1
|
Alonso-Blanco E, Gómez-Moreno FJ, Díaz-Ramiro E, Barreiro M, Fernández J, Figuero I, Rubio-Juan A, Santamaría JM, Artíñano B. Indoor Air Quality at an Urban Primary School in Madrid (Spain): Influence of Surrounding Environment and Occupancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1263. [PMID: 39457237 PMCID: PMC11506914 DOI: 10.3390/ijerph21101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/28/2024]
Abstract
Monitoring indoor air quality (IAQ) in schools is critical because children spend most of their daytime inside. One of the main air pollutant sources in urban areas is road traffic, which greatly influences air quality. Thus, this study addresses, in depth, the linkages of meteorology, ambient air pollution, and indoor activities with IAQ in a traffic-influenced school situated south of Madrid. The measurement period was from 22 November to 21 December 2017. Simultaneous measurements of indoor and outdoor PM1, PM2.5, and PM10 mass concentrations, ultrafine particle number concentration (PNC) and equivalent black carbon (eBC) were analyzed under different meteorological conditions. PNC and eBC outdoor concentrations and their temporal trend were similar among the sampling points, with all sites being influenced in the same way by traffic emissions. Strong correlations were found between indoor and outdoor concentrations, indicating that indoor pollution levels were significantly affected by outdoor sources. Especially, PNC and eBC had the same indoor/outdoor (I/O) trend, but indoor concentrations were lower. The time delay in indoor vs. outdoor concentrations varied between 0.5 and 2 h, depending on wind speed. Significant differences were found between different meteorological conditions (ANOVA p-values < 2.14 × 10-6). Atmospheric stability periods led to an increase in indoor and outdoor pollutant levels. However, the highest I/O ratios were found during atmospheric instability, especially for eBC (an average of 1.2). This might be related to rapid changes in the outdoor air concentrations induced by meteorology. Significant variations were observed in indoor PM10 concentrations during classroom occupancy (up to 230 µg m-3) vs. non-occupancy (up to 19 µg m-3) days, finding levels higher than outdoor ones. This was attributed to the scholarly activities in the classroom. Conversely, PNC and eBC concentrations only increased when the windows of the classroom were open. These findings have helped to establish practical recommendations and measures for improving the IAQ in this school and those of similar characteristics.
Collapse
Affiliation(s)
- Elisabeth Alonso-Blanco
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Francisco Javier Gómez-Moreno
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Elías Díaz-Ramiro
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Marcos Barreiro
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Javier Fernández
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Ibai Figuero
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| | - Alejandro Rubio-Juan
- Regional Center for Animal Selection and Reproduction (CERSYRA), Ministry of Agriculture and Environment of Castilla-La Mancha, Avenida del Vino, 2, 13300 Valdepeñas, Spain
| | - Jesús Miguel Santamaría
- Biodiversity and Environment Institute (BIOMA), Universidad de Navarra, Irunlarrea No. 1, 31008 Pamplona, Spain;
| | - Begoña Artíñano
- Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain; (F.J.G.-M.); (E.D.-R.); (J.F.); (B.A.)
| |
Collapse
|
2
|
Vilčeková S, Burdová EK, Kiseľák J, Sedláková A, Mečiarová ĽV, Moňoková A, Doroudiani S. Assessment of indoor environmental quality and seasonal well-being of students in a combined historic technical school building in Slovakia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1524. [PMID: 37994965 DOI: 10.1007/s10661-023-12147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
One of the major present challenges in the building sector is to construct sustainable and low-energy buildings with a healthy, safe, and comfortable environment. This study is designed to explore long-term impacts of indoor environmental quality (IEQ) parameters in a historic technical school building on the health and comfort of students. The main objective is to identify environmental problems in schools and to direct public policy towards the enhancement of in-service historic buildings. The collected data on five consecutive days in various seasons from five different classrooms indicate allergy in 45% and asthma in 10% of students. Environmental factors, such as temperature, draught, noise, or light, affected 51% of students' attention. Low temperature, unpleasant air, noise, and draught were found to be the most frequent concerns for students. The lowest temperature was measured during spring at 17.6 °C, the lowest humidity of 21.1% in winter, the largest CO2 amount in the air in autumn at 2041 ppm level, and the greatest total volatile organic compounds (TVOC) as 514 µg/m3. The experimental and statistical analysis results suggest the necessity of a comprehensive restoration of the building with a focus on enhancement of IEQ as well as replacement of old non-standard materials. An effective ventilation system is also necessary. The building requires major renovations to preserve its historic features while safeguarding the well-being and comfort of students and staff. Further research is needed on acoustics, lighting, and energy factors as well as the health effects of old building materials.
