1
|
Al-Otaibi AM. Therapeutic effects of vitamin B17 against anabolic steroid Trenorol induced testicular toxicity, injury, DNA damage and apoptosis in male rats. Toxicol Res (Camb) 2024; 13:tfae084. [PMID: 38827655 PMCID: PMC11137343 DOI: 10.1093/toxres/tfae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/12/2024] [Indexed: 06/04/2024] Open
Abstract
Several anabolic androgenic steroids (ASSs) are a group of synthetic molecules derived from testosterone and developed mainly for veterinary use that classed as a Schedule III and sometimes utilized by athletes to enlarge their muscles. Abuse of anabolic androgenic steroids can result in severe organ damage that cannot be repaired. Therefore; the objective of the current investigation was to examine the therapeutic effects of vitamin B17 (VitB17) on the testicular toxicity caused by the anabolic steroid Trenorol in male rats. Rats were randomly assigned into control, VitB17 (50 mg/kg b.wt./day, orally), Trenorol (received 10 mg/kg b.wt./week, IM) and Trenorol + VitB17 treated groups. At the end of experiment, hormonal assay, semen evaluation, testicular enzymes, and DNA damage were assessed. Besides, the histopathological and immunohistochemical investigations of the P53 expression were performed. Current results revealed that; Trenorol induced significant depletion in relative weights of testis (RWT), total testosterone follicle stimulating hormone (FSH), and luteinizing hormone (LH), sperm count, morphology index, viability, progressive motility, and testicular injury and a significant increase sperm abnormalities, testicular DNA damage and P53 experssions. Treatment of rats with Trenorol + VitB17 decreased the testicular toxicity, sperm parameters, DNA damage and apoptosis. We can conclude that; Trenorol induced toxicity, DNA damage and apoptosis in rat testis and treatments with VitB1 improved these parameters.
Collapse
Affiliation(s)
- Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 13225, Saudi Arabia
| |
Collapse
|
2
|
Radwan AM, Fatoh SA, Massoud A, Tousson E. Effectiveness of curcumin nanoparticles in rat liver fibrosis caused by thioacetamide. ENVIRONMENTAL TOXICOLOGY 2024; 39:388-397. [PMID: 37782692 DOI: 10.1002/tox.23984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Although curcumin possesses anti-inflammatory, antioxidant, and cytoprotective qualities, its low absorption limits its medicinal uses. Before examining how curcumin influenced rats' liver fibrosis when thioacetamide (TAA) was produced, the current study employed nanoparticles (NPs) to improve curcumin bioavailability. Sixty mature rats were separated into six groups (Group 1, control; Group 2, curcumin; Group 3, curcumin nanoparticles; Group 4, TAA; Group 5, TAA + curcumin; Group 6, TAA + curcumin NPs). TAA administration caused considerable increases in serum liver enzymes associated with a remarkable depletion in the levels of albumin and total protein relative to the control. In addition, a significant elevation in malonaldehyde (MDA) level with a significant depletion in the antioxidant enzymes activity was detected. Also, TAA had a significant effect on the inflammation markers represented by the elevation in tumor necrosis factor (TNFα) and DNA damage. Administration of curcumin or curcumin NPs in TAA-intoxicated rats significantly (p < .001, p < .0001) alleviates liver injury by correcting antioxidant status, inflammatory markers, and oxidative stress. The results of comparing TAA-intoxicated rats treated with curcumin NPs to TAA-intoxicated rats treated with bulk curcumin revealed that the ameliorative effect of nanocurcumin was stronger. These observations concluded that nanoparticle formulation can increase curcumin bioavailability and solubility, enhancing its antioxidant and anti-inflammatory efficiency, resulting in greater potential against thioacetamide-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Aliaa M Radwan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shahenda A Fatoh
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ahmed Massoud
