1
|
Zhang Y, Zhao A, Mu L, Teng X, Ma Y, Li R, Lei K, Ji L, Wang X, Li P. First Clarification of the Involvement of Glycosyltransferase MdUGT73CG22 in the Detoxification Metabolism of Nicosulfuron in Apple. PLANTS (BASEL, SWITZERLAND) 2024; 13:1171. [PMID: 38732386 PMCID: PMC11085047 DOI: 10.3390/plants13091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Nicosulfuron, an acetolactate synthase (ALS) inhibitor herbicide, is a broad-spectrum and highly effective post-emergence herbicide. Glycosyltransferases (GTs) are widely found in organisms and transfer sugar molecules from donors to acceptors to form glycosides or sugar esters, thereby altering the physicochemical properties of the acceptor molecule, such as participating in detoxification. In this study, nine glycosyltransferases in group D of the apple glycosyltransferase family I were predicted to possibly be involved in the detoxification metabolism of ALS-inhibiting herbicides based on gene chip data published online. In order to confirm this, we analysed whether the expression of the nine glycosyltransferase genes in group D was induced by the previously reported ALS-inhibiting herbicides by real-time PCR (polymerase chain reaction). It was found that the ALS-inhibiting herbicide nicosulfuron significantly increased the expression of the MdUGT73CG22 gene in group D. Further investigation of the mechanism of action revealed that the apple glycosyltransferase MdUGT73CG22 glycosylated and modified nicosulfuron both in vivo and ex vivo to form nicosulfuron glycosides, which were involved in detoxification metabolism. In conclusion, a new glycosyltransferase, MdUGT73CG22, was identified for the first time in this study, which can glycosylate modifications of the ALS-inhibiting herbicide nicosulfuron and may be involved in the detoxification process in plants, which can help to further improve the knowledge of the non-targeted mechanism of herbicides.
Collapse
Affiliation(s)
- Yuefeng Zhang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Aijuan Zhao
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Lijun Mu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Xiao Teng
- Rizhao Research Institute of Agricultural Science, Rizhao 276500, China;
| | - Yingxin Ma
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Ru Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Kang Lei
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Lusha Ji
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Pan Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| |
Collapse
|
2
|
Terol H, Thiour-Mauprivez C, Devers M, Martin-Laurent F, Suzuki M, Calvayrac C, Barthelmebs L. "Structural responses of non-targeted bacterial and hppd communities to the herbicide tembotrione in soil". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168198. [PMID: 37914111 DOI: 10.1016/j.scitotenv.2023.168198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Tembotrione (TBT) is a β-triketone herbicide targeting the 4-Hydroxyphenylpyruvate dioxygenase enzyme (4-HPPD) of weeds. This molecule can also affect soil microorganisms, either through both direct and indirect toxic effects for microorganisms expressing 4-HPPD, or by promoting tolerant and/or degrading microbial populations. Our study aimed to characterize the impacts of TBT on the diversity of total- and hppd (coding for 4-HPPD) -soil bacterial communities. Soil microcosms were treated with the active ingredient TBT at the recommended field dose (100 g a.i/ha; D1) or the tenfold dose (D10). Soil samples were collected from 0 to 55 days post-treatment to study: (i) total- and hppd-bacterial diversities using 16SrRNA and hppd amplicons sequencing, respectively; (ii) TBT dissipation in soil. Both total- and hppd-bacterial community composition was not affected by TBT treatments (D1 and D10). However, D10 treatment slightly increased richness and phylogenetic diversity of the total bacterial community while decreasing hppd richness. Overall, the highest dose of TBT seemed to promote TBT-tolerant or TBT-degrading bacterial populations and to deplete TBT-sensitive ones. These effects were transient as TBT was rapidly dissipated with a DT50 of 7 days and 15 days for D1 and D10, respectively. Differential abundance analysis with a Generalized Linear Model allowed the identification of Sphingomonas, Steroidobacter and Lysobacter as genus that were influenced by TBT, and which could be used as a new class of exposure biomarkers.
