1
|
Briso A, Vega AS, Molinos-Senante M, Pastén P. Challenges and opportunities for drinking water treatment residuals (DWTRs) in metal-rich areas: an integrated approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65599-65612. [PMID: 35488992 DOI: 10.1007/s11356-022-20262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The physicochemistry and production rate of drinking water treatment residuals (DWTRs) depends on the raw water composition and the plant operational parameters. DWTRs usually contain Fe and/or Al oxyhydroxides, sand, clay, organic matter, and other compounds such as metal(oids), which are relevant in mining countries. This work proposes a simple approach to identify DWTRs reuse opportunities and threats, relevant for public policies in countries with diverse geochemical conditions. Raw water pollution indexes and compositions of DWTRs were estimated for Chile as a model case. About 23% of the raw drinking water sources had moderate or seriously contamination from high turbidity and metal(loid) pollution If the untapped reactivity of clean DWRTs was used to treat resources water in the same water company, the 73 and 64% of these companies would be able to treat water sources with As and Cu above the drinking water regulations, respectively. Integrating plant operational data and the hydrochemical characteristics of raw waters allows the prediction of DWTRs production, chemical composition, and reactivity, which is necessary to identify challenges and opportunities for DWTRs management.
Collapse
Affiliation(s)
- Alejandro Briso
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
| | - Alejandra S Vega
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
| | - María Molinos-Senante
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
| | - Pablo Pastén
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile.
| |
Collapse
|
2
|
Wang C, Hao Z, Huang C, Wang Q, Yan Z, Bai L, Jiang H, Li D. Drinking water treatment residue recycled to synchronously control the pollution of polycyclic aromatic hydrocarbons and phosphorus in sediment from aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128533. [PMID: 35219062 DOI: 10.1016/j.jhazmat.2022.128533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Great efforts have long been made to control sediment pollution from persistent organic pollutants and phosphorus for aquatic ecosystem restoration. This study proposed a novel recycling of drinking water treatment residue (DWTR) to synchronously control sediment polycyclic aromatic hydrocarbons (PAHs) and phosphorus pollution based on a 350-day incubation test. The results suggested that DWTR addition reduced approximately 88%- 96% of potential bioavailable PAHs and 76% of mobile phosphorus in sediment. The dominant mechanisms for both reductions by DWTR were immobilization, mainly through increasing sediment amorphous aluminum and iron. The tendency of enhanced PAHs degradation by DWTR was also observed, especially for high molecular weight PAHs (e.g., chrysene, indeno(1, 2, 3-cd)pyrene, and benzo(g, hi)perylene), which decreased by approximately 21.1%- 22.0% of the total. Additionally, accompanying a clear increase in the connections of microbial cooccurrence networks, the variations in bioavailable PAHs, amorphous aluminum and iron, and other properties (e.g., pH, nitrogen, and organic matter) significantly (p < 0.01) enhanced Flavobacterium enrichment, although the enrichment of many other microbes potentially related to PAHs degradation (e.g., C1-B045) decreased after DWTR addition. Therefore, DWTR could promote the construction of a "PAHs immobilization with microbial augmentation" system while immobilizing phosphorus in sediment, indicating the high feasibility of controlling multiple sediment pollution.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianhong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongdong Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210008, China
| |
Collapse
|
3
|
Shen S, Yang S, Jiang Q, Luo M, Li Y, Yang C, Zhang D. Effect of dissolved organic matter on adsorption of sediments to Oxytetracycline: An insight from zeta potential and DLVO theory. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1697-1709. [PMID: 31755059 DOI: 10.1007/s11356-019-06787-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
To reveal the adsorption mechanism of sediment to antibiotics with the presence of dissolved organic matter (DOM), batch experiments were carried out by oxytetracycline (OTC) on sediments with decayed plants (PDOM) and composted chicken manure (MDOM), and the zeta potential in the system before and after adsorption was measured. Results showed that the PDOM promoted the adsorption process, while the MDOM inhibited the adsorption. Adding PDOM, the change of zeta potential (Δζ) increased by 40.08% for first terrace sediments (FT) and 63.98% for riverbed sediments (RB), respectively; meanwhile, MDOM decreased by 20.04% for FT and 28.39% for RB, respectively. The results of kinetic fitting models of replacing the adsorption amount with Δζ were consistent with the initial. It indicated that there was a positive correlation between the adsorption amount and Δζ, and the zeta potential can be used to quickly judge the degree of adsorption process. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory describes the interactions of sediment particles. In terms of adsorption amount, zeta potential (absolute value) and total interaction energy all followed the order: RB > FT, RB-PDOM > FT-PDOM, and RB-MDOM > FT-MDOM. The more negative the zeta potential is, the better the dispersion of the particles is. Stronger repulsion is more conducive to adsorbing positively charged OTC. The site energy distribution theory further explained that the distribution of adsorption site in the various states of sediments increased while adding the PDOM and decreased while adding the MDOM.