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Tousson E, Shalaby SY, El-Gharbawy DM, Akela MA, Rabea M, Kandil EH. Impact of Coriandrum sativum seeds extract on albino rats' testicular toxicity caused by carbendazim. Toxicol Res (Camb) 2023; 12:1152-1158. [PMID: 38145095 PMCID: PMC10734600 DOI: 10.1093/toxres/tfad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 10/28/2023] [Indexed: 12/26/2023] Open
Abstract
Background A broad spectrum carbamate fungicide called carbendazim (Carb) is used to combat a number of different fungal diseases. One of the extensively utilized medicinal plants in oriental countries is Coriandrum sativum. Aim In the current study, the impact of C. sativum seeds extract (CSE) on albino rats' testicular toxicity caused by carbendazim was investigated. Materials and methods A total of 50 male albino rats were classified into 5 groups [Gp1, Control Gp; Gp2, Coriandrum Gp (CSE); Gp 3, carbendazim Gp (Carb); Gp 4, Co treated CSE with Carb (CSE + Carb); Gp 5, Post treated Carb with CSE (Carb + CSE)]. Results Carb induced elevation in serum LH. FSH, testicular malondialdehyde (MDA), testicular nitric oxide (NO) markers and testicular injury and it reduced serum testosterone, testicular glutathione (GSH), testicular catalase and PCNA. Treatments of Carb with CSE (CSE + Carb and/or Carb + CSE) improved these parameters and reduced testicular toxicity with best results for Carb + CSE than CSE + Carb. Conclusions The above findings revealed that; Carb induced testicular toxicity and it supported the hypothesis that the antioxidant characteristics of one or more of CSE constituents can reduce the testicular toxicity of Carb.
Collapse
Affiliation(s)
- Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Egypt
| | - Somaya Y Shalaby
- Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Doaa M El-Gharbawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Egypt
| | - Mohamed A Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohamed Rabea
- Department of Zoology, Faculty of Science, Menoufia University, Egypt
| | - Eman H Kandil
- Department of Zoology, Faculty of Science, Menoufia University, Egypt
| |
Collapse
|
4
|
Mahgoob AAE, Tousson E, Abd Eldaim MA, Ullah S, Al-Sehemi AG, Algarni H, El Sayed IET. Ameliorative role of chitosan nanoparticles against silver nanoparticle-induced reproductive toxicity in male albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17374-17383. [PMID: 36192590 DOI: 10.1007/s11356-022-23312-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
This study was designed to evaluate the protective potentials of chitosan nanoparticles (ChNPs) against silver nanoparticle (AgNP)-induced reproductive toxicity in male Wister albino rats. AgNPs, ChNPs, and AgNPs particles coated with ChNPs were characterized by using transmission electron microscope. Control rats were injected interperitoneally with 0.5% aqueous carboxymethyl cellulose. Second group was given ChNPs at a dose 300 mg/kg bwt. Third group was given AgNPs at a dose 50 mg/kg bwt. Fourth group was given AgNPs with chitosan nanoparticles simultaneously. Fifth group was given silver nanoparticles coated with chitosan nanoparticles at a dose 300 mg/kg bwt. TEM showed the formation of AgNPs with average size of 42.7 nm, ChNPs with average size of 33.3 nm, and AgNPs coated with ChNPs with average size of 48.1 nm. AgNPs significantly reduced serum levels of FSH, LH, testosterone and prolactin, sperm count, morphology index, vitality, total motility and progressive motility, the activities of catalase and superoxide dismutase, and the concentration of reduced glutathione in testicular tissues. However, it significantly increased malondialdehyde concentration in testicular tissues, sperm abnormalities, testicular tissue damages, non-progressive motility, and immotile sperms. On the contrast, ChNPs ameliorated AgNP-induced alteration in serum levels of sex hormones, spermogram, and testicular tissue's structure and functions. These results indicated that ChNPs had protective potential against AgNP-induced reproductive toxicity and ChNPs coating AgNPs had more potent protective effect than ChNPs administrated together with AgNPs.