Collapse
Affiliation(s)
- Hugo Terol
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Clémence Thiour-Mauprivez
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Marion Devers
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Fabrice Martin-Laurent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Marcelino Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Christophe Calvayrac
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Lise Barthelmebs
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France.
| |
Collapse
|
3
|
Silva CR, Flávia da Silva Rovida A, Gabriele Martins J, Nathane Nunes de Freitas P, Ricardo Olchanheski L, Grange L, Alvim Veiga Pileggi S, Pileggi M. Bacterial adaptation to rhizosphere soil is independent of the selective pressure exerted by the herbicide saflufenacil, through the modulation of catalase and glutathione S-transferase. PLoS One 2023; 18:e0292967. [PMID: 37963158 PMCID: PMC10645333 DOI: 10.1371/journal.pone.0292967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Herbicides cause oxidative stress in nontarget microorganisms, which may exhibit adaptive responses to substances they have not previously encountered. Nevertheless, it is unclear whether these characteristics occur in bacteria isolated from agricultural soil. Two possible adaptation strategies of Stenotrophomonas sp. CMA26 was evaluated in agricultural soil in Brazil, which is considered stressful due to the intense use of pesticides. The study focused on degradation and antioxidant enzymes in response to the herbicide Heat, which was absent at the isolation site. The results indicated that higher concentrations of herbicide led to more intense stress conditions during the initial periods of growth. This was evidenced by elevated levels of malondialdehyde and peroxide, as well as a significant reduction in growth. Our data show that herbicide degradation is a selection-dependent process, as none of the 35 isolates from the same environment in our collection were able to degrade the herbicide. The stress was controlled by changes in the enzymatic modulation of catalase activity in response to peroxide and glutathione S-transferase activity in response to malondialdehyde, especially at higher herbicide concentrations. This modulation pattern is related to the bacterial growth phases and herbicide concentration, with a specific recovery response observed during the mid phase for higher herbicide concentrations. The metabolic systems that contributed to tolerance did not depend on the specific prior selection of saflufenacil. Instead, they were related to general stress responses, regardless of the stress-generating substance. This system may have evolved in response to reactive oxygen species, regardless of the substance that caused oxidative stress, by modulating of the activities of various antioxidant enzymes. Bacterial communities possessing these plastic tolerance mechanisms can survive without necessarily degrading herbicides. However, their presence can lead to changes in biodiversity, compromise the functionality of agricultural soils, and contribute to environmental contamination through drift.
Collapse
Affiliation(s)
- Caroline Rosa Silva
- Department of Biological and Health Sciences, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | | | - Juliane Gabriele Martins
- Department of Biological and Health Sciences, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | | | - Luiz Ricardo Olchanheski
- Department of Biological and Health Sciences, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Luciana Grange
- Department of Agricultural Sciences, Federal University of Paraná—Palotina Sector, Palotina, Brazil
| | - Sônia Alvim Veiga Pileggi
- Department of Biological and Health Sciences, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Marcos Pileggi
- Department of Biological and Health Sciences, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
4
|
Hellal J, Barthelmebs L, Bérard A, Cébron A, Cheloni G, Colas S, Cravo-Laureau C, De Clerck C, Gallois N, Hery M, Martin-Laurent F, Martins J, Morin S, Palacios C, Pesce S, Richaume A, Vuilleumier S. Unlocking secrets of microbial ecotoxicology: recent achievements and future challenges. FEMS Microbiol Ecol 2023; 99:fiad102. [PMID: 37669892 PMCID: PMC10516372 DOI: 10.1093/femsec/fiad102] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Environmental pollution is one of the main challenges faced by humanity. By their ubiquity and vast range of metabolic capabilities, microorganisms are affected by pollution with consequences on their host organisms and on the functioning of their environment. They also play key roles in the fate of pollutants through the degradation, transformation, and transfer of organic or inorganic compounds. Thus, they are crucial for the development of nature-based solutions to reduce pollution and of bio-based solutions for environmental risk assessment of chemicals. At the intersection between microbial ecology, toxicology, and biogeochemistry, microbial ecotoxicology is a fast-expanding research area aiming to decipher the interactions between pollutants and microorganisms. This perspective paper gives an overview of the main research challenges identified by the Ecotoxicomic network within the emerging One Health framework and in the light of ongoing interest in biological approaches to environmental remediation and of the current state of the art in microbial ecology. We highlight prevailing knowledge gaps and pitfalls in exploring complex interactions among microorganisms and their environment in the context of chemical pollution and pinpoint areas of research where future efforts are needed.
