1
|
Garralaga MP, Ferreira I, Lomba L, Pires E, Gracia-Barberán S, Duarte ARC, Diniz M. Assessment of oxidative stress biomarkers in Palaemon varians exposed to deep eutectic systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57959-57972. [PMID: 39305412 PMCID: PMC11467075 DOI: 10.1007/s11356-024-34983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
In recent years, there has been extensive research within the scientific community on deep eutectic systems due to their remarkable versatility in solubilizing diverse substances and serving as effective solvents in catalytic processes. While initially regarded as non-toxic, a comprehensive toxicological assessment is essential to comprehend their behavior within organisms. In this study, seven distinct systems, composed of N,N,N-triethyl-N-(2,3-dihydroxypropyl)ammonium chloride (N00Cl) and glycerol-derived ethers with alkyl chains of varying lengths (100, 200, 3F00, 300, 3i00, and 400), in a 1:2 molar ratio were investigated for their aquatic toxicity in shrimp (Palaemon varians). The assessment involved analyzing oxidative stress biomarkers such as glutathione S-transferase, glutathione peroxidase, catalase, superoxide dismutase, total antioxidant capacity (TAC), and lipoperoxidation (MDA content). Results show an odd-even effect for LC50 values being N00Cl-300, the system showing higher values. Regarding oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidant capacity in the organisms has been observed, suggesting significant toxicity to shrimps due to the changes in oxidative stress biomarkers at high concentrations. However, at 100 mg/l all systems can be considered environmentally safe, and no negative impacts are expected on aquatic ecosystems.
Collapse
Affiliation(s)
- Mª Pilar Garralaga
- Universidad San Jorge. Campus Universitario, Autov A23 Km 299, 50830, Zaragoza, Villanueva de Gállego, Spain
| | - Ines Ferreira
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal
- Department of Chemistry, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Laura Lomba
- Universidad San Jorge. Campus Universitario, Autov A23 Km 299, 50830, Zaragoza, Villanueva de Gállego, Spain
| | - Elisabet Pires
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain
- Depto. Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna, 12, 50009, Zaragoza, Spain
| | - Sara Gracia-Barberán
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain
- Depto. Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna, 12, 50009, Zaragoza, Spain
| | - Ana Rita C Duarte
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal.
| | - Mário Diniz
- Department of Chemistry, UCIBIO, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| |
Collapse
|
2
|
Augis L, Nguyễn CH, Ciseran C, Wacha A, Mercier-Nomé F, Domenichini S, Sizun C, Fourmentin S, Legrand FX. Hydrophobic binary mixtures containing amphotericin B as lipophilic solutions for the treatment of cutaneous leishmaniasis. Int J Pharm 2024; 662:124486. [PMID: 39033940 DOI: 10.1016/j.ijpharm.2024.124486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Cutaneous leishmaniasis, caused by Leishmania parasites, requires treatments with fewer side effects than those currently available. The development of a topical solution based on amphotericin B (AmB) was pursued. The considerable interest in deep eutectic solvents (DESs) and their remarkable advantages inspired the search for a suitable hydrophobic excipient. Various mixtures based on commonly used hydrogen bond donors (HBDs) and acceptors (HBAs) for DES preparations were explored. Initial physical and in-vitro screenings showed the potential of quaternary phosphonium salt-based mixtures. Through thermal analysis, it was determined that most of these mixtures did not exhibit eutectic behavior. X-ray scattering studies revealed a sponge-like nanoscale structure. The most promising formulation, based on a combination of trihexyl(tetradecyl)phosphonium chloride and 1-oleoyl-rac-glycerol, showed no deleterious effects through histological evaluation. AmB was fully solubilized at concentrations between 0.5 and 0.8 mg·mL-1, depending on the formulation. The monomeric state of AmB was observed by circular dichroism. In-vitro irritation tests demonstrated acceptable viability for AmB-based formulations up to 0.5 mg·mL-1. Additionally, an ex-vivo penetration study on pig ear skin revealed no transcutaneous passage, confirming AmB retention in healthy, unaffected skin.
Collapse
Affiliation(s)
- Luc Augis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Cảnh Hưng Nguyễn
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France; Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Cécile Ciseran
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - András Wacha
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Françoise Mercier-Nomé
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 91400 Orsay, France; Université Paris-Saclay, Inserm, Inflammation, Microbiome et Immunosurveillance, 91400 Orsay, France
| | - Séverine Domenichini
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 91400 Orsay, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Sophie Fourmentin
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, 59140 Dunkerque, France
| | | |
Collapse
|
3
|
Hayyan A, Zainal-Abidin MH, Putra SSS, Alanazi YM, Saleh J, Nor MRM, Hashim MA, Gupta BS. Evaluation of biodegradability, toxicity and ecotoxicity of organic acid-based deep eutectic solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174758. [PMID: 39025152 DOI: 10.1016/j.scitotenv.2024.174758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Over the past decade, deep eutectic systems (DES) have become popular, yet their potential toxicity to living organisms is not well understood. This study fills this gap by examining the toxicity, antibacterial activity and biodegradability of p-toluenesulfonic acid monohydrate (PTSA)-based DESs prepared from ammonium or phosphonium salts. Brine shrimp assays revealed varying toxicity levels of PTSA and salts. Allyltriphenylphosphonium bromide showing the longest survival time among all tested salts while PTSA exhibited a significantly longer duration of cell survival compared to other hydrogen bond donors. PTSA and ammonium salts (N,N-diethylethanolammonium chloride and choline chloride) as individual components showed non-toxic behavior for Gram-negative and Gram-positive bacteria while different PTSA-based DESs showed significant inhibition zones. Fish acute ecotoxicity tests indicated moderately toxicity for individual components and DESs, though higher concentrations increased fish mortality, highlighting the need for careful handling and disposal of PTSA-based DESs to the environment. Biodegradability analyses found all tested DESs to be readily biodegradable and it was reported that, DES 3 prepapred form PTSA and choline chloride has the highest biodegradability level. Notably, all tested DESs showed over 60 % biodegradability after 28 days. This groundbreaking study explores PTSA-based DESs, highlighting their biodegradability and potential use as antibacterial agents. Results revealed that PTSA as individual component is much better from toxicity point of view in comparison with PTSA-based DESs for any further industrial applications.
Collapse
Affiliation(s)
- Adeeb Hayyan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Sustainable Process Engineering Centre (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| | - Mohamad Hamdi Zainal-Abidin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | | | - Yousef Mohammed Alanazi
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Jehad Saleh
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohd Roslan Mohd Nor
- Halal Research Group, Academy of Islamic Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohd Ali Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Bhaskar Sen Gupta
- Institute of Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
4
|
Akbar N, Khan AS, Siddiqui R, Ibrahim TH, Khamis MI, Alawfi BS, Al-Ahmadi BM, Khan NA. Phosphonium chloride-based deep eutectic solvents inhibit pathogenic Acanthamoeba castellanii belonging to the T4 genotype. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01180-1. [PMID: 38869777 DOI: 10.1007/s12223-024-01180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
Herein, we investigated the anti-amoebic activity of phosphonium-chloride-based deep eutectic solvents against pathogenic Acanthamoeba castellanii of the T4 genotype. Deep eutectic solvents are ionic fluids composed of two or three substances, capable of self-association to form a eutectic mixture with a melting point lower than each substance. In this study, three distinct hydrophobic deep eutectic solvents were formulated, employing trihexyltetradecylphosphonium chloride as the hydrogen bond acceptor and aspirin, dodecanoic acid, and 4-tert-butylbenzoic acid as the hydrogen bond donors. Subsequently, all three deep eutectic solvents, denoted as DES1, DES2, DES3 formulations, underwent investigations comprising amoebicidal, adhesion, excystation, cytotoxicity, and cytopathogenicity assays. The findings revealed that DES2 was the most potent anti-amoebic agent, with a 94% elimination rate against the amoebae within 24 h at 30 °C. Adhesion assays revealed that deep eutectic solvents hindered amoebae adhesion to human brain endothelial cells, with DES2 exhibiting 88% reduction of adhesion. Notably, DES3 exhibited remarkable anti-excystation properties, preventing 94% of cysts from reverting to trophozoites. In cytopathogenicity experiments, deep eutectic solvent formulations and dodecanoic acid alone reduced amoebae-induced human brain endothelial cell death, with DES2 showing the highest effects. Lactate dehydrogenase assays revealed the minimal cytotoxicity of the tested deep eutectic solvents, with the exception of trihexyltetradecylphosphonium chloride, which exhibited 35% endothelial cell damage. These findings underscore the potential of specific deep eutectic solvents in combating pathogenic Acanthamoeba, presenting promising avenues for further research and development against free-living amoebae.