Collapse
Affiliation(s)
- Silvia Vilčeková
- Faculty of Civil Engineering, Institute of Sustainable and Circular Construction, Technical University of Košice, Vysokoškolská 4, 042 00, Košice, Slovak Republic
| | - Eva Krídlová Burdová
- Faculty of Civil Engineering, Institute of Sustainable and Circular Construction, Technical University of Košice, Vysokoškolská 4, 042 00, Košice, Slovak Republic
| | - Jozef Kiseľák
- Faculty of Science, Institute of Mathematics, Pavol Jozef Šafárik University, Jesenná 5, 04001, Košice, Slovak Republic
| | - Anna Sedláková
- Faculty of Civil Engineering, Institute of Architectural Engineering, Technical University of Košice, Vysokoškolská 4, 042 00, Košice, Slovak Republic
| | | | | | | |
Collapse
|
3
|
Che W, Ding J, Li L. Airflow deflectors of external windowsto induce ventilation: Towards COVID-19 prevention and control. SUSTAINABLE CITIES AND SOCIETY 2022; 77:103548. [PMID: 34812405 PMCID: PMC8599141 DOI: 10.1016/j.scs.2021.103548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 05/24/2023]
Abstract
Since the Corona Virus Disease 2019 (COVID-19) outbreak, the normalization of the epidemic has posed great challenge to epidemic prevention and control in indoor environment. Ventilation systems are commonly used to prevent and control indoor transmission of disease. However, most naturally ventilated rooms are not efficient to prevent the spread of virus, i.e., classrooms. The goal of this work is to effectively adopt forced interference strategies (e.g., airflow deflector) applied to external windows to strengthen airflow diffusion performance (ADP) of natural ventilation. So far, no systematic study has been done to investigate the effectiveness of such airflow deflectors on its influence on natural ventilation and effectiveness of preventing the disease transmission in indoor environment. In this work, a case study was conducted based on cross-ventilated classrooms. Different settings of airflow deflectors (i.e., size and installation angle) were applied to the external windows. Air Diffusion Performance Index (ADPI) was utilized to evaluated airflow diffusion performance under different settings of the airflow deflectors. Then, the Wells-Riley model was applied to evaluate infection risk. According to the results, the infection risk can be reduced by 19.29% when infection source is located at the center of classroom and 17.47% when source is located near the side walls. This work would provide guidance for the design of classrooms ventilated with induced natural wind for epidemic prevention and control.
Collapse
Affiliation(s)
- Wanqiao Che
- School of Design, Central Academy of Fine Arts, Beijing, China
| | - Junwei Ding
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, Jiangsu, China
| | - Liang Li
- School of Design, Central Academy of Fine Arts, Beijing, China
| |
Collapse
|
4
|
Adam MG, Tran PTM, Bolan N, Balasubramanian R. Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124760. [PMID: 33341572 DOI: 10.1016/j.jhazmat.2020.124760] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Smoke haze episodes, resulting from uncontrolled biomass burning (BB) including forest and peat fires, continue to occur in Southeast Asia (SEA), affecting air quality, atmospheric visibility, climate, ecosystems, hydrologic cycle and human health. The pollutant of major concern in smoke haze is airborne particulate matter (PM). A number of fundamental laboratory, field and modeling studies have been conducted in SEA from 2010 to 2020 to investigate potential environmental and health impacts of BB-induced PM. The goal of this review is to bring together the most recent developments in our understanding of various aspects of BB-derived PM based on 127 research articles published from 2010 to 2020, which have not been conveyed in previous reviews. Specifically, this paper discusses the physical, chemical, toxicological and radiative properties of BB-derived PM. It also provides insights into the environmental and health impacts of BB-derived PM, summarizes the approaches taken to do the source apportionment of PM during BB events and discusses the mitigation of exposure to BB-derived PM. Suggestions for future research priorities are outlined. Policies needed to prevent future BB events in the SEA region are highlighted.