Collapse
Affiliation(s)
| | - Lise Barthelmebs
- Université de Perpignan Via Domitia, Biocapteurs – Analyse-Environnement, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Annette Bérard
- UMR EMMAH INRAE/AU – équipe SWIFT, 228, route de l'Aérodrome, 84914 Avignon Cedex 9, France
| | | | - Giulia Cheloni
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech (Liege University), Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | - Marina Hery
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Fabrice Martin-Laurent
- Institut Agro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, 21065 Dijon, France
| | - Jean Martins
- IGE, UMR 5001, Université Grenoble Alpes, CNRS, G-INP, INRAE, IRD Grenoble, France
| | | | - Carmen Palacios
- Université de Perpignan Via Domitia, CEFREM, F-66860 Perpignan, France
- CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | | | - Agnès Richaume
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
| | | |
Collapse
|
5
|
Thiour-Mauprivez C, Dayan FE, Terol H, Devers M, Calvayrac C, Martin-Laurent F, Barthelmebs L. Assessing the effects of β-triketone herbicides on HPPD from environmental bacteria using a combination of in silico and microbiological approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9932-9944. [PMID: 36068455 DOI: 10.1007/s11356-022-22801-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of β-triketone herbicides in plants. This enzyme, involved in the tyrosine pathway, is also present in a wide range of living organisms, including microorganisms. Previous studies, focusing on a few strains and using high herbicide concentrations, showed that β-triketones are able to inhibit microbial HPPD. Here, we measured the effect of agronomical doses of β-triketone herbicides on soil bacterial strains. The HPPD activity of six bacterial strains was tested with 1× or 10× the recommended field dose of the herbicide sulcotrione. The selected strains were tested with 0.01× to 15× the recommended field dose of sulcotrione, mesotrione, and tembotrione. Molecular docking was also used to measure and model the binding mode of the three herbicides with the different bacterial HPPD. Our results show that responses to herbicides are strain-dependent with Pseudomonas fluorescens F113 HPPD activity not inhibited by any of the herbicide tested, when all three β-triketone herbicides inhibited HPPD in Bacillus cereus ATCC14579 and Shewanella oneidensis MR-1. These responses are also molecule-dependent with tembotrione harboring the strongest inhibitory effect. Molecular docking also reveals different binding potentials. This is the first time that the inhibitory effect of β-triketone herbicides is tested on environmental strains at agronomical doses, showing a potential effect of these molecules on the HPPD enzymatic activity of non-target microorganisms. The whole-cell assay developed in this study, coupled with molecular docking analysis, appears as an interesting way to have a first idea of the effect of herbicides on microbial communities, prior to setting up microcosm or even field experiments. This methodology could then largely be applied to other family of pesticides also targeting an enzyme present in microorganisms.
Collapse
Affiliation(s)
- Clémence Thiour-Mauprivez
- University Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
- Agroécologie, INRAE, Institut Agro, Unv. Bourgogne, University Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Franck Emmanuel Dayan
- Agricultural Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Hugo Terol
- University Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Marion Devers
- Agroécologie, INRAE, Institut Agro, Unv. Bourgogne, University Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christophe Calvayrac
- University Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Fabrice Martin-Laurent
- Agroécologie, INRAE, Institut Agro, Unv. Bourgogne, University Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lise Barthelmebs
- University Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| |
Collapse
|
6
|
Wu SC, Shih CC. Experimental validation of stability and applicability of Start Growth Time method for high-throughput bacterial ecotoxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85050-85061. [PMID: 35789463 DOI: 10.1007/s11356-022-21812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Ecotoxicity assessments based on bacteria as model organisms are widely used for routine toxicity screening because it has the advantages of time-saving, high sensitivity, cost-effectiveness, and less ethical responsibility. Determination of ecotoxicity effect via bacterial growth can avoid the restriction of model bacteria selection and unique equipment requirements, but traditional viable cell count methods are relatively labor- and time-intensive. The Start Growth Time method (SGT) is a high-throughput and time-conserving method to determine the amount of viable bacterial cells. However, its usability and stability for ecotoxicity assessment are rarely studied. This study confirmed its applicability in terms of bacterial types (gram-positive and gram-negative), growth phases (middle exponential and early stationary phases), and simultaneous existence of dead cells (adjustment by flow cytometry). Our results verified that the stability of establishing SGT correlation is independent of the bacterial type and dead-cell portion. Moreover, we only observed the effect of growth phases on the slope value of established SGT correlation in Shewanella oneidensis, which suggests that preparing inoculum for the SGT method should be consistent in keeping its stability. Our results also elucidate that the SGT values and the live cell percentages meet the non-linear exponential correlation with high correlation coefficients from 0.97 to 0.99 for all the examined bacteria. The non-linear exponential correlation facilitates the application of the SGT method in the ecotoxicity assessment. Finally, applying the exponential SGT correlation to evaluate the ecotoxicity effect of copper ions on E. coli was experimentally validated. The SGT-based method would require about 6 to 7 h to finish the assessment and obtain an estimated EC50 at 2.27 ± 0.04 mM. This study demonstrates that the exponential SGT correlation can be a high-throughput, time-conversing, and wide-applicable method for bacterial ecotoxicity assessment.