Collapse
Affiliation(s)
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Menoufia, Egypt.
| | - Sami Ullah
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | | |
Collapse
|
5
|
Mansour DF, Saleh DO, Ahmed-Farid OA, Rady M, Bakeer RM, Hashad IM. Ginkgo biloba extract (EGb 761) mitigates methotrexate-induced testicular insult in rats: Targeting oxidative stress, energy deficit and spermatogenesis. Biomed Pharmacother 2021; 143:112201. [PMID: 34560547 DOI: 10.1016/j.biopha.2021.112201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Methotrexate (MTX) is commonly used as a therapeutic agent in the treatment of malignancies and autoimmune disorders. Risk of subsequent infertility following MTX administration has been reported as a significant side effect due to testicular toxicity. The aim of the study was to evaluate the modulatory effects of Ginkgo biloba (standardized extract, EGb 761) on MTX-induced testicular oxidative stress, energy deficits and spermatogenic status in rats. All groups received intraperitoneal injection of MTX (0.5 mg/kg) twice weekly for four weeks except the control group that received the corresponding vehicles. Other groups received oral EGb761, at doses 25, 50 or 100 mg/kg/day, for four weeks, concurrently with MTX. Blood and semen sampling followed by testis dissection were performed 24 h after last EGb 761 treatment. Semen was examined for sperm progressive motility, percent of normal spermatozoa and sperm cell concentration as well as seminal plasma essential and non-essential amino acids. Serum LH, FSH and testosterone were detected as well as testicular MDA, GSH, GSSG, TNF-α, IL-1β, IL-6, NF-κB and the nuclear, cytoplasmic and mRNA expression levels of Nrf-2 besides the testicular cell energy; AMP, ADP and ATP. Histopathological studies of interstitial fibrosis and the severity of germ cell degeneration were also conducted. MTX induced significant decline in sperm quality along with decreased essential and non-essential amino acids in seminal plasma. MTX reduced serum FSH, LH and testosterone as well as testicular ATP, GSH and Nrf2, while increased levels of testicular ADP, AMP, MDA, GSSG and TNF-α. Results were confirmed by prominent interstitial fibrosis and severe germ cell degeneration in MTX group. Concurrent treatment with EGb 761 alleviated MTX-induced testicular insult evidenced by amelioration of oxidative stress biomarkers, energy functions, seminal sperms abnormalities and spermatogenesis status. The present study suggests a beneficial role of EGb 761 in MTX-induced testicular injury and subsequent distortion of spermatogenesis.
Collapse
Affiliation(s)
- Dina F Mansour
- Department of Pharmacology, Medical division, National Research Centre (ID: 60014618), Giza, Dokki 12622, Egypt
| | - Dalia O Saleh
- Department of Pharmacology, Medical division, National Research Centre (ID: 60014618), Giza, Dokki 12622, Egypt.
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Mona Rady
- Department of Microbiology, Immunology and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Egypt
| | - Ingy M Hashad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
6
|
Vitamin B17 Ameliorates Methotrexate-Induced Reproductive Toxicity, Oxidative Stress, and Testicular Injury in Male Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4372719. [PMID: 33194002 PMCID: PMC7641263 DOI: 10.1155/2020/4372719] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Methotrexate (MTX; 4-amino-10-methylfolic acid) is a folic acid reductase inhibitor used to treat autoimmune diseases and certain types of cancer. Testicular toxicity resulting from MTX is a significant side effect that may cause subsequent infertility. The present study was conducted to examine the ameliorating effects of vitamin B17 (VitB17) against testicular toxicity induced by MTX in male rats. A total of 50 male albino rats were equally divided into five groups [control group; vitamin B17 group (VitB17) administered VitB17 only; methotrexate group administered MTX only; cotreated group, (VitB17+MTX) and posttreated group (MTX+VitB17)]. In methotrexate group (MTX), a significant decrease was observed in body weight and the testicular weight, as well as the levels of plasma testosterone, luteinizing hormone and follicle-stimulating hormone compared with control. The sperm count, viability, morphology index, total motility, and progressive motility also decreased in MTX rats compared with control. Furthermore, the levels of reduced glutathione, catalase, and superoxide dismutase, as well as proliferating cell nuclear antigen protein expression, in the testicular tissue decreased in MTX compared with control. In addition, MTX caused a significant increase in DNA and tissue damage compared with control. However, VitB17 ameliorated these effects, indicating that it has a preventative and curative effect against MTX-induced reproductive toxicity in male rats. The protective effect of VitB17 may be associated to its antioxidant properties as it possibly acts as a free-radical scavenger and lipid peroxidation inhibitor, as well as its protective effect on the levels of GSH, SOD, and CAT.
