horváth
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Gyöngyi Gazsi
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, 1. Pater Károly U, H-2100, Gödöllo, Hungary
| | - Metka Filipič
- National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|
5
|
de Oliveira Klein M, Serrano SV, Santos-Neto Á, da Cruz C, Brunetti IA, Lebre D, Gimenez MP, Reis RM, Silveira HCS. Detection of anti-cancer drugs and metabolites in the effluents from a large Brazilian cancer hospital and an evaluation of ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115857. [PMID: 33139101 DOI: 10.1016/j.envpol.2020.115857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/05/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The use of chemotherapy agents has been growing worldwide, due to the increase number of cancer cases. In several countries, mainly in Europe countries, these drugs have been detected in hospitals and municipal wastewaters. In Brazil this issue is poorly explored. The main goal of this study was to assess the presence of three anti-cancer drugs, 5-fluorouracil (5-FU), gemcitabine (GEM) and cyclophosphamide (CP), and two metabolites, alpha-fluoro-beta-alanine (3-NH2-F) and 2'-deoxy-2',2'-difluorouridine (2-DOH-DiF), in effluents from a large cancer hospital, in the municipal wastewater treatment plant (WWTP) influent and effluent, and also to evaluate toxicity of the mixtures of these compounds by ecotoxicological testing in zebrafish. The sample collections were performed in Barretos Cancer Hospital of the large cancer center in Brazil. After each collection, the samples were filtered for subsequent Liquid Chromatography Mass Spectrometry analysis. The presence of CP, GEM, and both metabolites (3-NH2-F and 2-DOH-DiF) were detected in the hospital wastewater and the WWTP influent. Three drugs, GEM, 2-DOH-DiF and CP, were detected in the WWTP effluent. Two drugs were detected below the limit of quantification, 2-DOH-DiF: <LOQ (above 1400 ng L-1) and CP: <LOQ (above 300 ng L-1), and GEM was quantified at 420 ng L-1. Furthermore, 2-DOH-DiF (116,000 ng L-1) was detected at the highest level in the hospital wastewater. There were no zebrafish deaths at any of the concentrations of the compounds used. However, we observed histological changes, including aneurysms and edema in the gills and areas of necrosis of the liver. In summary, we found higher concentrations of CP, GEM and both metabolites (3-NH2-F and 2-DOH-DiF) were detected for the first time. There is currently no legislation regarding the discharge of anti-cancer drugs in effluents in Brazil. This study is first to focus on effluents from specific treatments from a large cancer hospital located in small city in Brazil.
Collapse
Affiliation(s)
- Mariana de Oliveira Klein
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Sergio V Serrano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil; Barretos School of Health Sciences-FACISB, Barretos, São Paulo, 14785-002, Brazil
| | - Álvaro Santos-Neto
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Claudinei da Cruz
- University Center of the Barretos Educational Foundation (UNIFEB), Barretos, São Paulo, Brazil
| | - Isabella Alves Brunetti
- University Center of the Barretos Educational Foundation (UNIFEB), Barretos, São Paulo, Brazil
| | - Daniel Lebre
- Center for Applied Mass Spectrometry, Sao Paulo, Brazil
| | | | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil; Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil; University of Cuiabá, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
6
|
Jiao R, Xu F, Huang X, Li H, Liu W, Cao H, Zang L, Li Z, Hua H, Li D. Antiproliferative chromone derivatives induce K562 cell death through endogenous and exogenous pathways. J Enzyme Inhib Med Chem 2020; 35:759-772. [PMID: 32183548 PMCID: PMC7144234 DOI: 10.1080/14756366.2020.1740696] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of furoxan derivatives of chromone were prepared. The antiproliferative activities were tested against five cancer cell lines HepG2, MCF-7, HCT-116, B16, and K562, and two normal human cell lines L-02 and PBMCs. Among them, compound 15a exhibited the most potent antiproliferative activity. It was also found 15a produced more than 8 µM of NO at the peak time of 45 min by Griess assay. Generally, antiproliferative activity is positively related to NO release to some extent. Further in-depth studies on apoptosis-related mechanisms showed that 15a caused S-phase cell cycle arrest in a concentration-dependent manner and induced apoptosis significantly through mitochondria-related pathways. Human apoptosis protein array assay also demonstrated 15a increased the expression levels of pro-apoptotic Bax, Bad, HtrA2 and Trail R2/DR5. The expression of catalase and cell cycle blocker claspin were similarly up-regulated. In balance, 15a induced K562 cells death through both endogenous and exogenous pathways.