Collapse
Affiliation(s)
- Siang Chen Wu
- Department of Environmental Engineering, National Chung Hsing University, CEE Building, Room 521, 145 Xingda Road, South Dist., Taichung, 40227, Taiwan.
| | - Chang-Chun Shih
- Department of Environmental Engineering, National Chung Hsing University, CEE Building, Room 521, 145 Xingda Road, South Dist., Taichung, 40227, Taiwan
| |
Collapse
|
7
|
Karpouzas DG, Vryzas Z, Martin-Laurent F. Pesticide soil microbial toxicity: setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report). PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pesticides constitute an integral part of modern agriculture. However, there are still concerns about their effects on non-target organisms. To address this the European Commission has imposed a stringent regulatory scheme for new pesticide compounds. Assessment of the aquatic toxicity of pesticides is based on a range of advanced tests. This does not apply to terrestrial ecosystems, where the toxicity of pesticides on soil microorganisms, is based on an outdated and crude test (N mineralization). This regulatory gap is reinforced by the recent methodological and standardization advances in soil microbial ecology. The inclusion of such standardized tools in a revised risk assessment scheme will enable the accurate estimation of the toxicity of pesticides on soil microorganisms and on associated ecosystem services. In this review we (i) summarize recent work in the assessment of the soil microbial toxicity of pesticides and point to ammonia-oxidizing microorganisms (AOM) and arbuscular mycorrhizal fungi (AMF) as most relevant bioindicator groups (ii) identify limitations in the experimental approaches used and propose mitigation solutions, (iii) identify scientific gaps and (iv) propose a new risk assessment procedure to assess the effects of pesticides on soil microorganisms.
Collapse
Affiliation(s)
- Dimitrios G. Karpouzas
- Department of Biochemistry and Biotechnology , Laboratory of Plant and Environmental Biotechnology, University of Thessaly , Viopolis 41500 , Larissa , Greece
| | - Zisis Vryzas
- Department of Agricultural Development , Democritus University of Thrace , Orestiada , Greece
| | | |
Collapse
|
8
|
Ma Q, Tan H, Song J, Li M, Wang Z, Parales RE, Li L, Ruan Z. Effects of long-term exposure to the herbicide nicosulfuron on the bacterial community structure in a factory field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119477. [PMID: 35598816 DOI: 10.1016/j.envpol.2022.119477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This study aims to investigate the effects of long-term nicosulfuron residue on an herbicide factory ecosystem. High-throughput sequencing was used to investigate the environmental microbial community structure and interactions. The results showed that the main contributor to the differences in the microbial community structure was the sample type, followed by oxygen content, pH and nicosulfuron residue concentration. Regardless of the presence or absence of nicosulfuron, soil, sludge, and sewage were dominated by groups of Bacteroidetes, Actinobacteria, and Proteobacteria. Long-term exposure to nicosulfuron increased alpha diversity of bacteria and archaea but significantly decreased the abundance of Bacteroidetes and Acidobateria compared to soils without nicosulfuron residue. A total of 81 possible nicosulfuron-degrading bacterial genera, e.g., Rhodococcus, Chryseobacterium, Thermomonas, Stenotrophomonas, and Bacillus, were isolated from the nicosulfuron factory environmental samples through culturomics. The co-occurrence network analysis indicated that the keystone taxa were Rhodococcus, Stenotrophomonas, Nitrospira, Terrimonas, and Nitrosomonadaceae_MND1. The strong ecological relationship between microorganisms with the same network module was related to anaerobic respiration, the carbon and nitrogen cycle, and the degradation of environmental contaminants. Synthetic community (SynCom), which provides an effective top-down approach for the critical degradation strains obtained, enhanced the degradation efficiency of nicosulfuron. The results indicated that Rhodococcus sp. was the key genus in the environment of long-term nicosulfuron exposure.