Collapse
Affiliation(s)
- Siqi Shen
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China.
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| | - Qianli Jiang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Mengya Luo
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yu Li
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Chunyan Yang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Dan Zhang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
4
|
Leiva J, Wilson PC, Albano JP, Nkedi-Kizza P, O’Connor GA. Pesticide Sorption to Soilless Media Components Used for Ornamental Plant Production and Aluminum Water Treatment Residuals. ACS OMEGA 2019; 4:17782-17790. [PMID: 31681884 PMCID: PMC6822116 DOI: 10.1021/acsomega.9b02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 05/06/2023]
Abstract
Commercial producers of containerized ornamental plants almost exclusively use soilless media as the substrate for growing the plants. Soilless media are composed primarily of organic materials as opposed to mineral soils. Significant amounts of pesticides can leach from pots containing soilless media to which pesticides have been added as drenches or top-dressings. One of the goals of this project was to identify whether individual components comprising soilless media have differing affinities for the pesticides acephate, imidacloprid, metalaxyl, and plant growth regulator paclobutrazol. One-point 24 h equilibrium sorption assays were conducted to characterize sorption of the pesticides to sand, perlite, vermiculite, coir, peat, pine bark, and aluminum-water treatment residuals (Al-WTRs). Five-point isotherms were then constructed for the more sorptive peat and pine bark substrate components, and for the Al-WTRs. Results indicated significant differences in pesticide behavior with each substrate. Sorption of acephate to most of the substrate components was relatively low, comprising 21-31% of the initial amounts for soilless media components and 63% in Al-WTRs. Al-WTRs were highly sorptive for imidacloprid as evidenced by a partition coefficient of K F = 3275.4 L kg-1. Pine bark was the most sorptive for metalaxyl-M with a measured K F = 195.0 L kg-1. Peat had the highest affinity for paclobutrazol (K F = 398.4 L kg-1). These results indicate that none of component of soilless media has a universally high attraction for all of the pesticides studied.
Collapse
Affiliation(s)
- Jorge
A. Leiva
- Programa
de Posgrado en Ciencias Agrícolas y Recursos Naturales, Facultad
de Ciencias Agroalimentarias, Ciudad Universitaria Rodrigo Facio, Universidad de Costa Rica, San José 11503, Costa Rica
| | - P. Chris Wilson
- Institute
of Food and Agricultural Sciences, Soil and Water Sciences Department, University of Florida, 2181 McCarty Hall A, P.O. Box
110290, Gainesville, Florida 32611, United States
| | - Joseph P. Albano
- United
States Department of Agriculture, Agricultural Research Service, U. S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, Florida 34945, United States
| | - Peter Nkedi-Kizza
- Institute
of Food and Agricultural Sciences, Soil and Water Sciences Department, University of Florida, 2181 McCarty Hall A, P.O. Box
110290, Gainesville, Florida 32611, United States
| | - George A. O’Connor
- Institute
of Food and Agricultural Sciences, Soil and Water Sciences Department, University of Florida, 2181 McCarty Hall A, P.O. Box
110290, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
RoyChowdhury A, Sarkar D, Datta R. A combined chemical and phytoremediation method for reclamation of acid mine drainage-impacted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14414-14425. [PMID: 30868460 DOI: 10.1007/s11356-019-04785-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Production of acid mine drainage (AMD) and acid sulfate soils is one of the most concerning environmental consequences associated with mining activities. Implementation of appropriate post-mining AMD management practices is very important to minimize environmental impacts such as high soil acidity, soil erosion, and metal