Collapse
Affiliation(s)
- Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
5
|
Laguerre A, George LA, Gall ET. High-Efficiency Air Cleaning Reduces Indoor Traffic-Related Air Pollution and Alters Indoor Air Chemistry in a Near-Roadway School. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11798-11808. [PMID: 32841011 DOI: 10.1021/acs.est.0c02792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Schools in proximity to roadways expose students to traffic-related air pollution (TRAP). We investigate impacts of air-cleaning on indoor TRAP levels and indoor chemistry in a renovated school adjacent an interstate highway. We monitor air pollutants pre- and post-renovation and quantify efficiency of particle (MERV8 and 16 filters) and gas (functionalized activated carbon) air-cleaning. Time-resolved measurements show air-cleaning systems are effective, with in situ particle removal efficiency >94% across 10 nm to 10 μm. Activated carbon removed BTEX and NO2 with variability in removal efficiency. Over eight months of monitoring, NO2 removal efficiency was 96% initially and decreased to 61%; and BTEX removal efficiency was >80% or increased to >80%. Air-cleaning reduced indoor TRAP to below or near urban background. Air-cleaning systems suppressed indoor chemistry by reducing indoor levels of oxidants (NO2, O3) and reactive organics of indoor origin. When the air cleaning system was inactive, our data show that indoor SOA formation within the school was elevated. Loss rates of NO2 and O3 through the air-cleaning system were ∼1.5-2.4 h-1 and ∼2.3 h-1, respectively. Air-cleaning was 83% and 69% efficient, respectively, in removing monoterpenes and isoprene. By suppressing precursors, scaling calculations show air-cleaning prevented ∼3.4 mg/h of indoor SOA formation due to indoor ozone-monoterpene chemistry. For comparison, we estimate that filtration removed ∼130 mg/h of PM0.01-0.3.
Collapse
Affiliation(s)
- Aurélie Laguerre
- Department of Mechanical and Materials Engineering, Portland State University, 1930 SW 4th Avenue, Suite 400, Portland, Oregon 97201, United States
| | - Linda A George
- Department of Environmental Science and Management, Portland State University, P.O. Box 751, Portland, Oregon 97201, United States
| | - Elliott T Gall
- Department of Mechanical and Materials Engineering, Portland State University, 1930 SW 4th Avenue, Suite 400, Portland, Oregon 97201, United States
| |
Collapse
|
6
|
Ruggieri S, Longo V, Perrino C, Canepari S, Drago G, L'Abbate L, Balzan M, Cuttitta G, Scaccianoce G, Minardi R, Viegi G, Cibella F. Indoor air quality in schools of a highly polluted south Mediterranean area. INDOOR AIR 2019; 29:276-290. [PMID: 30580463 DOI: 10.1111/ina.12529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
This study aimed at surveying lower secondary schools in southern Italy, in a highly polluted area. A community close to an industrial area and three villages in rural areas was investigated. Indoor temperature, relative humidity (RH), gaseous pollutants (CO2 and NO2 ), selected biological pollutants in indoor dust, and the indoor/outdoor mass concentration and elemental composition of PM2.5 were ascertained. Temperature and RH were within, or close to, the comfort range, while CO2 frequently exceeded the threshold of 1000 ppm, indicating inadequate air exchange rate. In all the classrooms, median NO2 levels were above the WHO threshold value. Dermatophagoides p. allergen concentration was below the sensitizing threshold, while high endotoxin levels were detected in the classrooms, suggesting schools may produce significant risks of endotoxin exposure. Concentration and solubility of PM2.5 elements were used to identify the sources of indoor particles. Indoor concentration of most elements was higher than outdoors. Resuspension was responsible for the indoor increase in soil components. For elements from industrial emission (Cd, Co, Ni, Pb, Sb, Tl, V), the indoor concentration depended on penetration from the outside. For these elements, differences in rural vs industrial concentrations were found, suggesting industrial sources may influence indoor air quality nearby schools.