Collapse
Affiliation(s)
- Qingyun Ma
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Hao Tan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jinlong Song
- Chinese Academy of Fishery Sciences, Beijing, 100141, PR China
| | - Miaomiao Li
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, PR China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Zhiyong Ruan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, PR China; College of Life Sciences, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
9
|
Zhang YY, Gao S, Liu YX, Wang C, Jiang W, Zhao LX, Fu Y, Ye F. Design, Synthesis, and Biological Activity of Novel Diazabicyclo Derivatives as Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3403-3414. [PMID: 32101688 DOI: 10.1021/acs.jafc.9b07449] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Herbicide safeners selectively protect crops from herbicide damage without reducing the herbicidal efficiency on target weed species. The title compounds were designed by the intermediate derivatization approach and fragment splicing to exploit novel potential safeners. A total of 31 novel diazabicyclo derivatives were synthesized by the microwave-assistant method using isoxazole-4-carbonyl chloride and diazabicyclo derivatives. All synthetic compounds were confirmed by infrared, 1H and 13C nuclear magnetic resonance, and high-resolution mass spectrometry. The bioassay results demonstrated that most of the title compounds could reduce the nicosulfuron phytotoxicity on maize. The glutathione S-transferase (GST) activity in vivo was assayed, and compound 4(S15) revealed an inspiring safener activity comparable to commercialized safeners isoxadifen-ethyl and BAS-145138. The molecular docking model exhibited that the competition at the active sites of target enzymes between compound 4(S15) and nicosulfuron was investigated with respect to herbicide detoxification. The current work not only provided a powerful supplement to the intermediate derivatization approach and fragment splicing in design pesticide bioactive molecules but also assisted safener development and optimization.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yong-Xuan Liu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chen Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Wei Jiang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
10
|
Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:314-325. [PMID: 31153078 DOI: 10.1016/j.scitotenv.2019.05.230] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 05/19/2023]
Abstract
Conventional agriculture still relies on the general use of agrochemicals (herbicides, fungicides and insecticides) to control various pests (weeds, fungal pathogens and insects), to ensure the yield of crop and to feed a constantly growing population. The generalized use of pesticides in agriculture leads to the contamination of soil and other connected environmental resources. The persistence of pesticide residues in soil is identified as a major threat for in-soil living organisms that are supporting an important number of ecosystem services. Although authorities released pesticides on the market only after their careful and thorough evaluation, the risk assessment for in-soil living organisms is unsatisfactory, particularly for microorganisms for which pesticide toxicity is solely considered by one global test measuring N mineralization. Recently, European Food Safety Authority (EFSA) underlined the lack of standardized methods to assess pesticide ecotoxicological effects on soil microorganisms. Within this context, there is an obvious need to develop innovative microbial markers sensitive to pesticide exposure. Biomarkers that reveal direct effects of pesticides on microorganisms are often viewed as the panacea. Such biomarkers can only be developed for pesticides having a mode of action inhibiting a specific enzyme not only found in the targeted organisms but also in microorganisms which are considered as "non-target organisms" by current regulations. This review explores possible ways of innovation to develop such biomarkers for herbicides. We scanned the herbicide classification by considering the mode of action, the targeted enzyme and the ecotoxicological effects of each class of active substance in order to identify those that can be tracked using sensitive microbial markers.
Collapse
Affiliation(s)
- Clémence Thiour-Mauprivez
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21065 Dijon, France
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21065 Dijon, France
| | - Christophe Calvayrac
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Lise Barthelmebs
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
11
|
Zhao R, Zhang X, Chen F, Man X, Jiang W. Study on Electrochemical Degradation of Nicosulfuron by IrO₂-Based DSA Electrodes: Performance, Kinetics, and Degradation Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E343. [PMID: 30691144 PMCID: PMC6388240 DOI: 10.3390/ijerph16030343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 11/20/2022]
Abstract
The widely used sulfonylurea herbicides have caused negative effects on the environment and human beings. Electrochemical degradation has attracted much attention in the treatment of refractory organic compounds due to its advantage of producing no secondary pollution. Three kinds of IrO₂-based dimensionally stable anodes (DSAs) were used to degrade nicosulfuron by a batch electrochemical process. The results showed that a well-distributed crack network was formed on the Ti/Ta₂O₅-IrO₂ electrode and Ti/Ta₂O₅-SnO₂-IrO₂ electrode due to the different coefficients of thermal expansion between the Ti substrate and oxide coatings. The oxygen evolution potential (OEP) increased according to the order of Ti/RuO₂-IrO₂ < Ti/Ta₂O₅-SnO₂-IrO₂ < Ti/Ta₂O₅-IrO₂. Among the three electrodes, the Ti/Ta₂O₅-IrO₂ electrode showed the highest efficiency and was chosen as the experimental electrode. Single factor experiments were carried out to obtain the optimum electrolysis condition, shown as follows: currency intensity 0.8 A; electrode spacing 3 cm, electrolyte pH 3. Under the optimum conditions, the degradation of nicosulfuron followed first-order kinetics and was mainly due to indirect electrochemical oxidation. It was a typical diffusion-controlled electrochemical process. On the basis of the intermediate identified by high performance liquid chromatograph-mass spectrometry (HPLC-MS), two possible degradation routes were proposed.