Collapse
Affiliation(s)
- Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| | - Amir Sada Khan
- Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
- Department of Chemistry, University of Science and Technology Bannu, Bannu, 28100, Khyber Pakhtunkhwa, Pakistan
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, Edinburgh, EH14 4AS, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Taleb Hassan Ibrahim
- Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mustafa I Khamis
- College of Arts and Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates
| | - Bader S Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Bassam M Al-Ahmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| |
Collapse
|
5
|
Ding L, Chanchaona N, Konstas K, Hill MR, Fan X, Wood CD, Lau CH. Synthesizing Hypercrosslinked Polymers with Deep Eutectic Solvents to Enhance CO 2/N 2 Selectivity. CHEMSUSCHEM 2024; 17:e202301602. [PMID: 38298090 DOI: 10.1002/cssc.202301602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Hypercrosslinked polymers (HCPs) are widely used in ion exchange, water purification, and gas separation. However, HCP synthesis typically requires hazardous halogenated solvents e. g., dichloroethane, dichloromethane and chloroform which are toxic to human health and environment. Herein we hypothesize that the use of halogenated solvents in HCP synthesis can be overcome with deep eutectic solvents (DES) comprising metal halides-FeCl3, ZnCl2 that can act as both the solvent hydrogen bond donor and catalyst for polymer crosslinking via Friedel Crafts alkylation. We validated our hypothesis by synthesizing HCPs in DESs via internal and external crosslinking strategies. [ChCl][ZnCl2]2 and [ChCl][FeCl3]2 was more suitable for internal and external hypercrosslinking, respectively. The specific surface areas of HCPs synthesized in DES were 20-60 % lower than those from halogenated solvents, but their CO2/N2 selectivities were up to 453 % higher (CO2/N2 selectivity of poly-α,α'-dichloro-p-xylene synthesized in [ChCl][ZnCl2]2 via internal crosslinking reached a value of 105). This was attributed to the narrower pore size distributions of HCPs synthesized in DESs.
Collapse
Affiliation(s)
- Liang Ding
- School of Engineering, The University of Edinburgh, Kings Building, Edinburgh, EH93FB, United Kingdom
| | - Nadhita Chanchaona
- School of Engineering, The University of Edinburgh, Kings Building, Edinburgh, EH93FB, United Kingdom
| | - Kristina Konstas
- Manufacturing Unit, CSIRO Australia, Gate 3 Normanby Road, VIC, 3141
| | - Matthew R Hill
- Manufacturing Unit, CSIRO Australia, Gate 3 Normanby Road, VIC, 3141
| | - Xianfeng Fan
- School of Engineering, The University of Edinburgh, Kings Building, Edinburgh, EH93FB, United Kingdom
| | - Colin D Wood
- Energy Business Unit, CSIRO Australia, Kensington, WA, 6151, Australia
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Kings Building, Edinburgh, EH93FB, United Kingdom
| |
Collapse
|
6
|
Swebocki T, Kocot AM, Barras A, Arellano H, Bonnaud L, Haddadi K, Fameau AL, Szunerits S, Plotka M, Boukherroub R. Comparison of the Antibacterial Activity of Selected Deep Eutectic Solvents (DESs) and Deep Eutectic Solvents Comprising Organic Acids (OA-DESs) Toward Gram-Positive and Gram-Negative Species. Adv Healthc Mater 2024; 13:e2303475. [PMID: 38310366 DOI: 10.1002/adhm.202303475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/30/2023] [Indexed: 02/05/2024]
Abstract
Deep eutectic solvents (DESs) have been intensively investigated in recent years for their antibacterial properties, with DESs that comprise organic acids (OA-DESs) showing promising antibacterial action. However a majority of the reports focused only on a limited number strains and techniques, which is not enough to determine the antibacterial potential of a substance. To bridge this gap, the antibacterial activity of classical DESs and OA-DESs is assessed on twelve Gram-negative and Gram-positive bacteria strains, with some of them exhibiting specific resistance toward antibiotics. The investigated formulations of OA-DESs comprise glycolic, malic, malonic, and oxalic acids as representatives of this group. Using a range of microbiological assays as well as physicochemical characterization methods, a major difference of the effectiveness between the two groups is demonstrated, with OA-DESs exhibiting, as expected, greater antibacterial effectiveness than classical DESs. Most interestingly, slight differences in the minimum inhibitory and bactericidal concentration values as well as time-kill kinetics profiles are observed between Gram-positive and Gram-negative strains. Transmission electron microscopy analysis reveals the effect of the treatment of the bacteria with the representatives of both groups of DESs, which allows us to better understand the possible mechanism-of-action of these novel materials.
Collapse
Affiliation(s)
- Tomasz Swebocki
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Aleksandra M Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Alexandre Barras
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Helena Arellano
- Université de Lille, CNRS, INRAe, UMR 8207 - UMET - Unité Matériaux et Transformations, Centrale Lille, Lille, 59000, France
| | - Leila Bonnaud
- Laboratory of Polymeric and Composite Materials, Materia Nova Innovation Center in Materials of the University of Mons, 3 Avenue Nicolas Copernic, Mons, B-7000, Belgium
| | - Kamel Haddadi
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Anne-Laure Fameau
- Université de Lille, CNRS, INRAe, UMR 8207 - UMET - Unité Matériaux et Transformations, Centrale Lille, Lille, 59000, France
| | - Sabine Szunerits
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| |
Collapse
|
7
|
Muhammad G, Xu J, Li Z, Zhao L, Zhang X. Current progress and future perspective of microalgae biomass pretreatment using deep eutectic solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171547. [PMID: 38458467 DOI: 10.1016/j.scitotenv.2024.171547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Pretreatment process is considered as the most important step for effective microalgae biomass refining and has gained more interest since last decades. However, the main obstacles to commercialize microalgae products are recalcitrant cell wall and lack of cost-effective, green, and sustainable pretreatment approaches. Till now, various microalgae pretreatment approaches have been applied prior to extraction steps to enhance the accessibility of solvent inside the cells. However, high energy consumption and the hazardousness of solvents are considerable problem for these pretreatment methods. In this regard, deep eutectic solvents are recognized as sustainable and green solvents possessing great potential for microalgae biomass processing due to their low toxicity, low cost, biodegradability, easy recycling, and reuse. This article provides the fundamentals of DES composition, synthesis, properties, and the current advances in the application of microalgae biomass process.
Collapse
Affiliation(s)
- Gul Muhammad
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Jingliang Xu
- School of Chemical Engineering Zhengzhou, University, Zhengzhou 450001, Henan, China
| | - Zhenglong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China; National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhao
- College of Engineering, Shenyang Agricultural University, Shenyang 110161, China.