Collapse
Affiliation(s)
- Silvia Ruggieri
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Valeria Longo
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Cinzia Perrino
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Rome, Italy
| | - Silvia Canepari
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Gaspare Drago
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Luca L'Abbate
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Martin Balzan
- Department of Respiratory Medicine, Mater Dei Hospital, Msida, Malta
| | - Giuseppina Cuttitta
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Gianluca Scaccianoce
- Department of Energy, Information Engineering and Mathematical Models, University of Palermo, Palermo, Italy
| | - Remo Minardi
- ASP Caltanissetta - Health District of Gela, Gela, Italy
| | - Giovanni Viegi
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Fabio Cibella
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| |
Collapse
|
7
|
Belachew H, Assefa Y, Guyasa G, Azanaw J, Adane T, Dagne H, Gizaw Z. Sick building syndrome and associated risk factors among the population of Gondar town, northwest Ethiopia. Environ Health Prev Med 2018; 23:54. [PMID: 30368236 PMCID: PMC6204270 DOI: 10.1186/s12199-018-0745-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sick building syndrome (SBS) consists of a group of mucosal, skin, and general symptoms temporally related to residential and office buildings of unclear causes. These symptoms are common in the general population. However, SBS symptoms and their contributing factors are poorly understood, and the community associates it with bad sprits. This community-based cross-sectional study was, therefore, conducted to assess the prevalence and associated factors of SBS in Gondar town. METHODS A community-based cross-sectional study was conducted from March to April 2017. A total of 3405 study subjects were included using multistage and systematic random sampling techniques. A structured questionnaire and observational checklists were used to collect data. SBS was assessed by 24 building-related symptoms and confirmed by five SBS confirmation criteria. Multivariable binary logistic regression analysis was used to identify factors associated with SBS on the basis of adjusted odds ratio (AOR) with 95% confidence interval (CI) and p < 0.05. The Hosmer and Lemeshow goodness of fit test was used to check model fitness, and variance inflation factor (VIF) was also used to test interactions between variables. RESULTS The prevalence of SBS in Gondar town was 21.7% (95% CI = 20.3-23.0%). Of this, the mucosal symptoms account for 64%, the general symptoms account for 54%, and the skin symptoms account for 10%. From study participants who reported SBS symptoms, 44% had more than one symptom. Headache (15.7%), asthma (8.3%), rhinitis (8.0%), and dizziness (7.5%) were the commonest reported symptoms. SBS was significantly associated with fungal growth in the building [AOR = 1.25, 95% CI = (1.05, 1.49)], unclean building [AOR = 1.26, 95% CI = (1.03, 1.55)], houses with no functional windows [AOR = 1.35, 95% CI = (1.12, 1.63)], houses with no fan [AOR = 1.90, 95% CI = (1.22, 2.96)], utilization of charcoal as a cooking energy source [AOR = 1.40, 95% CI = (1.02, 1.91)], cooking inside the living quarters [AOR = 1.31, 95% CI = (1.09, 1.58)], and incensing and joss stick use [AOR = 1.48, 95% CI = (1.23, 1.77)]. CONCLUSION The prevalence of SBS in Gondar town was high, and significant proportion of the population had more than one SBS symptom. Headache, asthma, rhinitis, and dizziness were the commonest reported SBS symptoms. Fungal growth, cleanliness of the building, availability of functional windows, availability of fan in the living quarters, using charcoal as a cooking energy source, cooking inside the quarters, and incensing habit or joss stick use were identified as factors associated with SBS. Improving the sanitation of the living environment and housekeeping practices of the occupants is useful to minimize the prevalence of SBS.