Collapse
Affiliation(s)
- Rui Zhao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Xuan Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Fanli Chen
- Jinan Tianzheng Technology Co., Ltd., Ji'nan 250353, China.
| | - Xiaobing Man
- Shandong Bluetown Analysis and Testing Co., Ltd, Ji'nan 250353, China.
| | - Wenqiang Jiang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| |
Collapse
|
12
|
Carles L, Rossi F, Besse-Hoggan P, Blavignac C, Leremboure M, Artigas J, Batisson I. Nicosulfuron Degradation by an Ascomycete Fungus Isolated From Submerged Alnus Leaf Litter. Front Microbiol 2018; 9:3167. [PMID: 30619225 PMCID: PMC6305708 DOI: 10.3389/fmicb.2018.03167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/07/2018] [Indexed: 11/14/2022] Open
Abstract
Nicosulfuron is a selective herbicide belonging to the sulfonylurea family, commonly applied on maize crops. Its worldwide use results in widespread presence as a contaminant in surface streams and ground-waters. In this study, we isolated, for the first time, the Plectosphaerella cucumerina AR1 nicosulfuron-degrading fungal strain, a new record from Alnus leaf litter submerged in freshwater. The degradation of nicosulfuron by P. cucumerina AR1 was achieved by a co-metabolism process and followed a first-order model dissipation. Biodegradation kinetics analysis indicated that, in planktonic lifestyle, nicosulfuron degradation by this strain was glucose concentration dependent, with a maximum specific degradation rate of 1 g/L in glucose. When grown on natural substrata (leaf or wood) as the sole carbon sources, the Plectosphaerella cucumerina AR1 developed as a well-established biofilm in 10 days. After addition of nicosulfuron in the medium, the biofilms became thicker, with rising mycelium, after 10 days for leaves and 21 days for wood. Similar biofilm development was observed in the absence of herbicide. These fungal biofilms still conserve the nicosulfuron degradation capacity, using the same pathway as that observed with planktonic lifestyle as evidenced by LC-MS analyses. This pathway involved first the hydrolysis of the nicosulfuron sulfonylurea bridge, leading to the production of two major metabolites: 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-(aminosulfonyl)-N,N-dimethyl-3-pyridinecarboxamide (ASDM). One minor metabolite, identified as 2-(1-(4,6-dimethoxy-pyrimidin-2-yl)-ureido)-N,N-dimethyl-nicotinamide (N3), derived from the cleavage of the C-S bond of the sulfonylurea bridge and contraction by elimination of sulfur dioxide. A last metabolite (N4), detected in trace amount, was assigned to 2-(4,6-dimethoxy-pyrimidin-2-yl)-N,N-dimethyl-nicotinamide (N4), resulting from the hydrolysis of the N3 urea function. Although fungal growth was unaffected by nicosulfuron, its laccase activity was significantly impaired regardless of lifestyle. Leaf and wood surfaces being good substrata for biofilm development in rivers, P. cucumerina AR1 strain could thus have potential as an efficient candidate for the development of methods aiming to reduce contamination by nicosulfuron in aquatic environments.
Collapse
Affiliation(s)
- Louis Carles
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Florent Rossi
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pascale Besse-Hoggan
- Institut de Chimie de Clermont-Ferrand, CNRS, Sigma Clermont, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne (UCA PARTNER), Clermont-Ferrand, France
| | - Martin Leremboure
- Institut de Chimie de Clermont-Ferrand, CNRS, Sigma Clermont, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joan Artigas
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Isabelle Batisson
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
13
|
Römbke J, Bernard J, Martin-Laurent F. Standard methods for the assessment of structural and functional diversity of soil organisms: A review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2018; 14:463-479. [PMID: 29603577 DOI: 10.1002/ieam.4046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/14/2017] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The lack of standardized methods to study soil organisms prevents comparisons across data sets and the development of new global and regional experiments and assessments. Moreover, standardized methods are needed to evaluate the impact of anthropogenic stressors, such as chemicals, on soil organism communities in the regulatory context. The goal of this contribution is to summarize current methodological approaches to measure structural and functional diversity of soil organisms, and to identify gaps and methodological improvements so as to cross data sets generated worldwide. This is urgently needed because several currently ongoing regional and global soil biodiversity studies are not coordinated with one another in terms of methodology, including database development. Therefore, we evaluated the standard methods to sample, identify, determine, and assess soil organisms currently applied or proposed, using well-accepted criteria such as ecological relevance; practicability of usage in terms of resources, time, and costs; and the level of standardization. Methods addressing both the structure and the functions of soil organisms (populations or communities) are included, with a special focus on new molecular methods based on nucleic acid extraction and further analyses by polymerase chain reaction (PCR)-based approaches for microorganisms and invertebrates. We particularly highlight the activities of the Technical Committee (TC) 190 of the International Organization for Standardization (ISO) because ISO guidelines are legally accredited by many national or international authorities when they put conservation laws and regulations into practice. Finally, we propose detailed recommendations regarding gaps in the available set of standards, in order to identify a list of new methods to be standardized. We propose to organize this whole process under the Global Soil Biodiversity Initiative (GSBI) in order to ensure a truly global approach for the assessment of soil biodiversity. Integr Environ Assess Manag 2018;14:463-479. © 2018 SETAC.