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China; National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Ferreira C, Sarraguça M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals (Basel) 2024; 17:124. [PMID: 38256957 PMCID: PMC10820243 DOI: 10.3390/ph17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The extraction of bioactive compounds of pharmaceutical interest from natural sources has been significantly explored in recent decades. However, the extraction techniques used were not very efficient in terms of time and energy consumption; additionally, the solvents used for the extraction were harmful for the environment. To improve the environmental impact of the extractions and at the same time increase the extraction yields, several new extraction techniques were developed. Among the most used ones are ultrasound-assisted extraction and microwave-assisted extraction. These extraction techniques increased the yield and selectivity of the extraction in a smaller amount of time with a decrease in energy consumption. Nevertheless, a high volume of organic solvents was still used for the extraction, causing a subsequent environmental problem. Neoteric solvents appeared as green alternatives to organic solvents. Among the neoteric solvents, deep eutectic solvents were evidenced to be one of the best alternatives to organic solvents due to their intrinsic characteristics. These solvents are considered green solvents because they are made up of natural compounds such as sugars, amino acids, and carboxylic acids having low toxicity and high degradability. In addition, they are simple to prepare, with an atomic economy of 100%, with attractive physicochemical properties. Furthermore, the huge number of compounds that can be used to synthesize these solvents make them very useful in the extraction of bioactive compounds since they can be tailored to be selective towards a specific component or class of components. The main aim of this paper is to give a comprehensive review which describes the main properties, characteristics, and production methods of deep eutectic solvents as well as its application to extract from natural sources bioactive compounds with pharmaceutical interest. Additionally, an overview of the more recent and sustainable extraction techniques is also given.
Collapse
Affiliation(s)
| | - Mafalda Sarraguça
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| |
Collapse
|
9
|
Denis AA, Toledo D, Hakim QA, Quintana AA, Escobar CR, Oluwole SA, Costa A, Garcia EG, Hill AR, Agatemor C. Ligand-Independent Activation of Aryl Hydrocarbon Receptor and Attenuation of Glutamine Levels by Natural Deep Eutectic Solvent. Chembiochem 2023; 24:e202300540. [PMID: 37615422 DOI: 10.1002/cbic.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Natural deep eutectic solvents (NADESs) are emerging sustainable alternatives to conventional organic solvents. Beyond their role as laboratory solvents, NADESs are increasingly explored in drug delivery and as therapeutics. Their increasing applications notwithstanding, our understanding of how they interact with biomolecules at multiple levels - metabolome, proteome, and transcriptome - within human cell remain poor. Here, we deploy integrated metabolomics, proteomics, and transcriptomics to probe how NADESs perturb the molecular landscape of human cells. In a human cell line model, we found that an archetypal NADES derived from choline and geranic acid (CAGE) significantly altered the metabolome, proteome, and transcriptome. CAGE upregulated indole-3-lactic acid and 4-hydroxyphenyllactic acid levels, resulting in ligand-independent activation of aryl hydrocarbon receptor to signal the transcription of genes with implications for inflammation, immunomodulation, cell development, and chemical detoxification. Further, treating the cell line with CAGE downregulated glutamine biosynthesis, a nutrient rapidly proliferating cancer cells require. CAGE's ability to attenuate glutamine levels is potentially relevant for cancer treatment. These findings suggest that NADESs, even when derived from natural components like choline, can indirectly modulate cell biology at multiple levels, expanding their applications beyond chemistry to biomedicine and biotechnology.
Collapse
Affiliation(s)
| | - Daniela Toledo
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | | | | | | | - Arthur Costa
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | - Anaya Rose Hill
- Department of Biology, University of Miami, Miami, FL-33146, USA
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
- Department of Biology, University of Miami, Miami, FL-33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, University of Miami, Miami, FL-33136, USA
| |
Collapse
|
10
|
Siddiqui R, Khodja A, Ibrahim T, Khamis M, Anwar A, Khan NA. The increasing importance of novel deep eutectic solvents as potential effective antimicrobials and other medicinal properties. World J Microbiol Biotechnol 2023; 39:330. [PMID: 37792153 DOI: 10.1007/s11274-023-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
With the rise of antibiotic resistance globally, coupled with evolving and emerging infectious diseases, there is an urgent need for the development of novel antimicrobials. Deep eutectic solvents (DES) are a new generation of eutectic mixtures that depict promising attributes with several biological implications. DES exhibit unique properties such as low toxicity, biodegradability, and high thermal stability. Herein, the antimicrobial properties of DES and their mechanisms of action against a range of microorganisms, including bacteria, amoebae, fungi, viruses, and anti-cancer properties are reviewed. Overall, DES represent a promising class of novel antimicrobial agents as well as possessing other important biological attributes, however, future studies on DES are needed to investigate their underlying antimicrobial mechanism, as well as their in vivo effects, for use in the clinic and public at large.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelhamid Khodja
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mustafa Khamis
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| |
Collapse
|
11
|
Vahidi SH, Monhemi H, Hojjatipour M, Hojjatipour M, Eftekhari M, Vafaeei M. Supercritical CO 2/Deep Eutectic Solvent Biphasic System as a New Green and Sustainable Solvent System for Different Applications: Insights from Molecular Dynamics Simulations. J Phys Chem B 2023; 127:8057-8065. [PMID: 37682109 DOI: 10.1021/acs.jpcb.3c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Deep eutectic solvents (DESs) are one of the most interesting research subjects in green chemistry nowadays. Due to their low toxicity, simple synthesis, and lower prices, they have gradually taken the place of other green solvents such as ionic liquids (ILs) in sustainable processes. However, problems such as high viscosity and high polarity limit the applications of DESs in areas such as extraction, catalysis, and biocatalysis. In this work, we introduce and evaluate the potential application of scCO2/DES for the first time. Molecular dynamics simulations were used to examine the phase behavior, polarity, molecular mobilities, and microstructure of this system. Results show that CO2 molecules can significantly diffuse to the DES phase, while DES components do not appear in the scCO2 phase. The diffused CO2 molecules significantly enhanced the molecular mobility of the DES components. The presence of CO2 molecules changes the DES polarity so that hexane can be solubilized and dispersed in the DES phase. Radial distribution functions show that the solubilized CO2 molecules have negligible effects on the microstructure of DES. It was shown that chloride and urea are the main interaction sites of CO2 in DES. The results of this study show that scCO2/DES as a new class of green and versatile solvents can open a new promising window for research in sustainable chemistry and engineering.