Collapse
Affiliation(s)
- Runwei Jiao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiaofang Huang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Linghe Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
7
|
Mišík M, Filipic M, Nersesyan A, Kundi M, Isidori M, Knasmueller S. Environmental risk assessment of widely used anticancer drugs (5-fluorouracil, cisplatin, etoposide, imatinib mesylate). WATER RESEARCH 2019; 164:114953. [PMID: 31404901 DOI: 10.1016/j.watres.2019.114953] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 05/21/2023]
Abstract
Anticancer drugs are among the most toxic chemicals, which are commercially produced; therefore, their release in aquatic ecosystems raised concerns in regard to potential adverse effects. This article describes the results of risk assessments concerning their environmental safety, which are based on data generated in the frame of a coordinated EU project ("Cytothreat"). Eight research institutions participated in the project and four widely used anticancer drugs with different mechanisms of therapeutic action (5-fluorouracil 5FU, cisplatin CDDP, imatinib mesylate IM and etoposide ET) were tested in a variety of indicator organisms (cyanobacteria, algae, higher plants, rotifers, crustacea, fish and also in human and fish derived cell lines) in acute/subacute/chronic toxicity assays. Furthermore, genotoxic effects in micronucleus assays, single cell gel electrophoresis experiments and γH2AX tests were studied in plants, crustacea, fish and in various cell lines. We used the results to calculate the predicted no effect concentrations (PNEC) and risk quotients (RQ) by comparing PNEC with predicted environmental concentrations (PEC values) and measured concentrations (MEC) in wastewaters. The most sensitive species in experiments concerning acute toxic and long term effects were in general crustacea (daphnids) after chronic treatment the most pronounced effects were detected with IM followed by CDDP and 5FU. Comparisons between PNEC and PEC values indicate that it is unlikely that the release of these drugs in the aquatic environments leads to adverse effects (RQ values < 1). However, when the assessments were performed with MEC found in highly contaminated municipal wastewaters and hospital effluents, RQ values were obtained which are indicative for moderate adverse effects of IM. Calculations with data from genotoxicity experiments and PEC values are indicative for increased RQ values for all compounds except ET. The most sensitive species were fish (Danio rerio) which were highly responsive towards 5FU and daphnids which were sensitive towards CDDP and IM. When environmental data (from waste waters) were used for the calculations, high RQ values (>100) were obtained for CDDP and IM. These overall conclusions were not substantially altered when the effects of other frequently used cytostatic drugs and combined effects of mixtures of anticancer drugs were taken into consideration. The results of these assessments underline the importance of efficient removal of these chemicals by improved sewage treatment strategies and the need for further investigations of adverse the long term effects of cytostatics in aquatic biota as a consequence of damage of the genetic material in highly sensitive species.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna, 1090, Austria
| | - Metka Filipic
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna, 1090, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100, Caserta, Italy
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna, 1090, Austria.
| |
Collapse
|
8
|
Development of in vitro 3D cell model from hepatocellular carcinoma (HepG2) cell line and its application for genotoxicity testing. Arch Toxicol 2019; 93:3321-3333. [DOI: 10.1007/s00204-019-02576-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022]
|
9
|
Araújo APDC, Mesak C, Montalvão MF, Freitas ÍN, Chagas TQ, Malafaia G. Anti-cancer drugs in aquatic environment can cause cancer: Insight about mutagenicity in tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2284-2293. [PMID: 30292121 DOI: 10.1016/j.scitotenv.2018.09.373] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 05/17/2023]
Abstract
Cyclophosphamide (Cyc) and 5-fluorouracil (5-FU) are two of the most used antineoplastic drugs (AD) in the world. However, their discharge in the environment became a yet-unknown environmental issue that has impact on some groups of animals, such as amphibians. We assessed tadpoles (Lithobates catesbeianus) exposed to environmental concentrations (EC) of Cyc and 5-FU to evaluate whether they can cause morphological and mutagenic changes in them. We defined the following groups: control, positive control (50 mg/L of Cyc), EC-Cyc-I (0.2 μg/L), EC-Cyc-II (0.5 μg/L), EF-Cyc (2.0 μg/L), EC-5-FU-I (13.0 μg/L), EC-5-FU-II (30.4 μg/L) and EF-5-FU (123.5 μg/L). EC groups presented predictive AD concentrations in 10% and 25% hospital-effluent dilutions in water. EF groups met gross hospital-effluent concentrations. Based on our data, ADs caused intestinal changes and influenced the interocular distance in tadpoles after 30-day exposure. We also observed the aneugenic and clastogenic effect of ADs due to the higher frequency of micronucleated and binucleated erythrocytes, and blebbed, multilobulated, notched and kidney-shaped nuclei in animals exposed to them. Based on such changes, we assume that Cyc and 5-FU can trigger malignant cell transformation processes, and cancer, in animals exposed to them, even at low concentrations. Our study is the first to describe that Cyc and 5-FU, spread in the environment, cause damages in non-target organisms opposite to their original end.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Carlos Mesak
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Ítalo Nascimento Freitas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, GO, Brazil.