Collapse
Affiliation(s)
- Jörg Römbke
- ECT Oekotoxikologie GmbH, Flörsheim, Germany
| | | | | |
Collapse
|
14
|
Hackenberger DK, Palijan G, Lončarić Ž, Jovanović Glavaš O, Hackenberger BK. Influence of soil temperature and moisture on biochemical biomarkers in earthworm and microbial activity after exposure to propiconazole and chlorantraniliprole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:480-489. [PMID: 29121590 DOI: 10.1016/j.ecoenv.2017.10.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Predicted climate change could impact the effects that various chemicals have on organisms. Increased temperature or change in precipitation regime could either enhance or lower toxicity of pesticides. The aim of this study is to assess how change in temperature and soil moisture affect biochemical biomarkers in Eisenia fetida earthworm and microbial activity in their excrements after exposure to a fungicide - propiconazole (PCZ) and an insecticide - chlorantraniliprole (CAP). For seven days, earthworms were exposed to the pesticides under four environmental conditions comprising combinations of two different temperatures (20°C and 25°C) and two different soil water holding capacities (30% and 50%). After exposure, in the collected earthworm casts the microbial activity was measured through dehydrogenase activity (DHA) and biofilm forming ability (BFA), and in the postmitochondrial fraction of earthworms the activities of acetylcholinesterase (AChE), catalase (CAT) and glutathione-S-transferase (GST) respectively. The temperature and the soil moisture affected enzyme activities and organism's response to pesticides. It was determined that a three-way interaction (pesticide concentration, temperature and moisture) is statistically significant for the CAT and GST after the CAP exposure, and for the AChE and CAT after the PCZ exposure. Interestingly, the AChE activity was induced by both pesticides at a higher temperature tested. The most important two-way interaction that was determined occurred between the concentration and temperature applied. DHA and BFA, as markers of microbial activity, were unevenly affected by PCZ, CAP and environmental conditions. The results of this experiment demonstrate that experiments with at least two different environmental conditions can give a very good insight into some possible effects that the climate change could have on the toxicity of pesticides. The interaction of environmental factors should play a more important role in the risk assessments for pesticides.
Collapse
Affiliation(s)
- Davorka K Hackenberger
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000 Osijek, Croatia.
| | - Goran Palijan
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000 Osijek, Croatia.
| | - Željka Lončarić
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000 Osijek, Croatia.
| | - Olga Jovanović Glavaš
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000 Osijek, Croatia.
| | | |
Collapse
|
15
|
Carles L, Joly M, Bonnemoy F, Leremboure M, Batisson I, Besse-Hoggan P. Identification of sulfonylurea biodegradation pathways enabled by a novel nicosulfuron-transforming strain Pseudomonas fluorescens SG-1: Toxicity assessment and effect of formulation. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:184-193. [PMID: 28340990 DOI: 10.1016/j.jhazmat.2016.10.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Nicosulfuron is a selective herbicide belonging to the sulfonylurea family, commonly used on maize culture. A bacterial strain SG-1 was isolated from an agricultural soil previously treated with nicosulfuron. This strain was identified as Pseudomonas fluorescens and is able to quantitatively dissipate 77.5% of nicosulfuron (1mM) at 28°C in the presence of glucose within the first day of incubation. Four metabolites were identified among which ASDM (2-(aminosulfonyl)-N,N-dimethyl-3-pyridinecarboxamide) and ADMP (2-amino-4,6-dimethoxypyrimidine) in substantial proportions, corresponding to the hydrolytic sulfonylurea cleavage. Two-phase dissipation kinetics of nicosulfuron by SG-1 were observed at the highest concentrations tested (0.5 and 1mM) due to biosorption. The extend and rate of formulated nicosulfuron transformation were considerably reduced compared to those with the pure active ingredient (appearance of a lag phase, 30% dissipation after 10days of incubation instead of 100% with the pure herbicide) but the same metabolites were observed. The toxicity of metabolites (standardized Microtox® test) showed a 20-fold higher toxicity of ADMP than nicosulfuron. P. fluorescens strain SG-1 was also able to biotransform two other sulfonylureas (metsulfuron-methyl and tribenuron-methyl) with various novel pathways. These results provide new tools for a comprehensive picture of the sulfonylurea environmental fate and toxicity of nicosulfuron in the environment.