Collapse
Affiliation(s)
- Haileab Belachew
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yibeltal Assefa
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gebisa Guyasa
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Jember Azanaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tsegaye Adane
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Henok Dagne
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemichael Gizaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| |
Collapse
|
8
|
Pacitto A, Stabile L, Viana M, Scungio M, Reche C, Querol X, Alastuey A, Rivas I, Álvarez-Pedrerol M, Sunyer J, van Drooge BL, Grimalt JO, Sozzi R, Vigo P, Buonanno G. Particle-related exposure, dose and lung cancer risk of primary school children in two European countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:720-729. [PMID: 29089125 DOI: 10.1016/j.scitotenv.2017.10.256] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Schools represent a critical microenvironment in terms of air quality due to the proximity to outdoor particle sources and the frequent lack of proper ventilation and filtering systems. Moreover, the population exposed in schools (i.e. children) represents a susceptible population due to their age. Air quality-based studies involving students' exposure at schools are still scarce and often limited to mass-based particle metrics and may thus underestimate the possible effect of sub-micron particles and particle toxicity. To this purpose, the present paper aims to evaluate the exposure to different airborne particle metrics (including both sub- and super-micron particles) and attached carcinogenic compounds. Measurements in terms of particle number, lung-deposited surface area, and PM fraction concentrations were measured inside and outside schools in Barcelona (Spain) and Cassino (Italy). Simultaneously, PM samples were collected and chemically analysed to obtain mass fractions of carcinogenic compounds. School time airborne particle doses received by students in classrooms were evaluated as well as their excess lung cancer risk due to a five-year primary school period. Median surface area dose received by students during school time in Barcelona and Cassino resulted equal to 110mm2 and 303mm2, respectively. The risk related to the five-year primary school period was estimated as about 2.9×10-5 and 1.4×10-4 for students of Barcelona and Cassino, respectively. The risk in Barcelona is slightly higher with respect to the maximum tolerable value (10-5, according to the U.S. Environmental Protection Agency), mainly due to toxic compounds on particles generated from anthropogenic emissions (mainly industry). On the other hand, the excess lung cancer risk in Cassino is cause of concern, being one order of magnitude higher than the above-mentioned threshold value due to the presence of biomass burning heating systems and winter thermal inversion that cause larger doses and great amount of toxic compounds on particles.
Collapse
Affiliation(s)
- A Pacitto
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - L Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - M Viana
- Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - M Scungio
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - C Reche
- Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - A Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - I Rivas
- Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | - J Sunyer
- ISGlobal - Barcelona Institute for Global Health, Barcelona, Spain
| | - B L van Drooge
- Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - J O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - R Sozzi
- ARPA Lazio, Via Garibaldi, 114, 02100 Rieti, Italy
| | - P Vigo
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - G Buonanno
- Queensland University of Technology, Brisbane, Australia; Department of Engineering, University "Parthenope", Naples, Italy; Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy.
| |
Collapse
|
9
|
Stabile L, Dell'Isola M, Russi A, Massimo A, Buonanno G. The effect of natural ventilation strategy on indoor air quality in schools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:894-902. [PMID: 28432989 DOI: 10.1016/j.scitotenv.2017.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 05/08/2023]
Abstract
In order to reduce children's exposure to pollutants in classrooms a proper ventilation strategy need to be adopted. Such strategy is even more important in naturally ventilated schools where the air exchange rate is only based on the manual airing of classrooms. The present work aimed to evaluate the effect of the manual airing strategy on indoor air quality in Italian classrooms. For this aim, schools located in the Central Italy were investigated. Indoor air quality was studied in terms of CO2, particle number and PM concentrations and compared to corresponding outdoor levels. In particular two experimental analyses were performed: i) a comparison between heating and non heating season in different schools; ii) an evaluation of the effect of scheduled airing periods on the dilution of indoor-generated pollutants and the penetration of outdoor-generated ones. In particular, different airing procedures, i.e. different window opening periods (5 to 20min per hour) were imposed and controlled through contacts installed on classroom windows and doors. Results revealed that the airing strategy differently affect the several pollutants detected in indoors depending on their size, origin and dynamics. Longer airing periods may result in reduced indoor CO2 concentrations and, similarly, other gaseous indoor-generated pollutants. Simultaneously, higher ultrafine particle (and other vehicular-related pollutants) levels in indoors were measured due to infiltration from outdoors. Finally, a negligible effect of the manual airing on PM levels in classroom was detected. Therefore, a simultaneous reduction in concentration levels for all the pollutant metrics in classrooms cannot be obtained just relying upon air permeability of the building envelope and manual airing of the classrooms.
Collapse
Affiliation(s)
- Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy.
| | - Marco Dell'Isola
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Aldo Russi
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Angelamaria Massimo
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Giorgio Buonanno
- Department of Engineering, University "Parthenope", Naples, Italy; Queensland University of Technology, Brisbane, Australia
| |
Collapse
|