Collapse
Affiliation(s)
- S Hooman Vahidi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran
| | - Hassan Monhemi
- Departement of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur 9319774446, Iran
| | - Mehri Hojjatipour
- Departement of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur 9319774446, Iran
| | - Mahnaz Hojjatipour
- Departement of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur 9319774446, Iran
| | - Mohammad Eftekhari
- Departement of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur 9319774446, Iran
| | - Majid Vafaeei
- Departement of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur 9319774446, Iran
| |
Collapse
|
12
|
Li D, Wang X, Hou X, Sun S, Chen X, Zhang H. Synthesis of hydrophilic glyceryl monocaffeate with economical catalyst cation-exchange resin Amberlyst-35. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4676-4684. [PMID: 36905092 DOI: 10.1002/jsfa.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Caffeic acid (CA) has anti-oxidation and anti-inflammatory. However, the poor hydrophilicity of CA limits its biological activities. In this work, hydrophilic glyceryl monocaffeate (GMC) was synthesized by esterification using different caffeoyl donors (deep eutectic solvent and solid CA). Cation-exchange resins were used as the catalysts. The effects of reaction conditions were also investigated. RESULTS The mass transfer limitation of esterification was eliminated using deep eutectic solvent. Compared with the previous catalysts (immobilized lipase Novozym 435), an economic cation-exchange resin, Amberlyst-35 (A-35), showed good catalytic performance for GMC preparation. The activation energies of GMC synthesis and CA conversion were 43.71 kJ mol-1 and 43.07 kJ mol-1 , respectively. The optimal reaction conditions were a temperature reaction of 90 °C, catalyst load of 7%, glycerol/CA molar ratio of 5:1 (mol mol-1 ), and reaction time of 24 h, which resulted in a maximum GMC yield and CA conversion of 69.75 ± 1.03% and 82.23 ± 2.02%, respectively. CONCLUSION The results of the work showed a promising alternative for the synthesis of GMC. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dami Li
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Xinying Wang
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Xuebei Hou
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Shangde Sun
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Xiaowei Chen
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Hao Zhang
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
13
|
Nie MN, Wang Z, Niu QH, Dai JX, Wang QQ, Peng JS, Ji P. Acidity Scale in a Choline Chloride- and Ethylene Glycol-Based Deep Eutectic Solvent and Its Implication on Carbon Dioxide Absorption. J Org Chem 2023; 88:5368-5376. [PMID: 37079700 DOI: 10.1021/acs.joc.2c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An equilibrium acidity (pKa) scale that comprises 16 Brönsted organic acids, including phenols, carboxylic acids, azoles, and phenylmalononitriles, was established in a choline chloride/EG-based deep eutectic solvent (DES) ([Ch][Cl]:2EG) by ultraviolet-visible (UV-Vis) spectroscopic methods. The established acidity scale spans about 6 pK units in the DES, which is similar to that for these acids in water. The acidity comparisons and linear correlations between the DES and other solvents show that the solvent property of [Ch][Cl]:2EG is quite different from those of amphiphilic protic and dipolar aprotic molecular solvents. The carbon dioxide absorption capabilities as well as apparent absorption kinetics for a series of anion-functionalized DESs ([Ch][X]:2EG) were measured, and the results show that the basicity of comprising anion [X] of choline salt is essential for the maximum carbon dioxide absorption capacity, i.e., a stronger basicity leads to a greater absorption capacity. The possible absorption mechanisms for carbon dioxide absorption in these DESs were also discussed based on the spectroscopic evidence.
Collapse
Affiliation(s)
- Man-Ni Nie
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Zhen Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qian-Hang Niu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Jia-Xing Dai
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qi-Qi Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Jin-Song Peng
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Pengju Ji
- Centre of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Evaluating the status quo of deep eutectic solvent in food chemistry. Potentials and limitations. Food Chem 2023; 406:135079. [PMID: 36463595 DOI: 10.1016/j.foodchem.2022.135079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Conventional organic solvents (e.g., methanol, ethanol, ethyl acetate) are widely used for extraction, reaction, and separation of valuable compounds. Although these solvents are effective, they have disadvantages, including flammability, toxicity, and persistence in the environment. Deep eutectic solvents (DESs) are valued for their biodegradability/low impact on the environment, low cost, and ease of manufacture. The objective of this review was to provide an overview of applications of DES in food chemistry, specifically in regard of extraction of polyphenols (e.g., anthocyanin, rutin, kaempferol, quercetin, resveratrol), protein, carbohydrates (e.g., chitin, pectins), lipids and lipid-soluble compounds (e.g., free fatty acids, astaxanthin, β-carotene, terpenoids), biosensor development, and use in food safety (pyrethroids, Sudan I, bisphenol A, Pb2+, Cd2+, etc.) over the past five years. A comprehensive analysis and discussion of DES types, preparation, structures, and influencing factors is provided. Furthermore, the potential and disadvantages of using DESs to extract biomolecules were assessed. We concluded that DES is a viable alternative for extracting polyphenols, carbohydrates, and lipids as well as use in food safety monitoring and biosensor development. However, more work is needed to address shortcomings, and determine whether using compounds extracted with DES can be consumed safely.
Collapse
|
15
|
Makoś-Chełstowska P. VOCs absorption from gas streams using deep eutectic solvents - A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130957. [PMID: 36860043 DOI: 10.1016/j.jhazmat.2023.130957] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) are one of the most severe atmospheric pollutants. They are mainly emitted into the atmosphere from anthropogenic sources such as automobile exhaust, incomplete fuel combustion, and various industrial processes. VOCs not only cause hazards to human health or the environment but also adversely affect industrial installation components due to their specific properties, i.e., corrosive and reactivity. Therefore, much attention is being paid to developing new methods for capturing VOCs from gaseous streams, i.e., air, process streams, waste streams, or gaseous fuels. Among the available technologies, absorption based on deep eutectic solvents (DES) is widely studied as a green alternative to other commercial processes. This literature review presents a critical summary of the achievements in capturing individual VOCs using DES. The types of used DES and their physicochemical properties affecting absorption efficiency, available methods for evaluating the effectiveness of new technologies, and the possibility of regeneration of DES are described. In addition, critical comments on the new gas purification methods and future perspectives are included.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; EcoTech Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
16
|
Siddiqui R, Makhlouf Z, Akbar N, Khamis M, Ibrahim T, Khan AS, Khan NA. Antiamoebic properties of Methyltrioctylammonium chloride based deep eutectic solvents. Cont Lens Anterior Eye 2023; 46:101758. [PMID: 36243521 DOI: 10.1016/j.clae.2022.101758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE This aim of this study was to assess anti-parasitic properties of deep eutectic solvents against eye pathogen, Acanthamoeba, often associated with the use of contact lens. METHODS Assays were performed to investigate the effects of various Methyltrioctylammonium chloride-based deep eutectic solvents on Acanthamoeba castellanii, comprising amoebicidal assays, encystment assays, excystment assays, cytotoxicity assays by measuring lactate dehydrogenase release from human cells, and cytopathogenicity assays to determine parasite-mediated host cell death. RESULTS In a 2 h incubation period, DES-B, DES-C, DES-D, and DES-E exhibited up to 85 % amoebicidal activity at micromolar doses, which was enhanced further following 24 h incubation. When tested in encystment assays, selected deep eutectic solvents abolished cyst formation and were able to block excystment of A. castellanii. All solvents exhibited minimal human cell cytotoxicity except DES-D. Finally, all tested deep eutectic solvents inhibited amoeba-mediated cytopathogenicity, except DES-B. CONCLUSIONS Deep eutectic solvents show potent antiamoebic effects. These findings are promising and could lead to the development of novel contact lens disinfectants, as well as opening several avenues to explore the molecular mechanisms, various doses and incubation periods, and use of different bases against Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates; Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Mustafa Khamis
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amir Sada Khan
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates; Department of Chemistry, University of Science & Technology, Banuu 28100, Khyber Pakhtunkhwa, C
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University, City, Sharjah 27272, United Arab Emirates; Istinye Faculty of Medicine, Istinye University, Istanbul, Turkey..