Collapse
Affiliation(s)
- Louis Carles
- Clermont Université, Université Blaise Pascal, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, TSA 60026, CS 60026, 63178 Aubière Cedex, France; CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - Muriel Joly
- Clermont Université, Université Blaise Pascal, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - Frédérique Bonnemoy
- Clermont Université, Université Blaise Pascal, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - Martin Leremboure
- Clermont Université, Université Blaise Pascal, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - Isabelle Batisson
- Clermont Université, Université Blaise Pascal, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, TSA 60026, CS 60026, 63178 Aubière Cedex, France.
| | - Pascale Besse-Hoggan
- Clermont Université, Université Blaise Pascal, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, TSA 60026, CS 60026, 63178 Aubière Cedex, France.
| |
Collapse
|
16
|
Carles L, Rossi F, Joly M, Besse-Hoggan P, Batisson I, Artigas J. Biotransformation of herbicides by aquatic microbial communities associated to submerged leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3664-3674. [PMID: 27885582 DOI: 10.1007/s11356-016-8035-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Leaf microbial communities possess a large panel of enzymes permitting the breakdown of leaf polymers as well as the transformation of organic xenobiotic compounds present in stream waters. This study aims to assess the potential of leaf microbial communities, exhibiting different exposure histories to pesticides (upstream versus downstream), to biotransform three maize herbicides (mesotrione, S-metolachlor, and nicosulfuron) in single and cocktail molecule exposures. The results showed a high dissipation of nicosulfuron (sulfonylurea herbicide) (from 29.1 ± 10.8% to 66 ± 16.2%, day 40) in both single and cocktail exposures, respectively, but not of mesotrione and S-metolachlor. The formation of nicosulfuron metabolites such as ASDM (2-(aminosulfonyl)-N,N-dimethyl-3-pyridinecarboxamide) and ADMP (2-amino-4,6-dimethoxypyrimidine) and the weak sorption (<0.4%) on the leaf matrix confirmed the transformation of this molecule by leaf microorganisms. In addition, the downstream communities showed a greater ability to transform nicosulfuron than the upstream communities suggesting that the exposure history to pesticides is an important parameter and can enhance the biotransformation potential of leaf microorganisms. After 40-day single exposure to nicosulfuron, the downstream communities were also those experiencing the greatest shifts in fungal and bacterial community diversity suggesting a potential adaptation of microorganisms to this herbicide. Our study emphasizes the importance of leaf microbial communities for herbicide biotransformation in polluted stream ecosystems where fungi could play a crucial role.
Collapse
Affiliation(s)
- Louis Carles
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63178, Aubière, France.
- Clermont Université, LMGE, Université Blaise Pascal-Université d'Auvergne, BP 10448, F-63000, Clermont-Ferrand, France.
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF), BP 80026, F-63178, Aubière, France.
- Clermont Université, Université Blaise Pascal, ICCF, F-63000, Clermont-Ferrand, France.
| | - Florent Rossi
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63178, Aubière, France
- Clermont Université, LMGE, Université Blaise Pascal-Université d'Auvergne, BP 10448, F-63000, Clermont-Ferrand, France
| | - Muriel Joly
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63178, Aubière, France
- Clermont Université, LMGE, Université Blaise Pascal-Université d'Auvergne, BP 10448, F-63000, Clermont-Ferrand, France
| | - Pascale Besse-Hoggan
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF), BP 80026, F-63178, Aubière, France
- Clermont Université, Université Blaise Pascal, ICCF, F-63000, Clermont-Ferrand, France
| | - Isabelle Batisson
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63178, Aubière, France
- Clermont Université, LMGE, Université Blaise Pascal-Université d'Auvergne, BP 10448, F-63000, Clermont-Ferrand, France
| | - Joan Artigas
- CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63178, Aubière, France
- Clermont Université, LMGE, Université Blaise Pascal-Université d'Auvergne, BP 10448, F-63000, Clermont-Ferrand, France
| |
Collapse
|