leachability. The objective of this study was to develop a cost-effective and environment-friendly "green" technology for the treatment of AMD-impacted soils. This study utilized the metal-binding and acid-neutralizing capacity of an industrial by-product, namely drinking water treatment residuals (WTRs), and the extensive root system of a metal hyper-accumulating, fast-growing, non-invasive, high-biomass perennial grass, vetiver (Chrysopogon zizanioides L.) to prevent soil erosion. Aluminum (Al)-based and calcium (Ca)-based WTRs were used to treat AMD-impacted soil collected from the Tab-Simco coal mine in Carbondale, IL. Tab-Simco is an abandoned coal mine, with very acidic soil containing a number of metals and metalloids such as Fe, Ni, Zn, Pb, and As at high concentrations. A 4-month-long greenhouse column study was performed using 5% and 10% w/w WTR application rates. Vetiver grass was grown on the soil-WTR mixed media. Turbidity and total suspended solid (TSS) analysis of leachates showed that soil erosion decreased in the soil-WTR-vetiver treatments. Difference in pH of leachate samples collected from control (3.06) and treatment (6.71) columns at day 120 indicated acidity removal potential of this technology. A scaled-up simulated field study was performed using 5% WTR application rate and vetiver. Soil pH increased from 2.69 to 7.2, and soil erosion indicators such as turbidity (99%) and TSS (95%) in leachates were significantly reduced. Results from the study showed that this "green" reclamation technique has the potential to effectively treat AMD-impacted soils.
Collapse
Affiliation(s)
- Abhishek RoyChowdhury
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
6
|
RoyChowdhury A, Sarkar D, Datta R. Removal of Acidity and Metals from Acid Mine Drainage-Impacted Water using Industrial Byproducts. ENVIRONMENTAL MANAGEMENT 2019; 63:148-158. [PMID: 30276442 DOI: 10.1007/s00267-018-1112-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
One of the biggest environmental impacts of mining is the generation of acid mine drainage (AMD). In the absence of proper post-mining management practices, AMD pollution can cause massive environmental damage. Current AMD management practices often fail to meet the expectations of cost, efficiency, and sustainability. The objective of this study was to utilize the metal-binding and acid-neutralizing capacity of an industrial by-product that is otherwise landfilled, namely drinking-water treatment residuals (WTRs), to treat AMD-water, thus offering a green remediation alternative. AMD-water was collected from Tab-Simco coal mine in Carbondale, Illinois. It was highly acidic (pH 2.27), and contaminated with metals, metalloids and sulfate at very high concentrations. A filter media, prepared using locally-generated aluminum (Al) and calcium (Ca)-based WTRs, was used to increase pH and to remove metals and [Formula: see text] from AMD-water. Laboratory-batch sorption studies at various WTRs (Al and Ca):AMD-water ratios were performed to optimize the filter media. WTRs:sand ratio of 1:6 provided optimal permeability, and 1:1 Al-WTRs:Ca-WTRs ratio was the optimal sorbent mix for removal of the metals of concern. A scaled-up study using a 55-gallon WTRs and sand-based filter was designed and tested. The results showed that the filter media removed more than 99% of the initial Fe (137 mg/L), Al (80 mg/L), Zn (11 mg/L), Pb (7 mg/L), As (4 mg/L), Mn (33 mg/L), and 44% of the initial [Formula: see text] (2481 mg/L) from Tab-Simco AMD-water. pH increased from 2.27 to 7.8. Desorption experiments showed that the metals were irreversibly bound to the WTRs and were not released back to the water.
Collapse
Affiliation(s)
- Abhishek RoyChowdhury
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
7
|
RoyChowdhury A, Sarkar D, Datta R. Preliminary studies on potential remediation of acid mine drainage‐impacted soils by amendment with drinking‐water treatment residuals. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/rem.21562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|