| |
Collapse
|
10
|
Russo C, Isidori M, Deaver JA, Poynton HC. Toxicogenomic responses of low level anticancer drug exposures in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:40-50. [PMID: 30075441 DOI: 10.1016/j.aquatox.2018.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
The use of anticancer drugs in chemotherapy is increasing, leading to growing environmental concentrations of imatinib mesylate (IMA), cisplatinum (CDDP), and etoposide (ETP) in aquatic systems. Previous studies have shown that these anticancer drugs cause DNA damage in the crustacean Daphnia magna at low, environmentally relevant concentrations. To explore the mechanism of action of these compounds and the downstream effects of DNA damage on D. magna growth and development at a sensitive life stage, we exposed neonates to low level concentrations equivalent to those that elicit DNA damage (IMA: 2000 ng/L, ETP: 300 ng/L, CDDP: 10 ng/L) and performed transcriptomic analysis using an RNA-seq approach. RNA sequencing generated 14 million reads per sample, which were aligned to the D. magna genome and assembled, producing approximately 23,000 transcripts per sample. Over 90% of the transcripts showed homology to proteins in GenBank, revealing a high quality transcriptome assembly, although functional annotation was much lower. RT-qPCR was used to identify robust biomarkers and confirmed the downregulation of an angiotensin converting enzyme-like gene (ance) involved in neuropeptide regulation across all three anticancer drugs and the down-regulation of DNA topoisomerase II by ETP. RNA-seq analysis also allowed for an in depth exploration of the differential splicing of transcripts revealing that regulation of different gene isoforms predicts potential impacts on translation and protein expression, providing a more meaningful assessment of transcriptomic data. Enrichment analysis and investigation of affected biological processes suggested that the DNA damage caused by ETP and IMA influences cell cycle regulation and GPCR signaling. This dysregulation is likely responsible for effects to neurological system processes and development, and overall growth and development. Our transcriptomic approach provided insight into the mechanisms that respond to DNA damage caused by anticancer drug exposure and generated novel hypotheses on how these chemicals may impact the growth and survival of this ecologically important zooplankton species.
Collapse
Affiliation(s)
- Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, I-81100, Caserta, Italy
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania L. Vanvitelli, Via Vivaldi 43, I-81100, Caserta, Italy
| | - Jessica A Deaver
- School for the Environment, University of Massachusetts, 100 Morrissey Blvd., Boston, MA, 02125-3393, United States
| | - Helen C Poynton
- School for the Environment, University of Massachusetts, 100 Morrissey Blvd., Boston, MA, 02125-3393, United States.