Collapse
|
7
|
Albrahim T, Robert A. Renal protective effects of grape seed extract treatment against Eltroxin-induced hyperthyroidism, kidney damage, and oxidative stress in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17963-17971. [PMID: 32166689 DOI: 10.1007/s11356-020-08210-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to investigate the influence of grape seed extract (GSE) in renal toxicity, oxidative stress, and Bcl-2 expressions in Eltroxin-induced hyperthyroidism to male mice. GSE was evaluated through oral administration to male mice at dose 50 mg/kg daily for 3 consecutive weeks. Eltroxin (100 μg/kg) was administered to mice for 3 weeks, and the mice were posttreated with GSE for another 3 weeks. Results revealed that GSE administered to normal mice did not produce any signs of toxicity and did not cause any biochemical or histopathological changes. Posttreatment of Eltroxin-induced hyperthyroidism mice with GSE daily for 3 weeks improved all examined biochemical or histopathological features. Oral GSE can significantly normalize the elevated level of T3 and T4 in hyperthyroidism animals and elevated the reduced levels of TSH. Moreover, serum urea, creatinine, and electrolyte levels were significantly improved. GSE showed a potent antioxidant capacity in all oxidative stress markers assays (TBARS, reduced GSH, GST, SOD, and CAT) of kidney tissue homogenates. Furthermore, histopathological examination of kidney tissue of Eltroxin + GSE-treated group confirms the potential nephroprotective effect of GSE through increasing the anti-apoptotic marker Bcl-2.
Collapse
Affiliation(s)
- Tarfa Albrahim
- College of Health and Rehabilitation Sciences, Department of Health Sciences, Clinical Nutrition, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Alwin Robert
- Department of Endocrinology and Diabetes, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Evaluation of the Cardiac Protection Conferred by Proanthocyanidins in Grape Seeds against Development of Ehrlich Solid Tumors in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3530296. [PMID: 32016114 PMCID: PMC6985929 DOI: 10.1155/2020/3530296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/10/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Examination of the antineoplastic effects of a range of chemical compounds is often undertaken via the transplantable tumor model of Ehrlich solid tumor (EST), which is a simulation of breast cancer. The purpose of this study was to explore how cardiac toxicity, damage, oxidative stress, and changes in the expressions of TNFα and apoptotic P53 triggered by EST could be countered with grape seed proanthocyanidins (GSPE). To that end, 50 female mice were used, with arbitrary and equal distribution into five groups, namely, the control group (G1), GSPE group (G2), EST group (G3), GSPE + EST (G4; cotreatment consisted of mice that received GSPE treatment at the beginning of EST induction over a period of 14 days), and EST + GSPE (G5; posttreatment consisted of mice with EST that received GSPE treatment for 14 days following the 14 days since the induction of EST). By comparison with the control group, the EST group had significantly higher levels of serum lactate dehydrogenase (LDH), creatine phosphokinase (CPK), creatine kinase MB (CK-MB), myoglobin, cardiac TBARS, nitric oxide (NO), total thiol and hydrogen peroxide, cardiac damage, and expression of P53 and TNFα. On the other hand, the EST group had significantly lower levels of cardiac catalase and total antioxidant (TAC) than the control group. Furthermore, better improvement in cardiac toxicity, oxidative stress, damage, apoptosis, and TNFα expressions was displayed by the cotreated (GSPE + EST) group than by the posttreated (EST + GSPE) group. This led to the conclusion that GSPE conferred cardiac protective and antioxidant effects against EST. This finding calls for more investigation on the benefits of grape seeds as adjuvant agents to prevent and treat cardiac toxicity.
Collapse
|