| |
Collapse
|
17
|
Deep Eutectic Solvents – ideal solution for clean air or hidden danger? Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
18
|
Chinh Nguyen H, Hagos Aregawi B, Fu CC, Chyuan Ong H, Barrow CJ, Su CH, Wu SJ, Juan HY, Wang FM. Biodiesel production through electrolysis in the presence of choline chloride-based deep eutectic solvent: Optimization by response surface methodology. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
19
|
Sotouneh F, Reza Jamali M, Asghari A, Rajabi M. Simultaneous preconcentration and determination of trace metals in edible plants and water samples by a novel solvent bar microextraction using a meltblown layer of facemask as the extractant phase holder combined with FAAS. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
20
|
Moradi Taklimi S, Divsalar A, Ghalandari B, Ding X, Luisa Di Gioia M, Omar KA, Akbar Saboury A. Effects of Deep Eutectic Solvents on the Activity and Stability of Enzymes. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
21
|
Cao Y, Li Y, Sun M, Xu Y, Chen L. Unexpectedly Superhigh Toxicity of Superbase-Derived Deep Eutectic Solvents albeit High Efficiency for CO 2 Capture and Conversion. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Mingjie Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Yufan Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China
| | - Li Chen
- Experimental Teaching Center of Public Health and Preventive Medicine, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
22
|
Joarder S, Bansal D, Meena H, Kaushik N, Tomar J, Kumari K, Bahadur I, Ha Choi E, Kaushik NK, Singh P. Bioinspired green deep eutectic solvents: preparation, catalytic activity, and biocompatibility. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Inayat S, Ahmad SR, Awan SJ, Nawshad M, Ali Q. In vivo and in vitro toxicity profile of tetrabutylammonium bromide and alcohol-based deep eutectic solvents. Sci Rep 2023; 13:1777. [PMID: 36720927 PMCID: PMC9889713 DOI: 10.1038/s41598-023-28928-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023] Open
Abstract
Deep eutectic solvents (DESs) have emerged as new promising solvents in the field of "green chemistry," which possess a broad range of potential applications. However, the ecotoxicological profile of these solvents is still poorly known. In this study, ammonium-based deep eutectic solutions with glycerol (2:2), ethylene glycol (1:2), and diethylene glycol (1:2) as hydrogen bond donors in 1:2 proportion were evaluated for their interaction with various biological systems, including gram-positive and negative bacteria, fungi, fish, and human fibroblast cell lines. The DES synthesis was confirmed by Fourier transform infrared spectroscopy analysis, which analyses the interactions between DES precursors for their synthesis. The antimicrobial activity of tetrabutylammonium bromide: ethylene glycol was the most potent, while tetrabutylammonium bromide: diethylene glycol had a higher LC50 against C. carpio fish. Tetrabutylammonium bromide: glycerol was supposed to be the most suitable DES in terms of cell viability percentage (118%) and 2,2-diphenyl-1-picrylhydrazyl scavenging activity (93%). Finally, tetrabutylammonium bromide in glycerol can be considered an eco-friendly solvent due to its lower toxicity in both in vivo and in vitro environments.
Collapse
Affiliation(s)
- Shamaila Inayat
- College of Earth and Environmental Sciences, Quaid e Azam Campus, University of the Punjab, Lahore, Pakistan.,Zoology Department, Kinnaird College for Women, Lahore, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, Quaid e Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Sana Javaid Awan
- Zoology Department, Kinnaird College for Women, Lahore, Pakistan.
| | - Muhammad Nawshad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, KPK, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
24
|
Constantinescu-Aruxandei D, Oancea F. Closing the Nutrient Loop-The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2096. [PMID: 36767462 PMCID: PMC9915181 DOI: 10.3390/ijerph20032096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The recovery of plant mineral nutrients from the bio-based value chains is essential for a sustainable, circular bioeconomy, wherein resources are (re)used sustainably. The widest used approach is to recover plant nutrients on the last stage of biomass utilization processes-e.g., from ash, wastewater, or anaerobic digestate. The best approach is to recover mineral nutrients from the initial stages of biomass biorefinery, especially during biomass pre-treatments. Our paper aims to evaluate the nutrient recovery solutions from a trans-sectorial perspective, including biomass processing and the agricultural use of recovered nutrients. Several solutions integrated with the biomass pre-treatment stage, such as leaching/bioleaching, recovery from pre-treatment neoteric solvents, ionic liquids (ILs), and deep eutectic solvents (DESs) or integrated with hydrothermal treatments are discussed. Reducing mineral contents on silicon, phosphorus, and nitrogen biomass before the core biorefinery processes improves processability and yield and reduces corrosion and fouling effects. The recovered minerals are used as bio-based fertilizers or as silica-based plant biostimulants, with economic and environmental benefits.
Collapse
Affiliation(s)
| | - Florin Oancea
- Department of Bioresources, Bioproducts Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania
| |
Collapse
|
25
|
Li P, Zhang Z, Zhang X, Li K, Jin Y, Wu W. DES: their effect on lignin and recycling performance. RSC Adv 2023; 13:3241-3254. [PMID: 36756401 PMCID: PMC9872775 DOI: 10.1039/d2ra06033g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
Lignocellulosic biomass raw materials are renewable resources with abundant reserves in nature, and have many advantages, such as being green, biodegradable and cheap. Lignin, one of the three significant components of lignocellulose, possesses a chemical structure rich in phenylpropane and is a primary aromatic resource for the bio-based economy. For the extraction and degradation of lignin, the most common method is the pretreatment of lignocellulose with deep eutectic solvents (DES), which have similar physicochemical properties to ionic liquids (ILs) but address the disadvantages associated with ILs (DES have the advantages of low cost, low toxicity, and non-flammability). In lignocellulose pretreatment, a large amount of solvent is generally required to achieve the desired effect. However, after treatment, a substantial volume of solvent will be wasted, and thus, the problem of the recovery and reuse of DES solution needs to be adequately solved. The methods and mechanisms of perfect DES regeneration will be discussed from the perspective of the elemental composition and features of DESs in this review, which will also outline the present DES recovery methods, such as rotary evaporation, membrane separation, freeze-drying, electrodialysis, etc. The detailed process and the advantages and disadvantages of each method since 2018 are introduced in detail. Future DES recovery methods have been prospected, and the optimization of the functional properties of DESs after recovery is discussed. It is expected to find a convenient and efficient application method for DES extraction or degradation of lignin with low energy and low cost.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Zihui Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry UniversityNanjing210037China
| | - Xiaoxue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
26
|
Li M, Rao C, Ye X, Wang M, Yang B, Wang C, Guo L, Xiong Y, Cui X. Applications for natural deep eutectic solvents in Chinese herbal medicines. Front Pharmacol 2023; 13:1104096. [PMID: 36699048 PMCID: PMC9868165 DOI: 10.3389/fphar.2022.1104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Chinese herbal medicines (CHMs), with a wide range of bioactive components, are considered to be an important source for new drug discovery. However, the process to isolate and obtain those bioactive components to develop new drugs always consumes a large amount of organic solvents with high toxicity and non-biodegradability. Natural deep eutectic solvents (NADES), a new type of green and designable solvents composed of primary plant-based metabolites, have been used as eco-friendly substitutes for traditional organic solvents in various fields. Due to the advantages of easy preparation, low production cost, low toxicity, and eco-friendliness, NADES have been also applied as extraction solvents, media, and drug delivery agents in CHMs in recent years. Besides, the special properties of NADES have been contributed to elucidating the traditional processing (also named Paozhi in Chinese) theory of CHMs, especially processing with honey. In this paper, the development process, preparation, classification, and applications for NADES in CHMs have been reviewed. Prospects in the future applications and challenges have been discussed to better understand the possibilities of the new solvents in the drug development and other uses of CHMs.