| |
Collapse
|
11
|
Białk-Bielińska A, Mulkiewicz E, Stokowski M, Stolte S, Stepnowski P. Acute aquatic toxicity assessment of six anti-cancer drugs and one metabolite using biotest battery - Biological effects and stability under test conditions. CHEMOSPHERE 2017; 189:689-698. [PMID: 28968575 DOI: 10.1016/j.chemosphere.2017.08.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/21/2023]
Abstract
Available ecotoxicological data for anti-cancer drugs and their metabolites are incomplete, and only some studies have been accompanied by chemical analysis. Therefore, the main aim of this study was to evaluate the acute toxicity of the six most commonly used cytostatics, namely cyclophosphamide (CF), ifosfamide (IF), 5-fluorouracil (5-FU), imatinib (IMT), tamoxifen (TAM) and methotrexate (MET) and its metabolite - 7-hydroxymethotrexate (7-OH-MET), towards selected aquatic organisms, namely bacteria Vibrio fischeri, algae Raphidocelis subcapitata, crustaceans Daphnia magna and duckweed Lemna minor. All ecotoxicological tests were accompanied by chemical analysis to determine the differences between nominal and actual concentrations of investigated compounds and their stability under test conditions. For unstable compounds, tests were performed in static and semi-static conditions. It was observed that L. minor was the most sensitive organism. The compounds that were most toxic to aquatic organisms were 5-FU (highly toxic to algae, EC50 = 0.075 mg L-1), MET and TAM (very toxic to highly toxic to duckweed depending on the test conditions; EC50MET 0.08-0.16 mg L-1, EC50TAM 0.18-0.23 mg L-1). It is suspected that MET and 5-FU mainly affected algae and plants most probably because the exposure time was long enough for them to cause a specific effect (they inhibit DNA replication and act predominantly on actively dividing cells). Furthermore, the obtained results also suggest that the toxicity of the metabolites/potentially produced degradation products of MET towards duckweed is lower than that of the parent form, whereas the toxicity of TAM degradation products is in the same range as that of TAM.
Collapse
Affiliation(s)
- Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Marcin Stokowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Stefan Stolte
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; UFT - Center for Environmental Research and Sustainable Technology, Faculty 4, University of Bremen, Leobener Straße, D-28359 Bremen, Germany
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
12
|
Sommer J, Mahli A, Freese K, Schiergens TS, Kuecuekoktay FS, Teufel A, Thasler WE, Müller M, Bosserhoff AK, Hellerbrand C. Analysis of molecular mechanisms of 5-fluorouracil-induced steatosis and inflammation in vitro and in mice. Oncotarget 2017; 8:13059-13072. [PMID: 28055957 PMCID: PMC5355077 DOI: 10.18632/oncotarget.14371] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/05/2016] [Indexed: 12/27/2022] Open
Abstract
Chemotherapy-associated steatohepatitis is attracting increasing attention because it heralds an increased risk of morbidity and mortality in patients undergoing surgery because of liver metastases. The aim of this study was to develop in vitro and in vivo models to analyze the pathogenesis of 5-fluorouracil (5-FU)-induced steatohepatitis. Therefore, primary human hepatocytes and HepG2 hepatoma cells were incubated with 5-FU at non-toxic concentrations up to 24 h. Furthermore, hepatic tissue of C57BL/6N mice was analyzed 24 h after application of a single 5-FU dose (200 mg/kg body weight). In vitro, incubation with 5-FU induced a significant increase of hepatocellular triglyceride levels. This was paralleled by an impairment of mitochondrial function and a dose- and time-dependently increased expression of fatty acid acyl-CoA oxidase 1 (ACOX1), which catalyzes the initial step for peroxisomal β-oxidation. The latter is known to generate reactive oxygen species, and consequently, expression of the antioxidant enzyme heme oxygenase 1 (HMOX1) was significantly upregulated in 5-FU-treated cells, indicative for oxidative stress. Furthermore, 5-FU significantly induced c-Jun N-terminal kinase (JNK) activation and the expression of pro-inflammatory genes IL-8 and ICAM-1. Also in vivo, 5-FU significantly induced hepatic ACOX1 and HMOX1 expression as well as JNK-activation, pro-inflammatory gene expression and immune cell infiltration. In summary, we identified molecular mechanisms by which 5-FU induces hepatocellular lipid accumulation and inflammation. Our newly developed models can be used to gain further insight into the pathogenesis of 5-FU-induced steatohepatitis and to develop therapeutic strategies to inhibit its development and progression.