Collapse
Affiliation(s)
- Minghui Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Cheng Rao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqian Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Mei Wang
- Leiden University–European Center for Chinese Medicine and Natural Compounds, Institute of Biology Leiden, Leiden University, Leiden, Netherlands,SU Biomedicine BV, Leiden, Netherlands
| | - Boyuan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China
| | - Liqun Guo
- Center for Drug Discovery & Technology Development of Yunnan Traditional Medicine, Kunming, China
| | - Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China,Leiden University–European Center for Chinese Medicine and Natural Compounds, Institute of Biology Leiden, Leiden University, Leiden, Netherlands,*Correspondence: Yin Xiong, ; Xiuming Cui,
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Panax notoginseng, Kunming University of Science and Technology, Kunming, China,*Correspondence: Yin Xiong, ; Xiuming Cui,
| |
Collapse
|
27
|
Nejrotti S, Antenucci A, Pontremoli C, Gontrani L, Barbero N, Carbone M, Bonomo M. Critical Assessment of the Sustainability of Deep Eutectic Solvents: A Case Study on Six Choline Chloride-Based Mixtures. ACS OMEGA 2022; 7:47449-47461. [PMID: 36591154 PMCID: PMC9798394 DOI: 10.1021/acsomega.2c06140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
An outline of the advantages, in terms of sustainability, of Deep Eutectic Solvents (DESs) is provided, by analyzing some of the most popular DESs, obtained by the combination of choline chloride, as a hydrogen bond acceptor, and six hydrogen bond donors. The analysis is articulated into four main issues related to sustainability, which are recurrently mentioned in the literature, but are often taken for granted without any further critical elaboration, as the prominent green features of DESs: their low toxicity, good biodegradability, renewable sourcing, and low cost. This contribution is intended to provide a more tangible, evidence-based evaluation of the actual green credentials of the considered DESs, to reinforce or question their supposed sustainability, also in mutual comparison with one another.
Collapse
Affiliation(s)
- Stefano Nejrotti
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Achille Antenucci
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
- Centro
Ricerche per la Chimica Fine s.r.l. for Silvateam s.p.a., Via Torre 7, San Michele Mondovì (CN) 12080, Italy
| | - Carlotta Pontremoli
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Lorenzo Gontrani
- Department
of Chemical Science and Technologies, University
of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - Nadia Barbero
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
- Institute
of Science, Technology and Sustainability
for the Development of Ceramic Materials (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Marilena Carbone
- Department
of Chemical Science and Technologies, University
of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - Matteo Bonomo
- Department
of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
| |
Collapse
|
28
|
Martínez GM, Townley GG, Martínez-Espinosa RM. Controversy on the toxic nature of deep eutectic solvents and their potential contribution to environmental pollution. Heliyon 2022; 8:e12567. [PMID: 36619414 PMCID: PMC9813709 DOI: 10.1016/j.heliyon.2022.e12567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Deep eutectic solvents (DES) are promising reaction media where interesting catalytic processes can be carried out. In theory, most of these mixtures are environmentally friendly, being an alternative to traditionally pollutant organic solvents used in several processes related to organic chemistry and biotechnology. However, recent studies show contradictory results regarding their toxicity. The method selected to perform toxicity studies could be significantly conditioned by some of the physical properties displayed by the DESs. Also, the metabolic capabilities of the organisms/cells used to monitor their toxicity are influenced by their physical properties. In this review, relevant physical-chemical properties for toxicity studies are summarized. The advantages/disadvantages of the used tests to monitor their toxicity and biodegradability in connection with the chosen organisms/cells are discussed, shedding light on their limitations. These findings could be taken as a starting point for designing more accurate DESs toxicity studies covering a wider spectrum of organisms and cells to be used as biomodels to monitor environmental pollution caused by DESs.
Collapse
Affiliation(s)
- Guillermo Martínez Martínez
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, Ap. 99, E-03080, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Gabriela Guillena Townley
- Organic Chemistry Department and Organic Synthesis Institute (ISO), University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, Ap. 99, E-03080, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Ap. 99, E-03080, Alicante, Spain
| |
Collapse
|
29
|
Tuning toxic properties of polyethylene glycol-based deep eutectic solvents for achieving greener solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Boateng ID. A Critical Review of Emerging Hydrophobic Deep Eutectic Solvents' Applications in Food Chemistry: Trends and Opportunities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11860-11879. [PMID: 36099559 DOI: 10.1021/acs.jafc.2c05079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their low cost, biodegradability, and ease of preparation, deep eutectic solvents (DESs) are considered promising green alternatives to conventional solvents, as exploiting green solvents has been a research focus for achieving sustainable development goals. Most DESs in published studies are hydrophilic. On the other hand, the DES's hydrophilicity restricts its practical applicability to just polar molecules, which is a vital disadvantage to this extractant. Hydrophobic DES (HDES) has been developed as a new extractant adept at extracting nonpolar inorganic and organic compounds from aqueous systems. Although there has been little research on HDESs (HDES publications account for <10% of DES), specific intriguing applications have been discovered, requiring investigation and comparisons. As a result, this review covers the applications of emerging HDES in detecting pesticide residues, food additives, contaminants in food packaging, heavy metals, separation and extraction processes in food. According to the available literature, HDESs have the potential to overcome the limitations of hydrophilic DESs and be used in a broader range of applications in food with greater efficiency, which has received little attention. HDES is expected to substitute a lot of harmful organic extractants used for analytical reasons (food chemistry) in the future. Besides, the limitations of HDES were reviewed, and future studies were provided. This will serve as a reference for green chemistry advocates and practitioners in food science who want to minimize pollution and improve efficiency and benefit from the further development of HDESs.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, Missouri 65211, United States
| |
Collapse
|
31
|
Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF, Tok TT. Derivation of an anti-cancer drug nanocarrier using a malonic acid-based deep eutectic solvent as a functionalization agent. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Li B, Li Q, Wang Q, Yan X, Shi M, Wu C. Deep eutectic solvent for spent lithium-ion battery recycling: comparison with inorganic acid leaching. Phys Chem Chem Phys 2022; 24:19029-19051. [PMID: 35938373 DOI: 10.1039/d1cp05968h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents (DESs) as novel green solvents are potential options to replace inorganic acids for hydrometallurgy. Compared with inorganic acids, the physicochemical properties of DESs and their applications in recycling of spent lithium-ion batteries were summarized. The viscosity, metal solubility, toxicological properties and biodegradation of DESs depend on the hydrogen bond donor (HBD) and acceptor (HBA). The viscosity of ChCl-based DESs increased according to the HBD in the following order: alcohols < carboxylic acids < sugars < inorganic salts. The strongly coordinating HBDs increased the solubility of metal oxide via surface complexation reactions followed by ligand exchange for chloride in the bulk solvent. Interestingly, the safety and degradability of DESs reported in the literature are superior to those of inorganic acids. Both DESs and inorganic acids have excellent metal leaching efficiencies (>99%). However, the reaction kinetics of DESs are 2-3 orders of magnitude slower than those of inorganic acids. A significant advantage of DESs is that they can be regenerated and recycled multiple times after recovering metals by electrochemical deposition or precipitation. In the future, the development of efficient and selective DESs still requires a lot of attention.
Collapse
Affiliation(s)
- Bensheng Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China. .,Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.,Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China. .,Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.,Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410083, China
| | - Xuelei Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Miao Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Chao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| |
Collapse
|
33
|
Marchel M, Cieśliński H, Boczkaj G. Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity─Important Limitations of DESs as Sustainable Materials. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mateusz Marchel
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
34
|
|
35
|
Tran VT, Catenza KF, Donkor KK, Schmidt KJ, Crabtree HJ, Warrender NA. Analytical characterization of choline chloride in oilfield process waters and commercial samples by capillary electrophoresis. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, a rapid and sensitive method using capillary electrophoresis with indirect UV detection and minimal sample pretreatment was developed and evaluated to analyze choline chloride in oilfield process water samples. To improve peak resolution and separation of choline chloride from other cations present in the samples, the addition of a cationic visualization agent in the background electrolyte, imidazole, and a complexing agent, 18-crown-6, were introduced. Other factors affecting separation and sensitivity were also investigated. Under optimized conditions, choline chloride was baseline separated (<7 min) from common cationic adulterants in commercial choline chloride products with a peak resolution of >1.5 between adjacent peaks. The limits of detection (signal-to-noise ratio = 3) and quantitation (signal-to-noise ratio = 10) were 14.7 and 48.9 mg L−1, respectively. The peak area and migration time’s intraday and interday precision (percent RSD) were all <15%, and the recoveries ranged from 79.4% to 115.2% at different spiking levels. Finally, statistical (Student’s t-test) comparison of the choline chloride content data of oilfield process water samples from the proposed capillary electrophoresis (CE) method compare favourably with traditional methods such as liquid chromatography – mass spectrometry (LC–MS) and Reinecke salt gravimetry.