Collapse
Affiliation(s)
- Judith Sommer
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Abdo Mahli
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Kim Freese
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Tobias S Schiergens
- Biobank o.b. HTCR, Department of General Visceral- and Transplantation Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Andreas Teufel
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Wolfgang E Thasler
- Biobank o.b. HTCR, Department of General Visceral- and Transplantation Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, CCC Erlangen-EMN; Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Department of Internal Medicine I, University Hospital Regensburg, Germany
| |
Collapse
|
13
|
Mohammed OJ, Latif ML, Pratten MK. Diabetes-induced effects on cardiomyocytes in chick embryonic heart micromass and mouse embryonic D3 differentiated stem cells. Reprod Toxicol 2017; 69:242-253. [PMID: 28286266 DOI: 10.1016/j.reprotox.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus during pregnancy is a considerable medical challenge, since it is related to augmented morbidity and mortality concerns for both the fetus and the pregnant woman. Records show that the etiology of diabetic embryopathy is complicated, as many teratological factors might be involved in the mechanisms of diabetes mellitus-induced congenital malformation. In this study, the potential cardiotoxic effect of hyperglycemia with hyperketonemia was investigated by using two in vitro models; primary chick embryonic cardiomyocytes and stem cell derived cardiomyocytes, where adverse effects were recorded in both systems. The cells were evaluated by changes in beating activity, cell activity, protein content, ROS production, DNA damage and differentiating stem cell migration. The diabetic formulae used produced an increase in DNA damage and a decline in cell migration in mouse embryonic stem cells. These results provide an additional insight into adverse effects during gestational diabetes mellitus and a recommendation for expectant mothers and maternity staff to monitor glycaemic levels months ahead of conception. This study also supports the recommendation of using antioxidants during pregnancy to prevent DNA damage by the production of ROS, which might result in heart defects as well as other developmental anomalies.
Collapse
Affiliation(s)
- Omar J Mohammed
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Muhammad Liaque Latif
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Margaret K Pratten
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
14
|
Assessment of the genotoxicity of the tyrosine kinase inhibitor imatinib mesylate in cultured fish and human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 814:14-21. [DOI: 10.1016/j.mrgentox.2016.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022]
|
15
|
Gajski G, Gerić M, Domijan AM, Garaj-Vrhovac V. Combined cyto/genotoxic activity of a selected antineoplastic drug mixture in human circulating blood cells. CHEMOSPHERE 2016; 165:529-538. [PMID: 27681109 DOI: 10.1016/j.chemosphere.2016.09.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Antineoplastic drugs are highly cytotoxic chemotherapeutic agents that can often interfere directly or indirectly with the cell's genome. In an environmental or medical setting simultaneous exposure may occur. Such multiple exposures may pose a higher risk than it could be assumed from the studies evaluating the effect of a single substance. Therefore, in the present study we tested the combined cyto/genotoxicity of a mixture of selected antineoplastic drugs with different mechanisms of action (5-fluorouracil, etoposide, and imatinib mesylate) towards human lymphocytes in vitro. The results suggest that the selected antineoplastic drug mixture is potentially cyto/genotoxic and that it can induce cell and genome damage even at low concentrations. Moreover, the changes in the measured oxidative stress parameters suggest the participation of reactive oxygen species in the cyto/genotoxicity of the selected mixture. The obtained results indicate not only that such mixtures may pose a risk to cell and genome integrity, but also that single compound toxicity data are not sufficient for the predicting toxicity in a complex environment. Altogether, the results emphasise the need for further toxicological screening of antineoplastic drug mixtures, especially at low environmentally relevant concentrations, as to avoid any possible adverse effects on the environment and human health.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| |
Collapse
|
16
|
Heath E, Filipič M, Kosjek T, Isidori M. Fate and effects of the residues of anticancer drugs in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14687-14691. [PMID: 27349788 DOI: 10.1007/s11356-016-7069-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Ester Heath
- Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
- International Postgraduate School Jožef Stefan, Jamova 39, Ljubljana, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Tina Kosjek
- Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
- International Postgraduate School Jožef Stefan, Jamova 39, Ljubljana, Slovenia
| | - Marina Isidori
- Seconda Università degli Studi di Napoli, Via Antonio Vivaldi, 43, 81100, Caserta, CE, Italy
| |
Collapse
|
17
|
Yan D, An G, Kuo MT. C-Jun N-terminal kinase signalling pathway in response to cisplatin. J Cell Mol Med 2016; 20:2013-2019. [PMID: 27374471 PMCID: PMC5082413 DOI: 10.1111/jcmm.12908] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023] Open
Abstract
Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance.
Collapse
Affiliation(s)
- Dong Yan
- Department of Oncology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, China. .,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - GuangYu An
- Department of Oncology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, China
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|