Collapse
Affiliation(s)
- Vi T. Tran
- Department of Physical Sciences (Chemistry), Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - Karizza F. Catenza
- Department of Physical Sciences (Chemistry), Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - Kingsley K. Donkor
- Department of Physical Sciences (Chemistry), Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | | | | | | |
Collapse
|
36
|
Deep Eutectic Solvents (DESs): Preliminary Results for Their Use Such as Biocides in the Building Cultural Heritage. MATERIALS 2022; 15:ma15114005. [PMID: 35683303 PMCID: PMC9182045 DOI: 10.3390/ma15114005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
Biodeterioration is an increasingly widespread process of degradation in the context of the conservation of cultural heritage, which involves a combination of physical and chemical damages together with an aesthetic alteration of materials. For biological damage on monuments caused by pathogens, macro- and microorganisms, chemical treatments are generally used, most of the time dangerous for the environment and for the operator. In this context, new eco-friendly products represent necessary tools for the treatment of biologically deteriorated stone surfaces and represent a new challenge in the field of restoration and conservation of materials of cultural interest. A relatively new class of unconventional green solvents are deep eutectic solvents (DESs), which have peculiar chemical-physical characteristics such as being non-toxic, ecological, biodegradable, non-flammable, and stable in the presence of water. Furthermore, many DESs known in the literature have also been shown to have a biocidal action. All these characteristics make DESs very advantageous and safe, and they could be used as biocidal agents for the treatment of biodegraded surfaces of cultural heritage, being non-toxic for the environment and for the operator. So far, they are used in various fields, but they still represent a novel frontier in the cultural heritage sector. The present research aims at testing five different DESs for the first time in cultural heritage. In particular, DESs are applied to a mosaic located in the Ostia Antica Archaeological Park (Rome), and their efficiency is compared with a biocide product currently used in the restoration field, namely, Preventol RI50, through luminescence, bio-luminometry, and spectrocolorimetry analysis. The preliminary results achieved show the different behaviors of each DESs, highlighting the possibility of employing them in the field of cultural heritage. Further studies have been planned, some of which are already underway, to investigate the properties of DESs and indicate any improvements to make them more effective, both as solvents and as biocides, and easy to apply to various types of materials. The results obtained from this first study are very promising for the use of DES as a new green strategy for cleaning and conservation treatments of materials in the field of cultural heritage.
Collapse
|
37
|
Zhang H, Liu X, Han M, Zhang R. Conversion of bio-carbohydrates to 5-hydroxymethylfurfural in three-component deep eutectic solvent. RSC Adv 2022; 12:14957-14963. [PMID: 35702210 PMCID: PMC9115872 DOI: 10.1039/d2ra01688e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
5-Hydroxymethylfurfural (HMF) is a valuable platform chemical derived from biomass and lots of research focuses on the synthesis of HMF from fructose and glucose. Herein, conversion of bio-carbohydrates to 5-hydroxymethylfurfural (HMF) was studied in the three-component deep eutectic solvent (DES) system, which was composed of choline chloride (ChCl), boric acid and substrates such as fructose, glucose and sucrose. Bio-carbohydrates handled under typical reaction conditions gave satisfactory conversion (44% for fructose and 31% for glucose) and yield of HMF (35% for fructose and 21% for glucose) in 1 h. Moreover, owing to the benefits of DES, the initial substrate content could be higher and the reaction temperature could be reduced, thus side reactions were effectively avoided and the selectivity of HMF was better (ranging from 79% to 100% for fructose and from 65% to 100% for glucose). We believe this method could provide a promising alternative for conversion of bio-carbohydrates to HMF and a better utilization of biomass.
Collapse
Affiliation(s)
- Hongtao Zhang
- Engineering Research Center of Large Scale Reactor Engineering and Technology Ministry of Education, School of Chemical Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xiao Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 China
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 China
| | - Rui Zhang
- Engineering Research Center of Large Scale Reactor Engineering and Technology Ministry of Education, School of Chemical Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering Shanghai 200062 China
| |
Collapse
|
38
|
Indra S, Subramanian R, Daschakraborty S. Absorption of Volatile Organic Compounds Toluene and Acetaldehyde in Choline Chloride-Based Deep Eutectic Solvents. J Phys Chem B 2022; 126:3705-3716. [PMID: 35545798 DOI: 10.1021/acs.jpcb.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unrestricted emission of volatile organic compounds (VOCs)─a threat to human health and the environment─can be controlled to a large extent by the capturing mechanism. Few recent experimental studies explored the efficacy of the deep eutectic solvent (DES), a designer solvent with some fascinating properties, as a VOC-capturing medium. Through the partition coefficient measurement, it was found that the choline chloride-based DESs exhibit excellent VOC-capturing potencies. However, a molecular picture of the above absorption process is still lacking. Here, we study the molecular mechanism of the absorption of two commonly occurring VOCs, toluene and acetaldehyde, in two different choline chloride-based DESs with varying donor molecules, urea, and levulinic acid via the molecular dynamics simulation technique. Strong absorption of the VOCs is observed in both the DESs. The free energy profile for the absorption process has been explored using the umbrella sampling method. The VOCs are preferentially solvated near the liquid/vapor interface. The simulated partition coefficients for the VOCs from the vapor to the liquid phase show good agreement with the experimental results. Detailed analyses of the spatial and orientational structure of the VOCs and different components of DESs are performed to elucidate the interaction among them. The above analyses have indicated that DES is a better VOC-capturing medium compared to a room-temperature ionic liquid, which is more extensively studied in the literature.
Collapse
Affiliation(s)
- Sandipa Indra
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India
| | | |
Collapse
|
39
|
Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity. Antioxidants (Basel) 2022; 11:antiox11040724. [PMID: 35453409 PMCID: PMC9027353 DOI: 10.3390/antiox11040724] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/26/2022] Open
Abstract
In this study, the extraction efficiency of natural deep eutectic solvents (NADES) based on choline chloride as a hydrogen bond acceptor (HBA) and five different hydrogen bond donors (HBD; lactic acid, 1,4-butanediol, 1,2-propanediol, fructose and urea) was evaluated for the first time for the isolation of valuable bioactive compounds from Achillea millefolium L. The phytochemical profiles of NADES extracts obtained after ultrasound-assisted extraction were evaluated both spectrophotometrically (total phenolic content (TPC) and antioxidant assays) and chromatographically (UHPLC-MS and HPLC-UV). The results were compared with those obtained with 80% ethanol, 80% methanol, and water. The highest TPC value was found in the lactic acid-based NADES (ChCl-LA), which correlated with the highest antioxidant activity determined by the FRAP analysis. On the other hand, the highest antiradical potential against ABTS+• was determined for urea-based NADES. Phenolic acids (chlorogenic acid and dicaffeoylquinic acid isomers), flavones (luteolin and apigenin), and their corresponding glucosides were determined as the dominant individual phenolic compounds in all extracts. The antibacterial and antifungal properties of the extracts obtained against four bacterial cultures and two yeasts were evaluated using two methods: the agar dilution method to obtain the minimum inhibitory concentration (MIC) and the minimum bactericidal or fungicidal concentration (MBC or MFC), and the disc diffusion method. ChCl-LA had the lowest MIC and MBC/MFC with respect to all microorganisms, with an MIC ranging from 0.05 mg mL−1 to 0.8 mg mL−1, while the water extract had the weakest inhibitory activity with MIC and MBC/MFC higher than 3.2 mg mL−1.
Collapse
|
40
|
Marchel M, Cieśliński H, Boczkaj G. Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127963. [PMID: 34896723 DOI: 10.1016/j.jhazmat.2021.127963] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Deep eutectic solvents (DESs) were described at the beginning of 21st century and they consist of a mixture of two or more solid components, which gives rise to a lower melting point compared to the starting materials. Over the years, DESs have proved to be a promising alternative to traditional organic solvents and ionic liquids (ILs) due to their low volatility, low inflammability, easy preparation, and usually low cost of compounds used in their preparation. All these properties encouraged researchers to use them in diverse fields and applications e.g., as extractants for biomolecules and solvents in pharmaceutical and cosmetic industries. Nevertheless, despite undeniable potential of DESs, there is still controversy about their toxicity. Besides the low number of studies on this topic, there are also some contradicting reports on biocompatibility of these solvents. Such misleading reports could be mainly attributed to the lack of well design standard protocol for DESs toxicity determination or the use of out-off-purpose methodology. Thus, to better apply DESs in green and sustainable chemistry, more studies on their impact on organisms at different trophic levels and the use of proper techniques are required. This review focuses on DESs toxicity towards microorganisms and is divided into three parts: The first part provides a brief general introduction to DESs, the second part discusses the methodologies used for assessment of DESs microbial toxicity and the obtained results, and finally in the third part the critical evaluation of the methods is provided, as well as suggestions and guidelines for future research.
Collapse
Affiliation(s)
- Mateusz Marchel
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Gdansk University of Technology, Faculty of Chemistry, Department of Molecular Biotechnology and Microbiology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
41
|
Saini R, Kumar S, Sharma A, Kumar V, Sharma R, Janghu S, Suthar P. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajni Saini
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur India
| | - Vikas Kumar
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Rakesh Sharma
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Sandeep Janghu
- Department of Food Product Development Indian Institute of Food Processing Technology Thanjavur India
| | - Priyanka Suthar
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| |
Collapse
|
42
|
Taysun MB, Sert E, Atalay FS. Synthesis, characterization and acid-catalyzed application of ternary deep eutectic solvent: effect of glycerol addition. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Singh MB, Kumar VS, Chaudhary M, Singh P. A mini review on synthesis, properties and applications of deep eutectic solvents. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Abstract
Deep eutectic solvents (DESs) are a relatively new type of solvent that have attracted the attention of the scientific community due to their environmentally friendly properties and their versatility in many applications. Many possible DESs have been described and, thus, it is not easy to unequivocally characterize and generalize their properties. This is especially important in the case of the (eco)toxicity information that can be found for these mixtures. In this review, we collect data on the human and environmental toxicity of DESs, with the aim of gathering and exploring the behavioral patterns of DESs. The toxicity data found were analyzed attending to different factors: hydrogen bond donors or acceptors that form part of the eutectic mixture, pH, and the presence of organic acids in the DES molar ratio of the components, or interactions with natural compounds. In the case of ecotoxicity, results generally depend on the biomodel studied, along with other factors that have been also revised. Finally, we also carried out a revision of the biodegradation of DESs.
Collapse
|
45
|
Antioxidant and antibacterial evaluation of Manuka leaves (Leptospermum scoparium) extracted by hydrophobic deep eutectic solvent. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Cho CW, Pham TPT, Zhao Y, Stolte S, Yun YS. Review of the toxic effects of ionic liquids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147309. [PMID: 33975102 DOI: 10.1016/j.scitotenv.2021.147309] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 05/11/2023]
Abstract
Interest in ionic liquids (ILs), called green or designer solvents, has been increasing because of their excellent properties such as thermal stability and low vapor pressure; thus, they can replace harmful organic chemicals and help several industrial fields e.g., energy-storage materials production and biomaterial pretreatment. However, the claim that ILs are green solvents should be carefully considered from an environmental perspective. ILs, given their minimal vapor pressure, may not directly cause atmospheric pollution. However, they have the potential to cause adverse effects if leaked into the environment, for instance if they are spilled due to human mistakes or technical errors. To estimate the risks of ILs, numerous ILs have had their toxicity assessed toward several micro- and macro-organisms over the past few decades. Since the toxic effects of ILs depend on the method of estimating toxicity, it is necessary to briefly summarize and comprehensively discuss the biological effects of ILs according to their structure and toxicity testing levels. This can help simplify our understanding of the toxicity of ILs. Therefore, in this review, we discuss the key findings of toxicological information of ILs, collect some toxicity data of ILs to different species, and explain the influence of IL structure on their toxic properties. In the discussion, we estimated two different sensitivity values of toxicity testing levels depending on the experiment condition, which are theoretical magnitudes of the inherent sensitivity of toxicity testing levels in various conditions and their changes in biological response according to the change in IL structure. Finally, some perspectives, future research directions, and limitations to toxicological research of ILs, presented so far, are discussed.
Collapse
Affiliation(s)
- Chul-Woong Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea.
| | - Thi Phuong Thuy Pham
- Faculty of Biotechnology, HoChiMihn University of Food Industry, Ho Chi Minh City, Viet Nam
| | - Yufeng Zhao
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Stefan Stolte
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry, Bergstraße 66, 01062 Dresden, Germany
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 561-756, South Korea.
| |
Collapse
|
47
|
Rodríguez-Juan E, López S, Abia R, J. G. Muriana F, Fernández-Bolaños J, García-Borrego A. Antimicrobial activity on phytopathogenic bacteria and yeast, cytotoxicity and solubilizing capacity of deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Azevedo AMO, Vilaranda AG, Neves AFDC, Sousa MJ, Santos JLM, Saraiva MLMFS. Development of an automated yeast-based spectrophotometric method for toxicity screening: Application to ionic liquids, GUMBOS, and deep eutectic solvents. CHEMOSPHERE 2021; 277:130227. [PMID: 33794429 DOI: 10.1016/j.chemosphere.2021.130227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Saccharomyces cerevisiae has been used as a eukaryotic model organism for studying the toxic effects of various compounds. In this context, an automated spectrophotometric method based on the enzymatic reduction of methylene blue dye to a colorless product by living yeast cells was implemented in a sequential injection analysis system. Loss of yeast viability/impaired metabolic activity was monitored by an increase in optical density at 664 nm. To prove the usefulness of this approach, the toxicity of ILs (ionic liquids), GUMBOS (group of uniform materials based on organic salts), and DESs (deep eutectic solvents) was examined. Differences obtained between IC50 values confirmed the impact of structural elements on each compounds' toxicity. While DESs appeared to be less toxic than ILs, GUMBOS were found to be among the most toxic compounds to yeast cells and thus can be viewed as promising antimicrobial candidates. The automated methodology showed satisfactory repeatability and reproducibility (RSD < 9%), which is in good agreement with Green Chemistry principles. In fact, the method required consumption of only 40 μL of reagents and produced less than 2 mL of effluents per cycle. Thus, the developed assay can be used as an alternative tool for toxicity screening.
Collapse
Affiliation(s)
- Ana M O Azevedo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - André G Vilaranda
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana F D C Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria João Sousa
- CBMA, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - João L M Santos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
49
|
Wazeer I, AlNashef IM, Al-Zahrani AA, Hadj-Kali MK. The subtle but substantial distinction between ammonium- and phosphonium-based deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Zainal-Abidin MH, Hayyan M, Wong WF. Hydrophobic deep eutectic solvents: Current progress and future directions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|