1
|
Kim YH, Lee DH, Seo HS, Eun SH, Lee DS, Choi YK, Lee SH, Kim TY. Genome-based taxonomic identification and safety assessment of an Enterococcus strain isolated from a homemade dairy product. Int Microbiol 2024; 27:1513-1525. [PMID: 38466360 DOI: 10.1007/s10123-024-00496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to explore the taxonomic identification and evaluate the safety of a bacterium, Enterococcus lactis IDCC 2105, isolated from homemade cheese in Korea, using whole genome sequence (WGS) analysis. It sought to identify the species level of this Enterococcus spp., assess its antibiotic resistance, and evaluate its virulence potential. WGS analysis confirmed the bacterial strain IDCC 2105 as E. lactis and identified genes responsible for resistance to erythromycin and clindamycin, specifically msrC, and eatAv, which are chromosomally located, indicating a minimal risk for horizontal gene transfer. The absence of plasmids in E. lactis IDCC 2105 further diminishes the likelihood of resistance gene dissemination. Additionally, our investigation into seven virulence factors, including hemolysis, platelet aggregation, biofilm formation, hyaluronidase, gelatinase, ammonia production, and β-glucuronidase activity, revealed no detectable virulence traits. Although bioinformatic analysis suggested the presence of collagen adhesion genes acm and scm, these were not corroborated by phenotypic virulence assays. Based on these findings, E. lactis IDCC 2105 presents as a safe strain for potential applications, contributing valuable information on its taxonomy, antibiotic resistance profile, and lack of virulence factors, supporting its use in food products.
Collapse
Affiliation(s)
- Young-Hoo Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | | | - Han Sol Seo
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Do Sup Lee
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Sang Hyun Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Tae-Yoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
2
|
Chenhaka LH, Van Wyk DAB, Mienie C, Bezuidenhout CC, Lekota KE. The phylogenomic landscape of extended-spectrum β-lactamase producing Citrobacter species isolated from surface water. BMC Genomics 2023; 24:755. [PMID: 38062371 PMCID: PMC10704729 DOI: 10.1186/s12864-023-09867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Citrobacter species are Gram-negative opportunistic pathogens commonly reported in nosocomial-acquired infections. This study characterised four Citrobacter species that were isolated from surface water in the North West Province, South Africa. RESULTS Phenotypic antimicrobial susceptibility profiles of the isolates demonstrated their ability to produce the extended-spectrum β-lactamase (ESBL). Whole genomes were sequenced to profile antibiotic resistance and virulence genes, as well as mobile genetic elements. In silico taxonomic identification was conducted by using multi-locus sequence typing and average nucleotide identity. A pangenome was used to determine the phylogenomic landscape of the Citrobacter species by using 109 publicly available genomes. The strains S21 and S23 were identified as C. braakii, while strains S24 and S25 were C. murliniae and C. portucalensis, respectively. Comparative genomics and sequenced genomes of the ESBL-producing isolates consisted of n = 91; 83% Citrobacter species in which bla-CMY-101 (n = 19; 32,2%) and bla-CMY-59 (n = 12; 38,7%) were prevalent in C. braakii, and C. portucalensis strains, respectively. Macrolide (acrAB-TolC, and mdtG) and aminoglycoside (acrD) efflux pumps genes were identified in the four sequenced Citrobacter spp. isolates. The quinolone resistance gene, qnrB13, was exclusive to the C. portucalensis S25 strain. In silico analysis detected plasmid replicon types IncHI1A, IncP, and Col(VCM04) in C. murliniae S24 and C. portucalensis S25, respectively. These potentially facilitate the T4SS secretion system in Citrobacter species. In this study, the C. braakii genomes could be distinguished from C. murliniae and C. portucalensis on the basis of gene encoding for cell surface localisation of the CPS (vexC) and identification of genes involved in capsule polymer synthesis (tviB and tviE). A cluster for the salmochelin siderophore system (iro-BCDEN) was found in C. murliniae S24. This is important when it comes to the pathogenicity pathway that confers an advantage in colonisation. CONCLUSIONS The emerging and genomic landscapes of these ESBL-producing Citrobacter species are of significant concern due to their dissemination potential in freshwater systems. The presence of these ESBL and multidrug-resistant (MDR) pathogens in aquatic environments is of One Health importance, since they potentially impact the clinical domain, that is, in terms of human health and the agricultural domain, that is, in terms of animal health and food production as well as the environmental domain.
Collapse
Affiliation(s)
- Lee-Hendra Chenhaka
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Deidré A B Van Wyk
- Unit for Environment Science and Management, Microbiology, North-West University, Mahikeng campus, Private Bag X2046, Mahikeng, 2745, South Africa.
| | - Charlotte Mienie
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Cornelius C Bezuidenhout
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Kgaugelo E Lekota
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
3
|
Pei Y, Sun M, Zhang J, Lei A, Chen H, Kang X, Ni H, Yang S. Comparative Metagenomic and Metatranscriptomic Analyses Reveal the Response of Black Soldier Fly ( Hermetia illucens) Larvae Intestinal Microbes and Reduction Mechanisms to High Concentrations of Tetracycline. TOXICS 2023; 11:611. [PMID: 37505576 PMCID: PMC10386730 DOI: 10.3390/toxics11070611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Black soldier fly (Hermetia illucens L) larvae (BSFL) possess remarkable antibiotic degradation abilities due to their robust intestinal microbiota. However, the response mechanism of BSFL intestinal microbes to the high concentration of antibiotic stress remains unclear. In this study, we investigated the shift in BSFL gut microbiome and the functional genes that respond to 1250 mg/kg of tetracycline via metagenomic and metatranscriptomic analysis, respectively. The bio-physiological phenotypes showed that the survival rate of BSFL was not affected by tetracycline, while the biomass and substrate consumption of BSFL was slightly reduced. Natural BSFL achieved a 20% higher tetracycline degradation rate than the germ-free BSFL after 8 days of rearing. Metagenomic and metatranscriptomic sequencing results revealed the differences between the entire and active microbiome. Metatranscriptomic analysis indicated that Enterococcus, Vagococcus, Providencia, and Paenalcaligenes were the active genera that responded to tetracycline. Furthermore, based on the active functional genes that responded to tetracycline pressure, the response mechanisms of BSFL intestinal microbes were speculated as follows: the Tet family that mediates the expression of efflux pumps expel tetracycline out of the microbes, while tetM and tetW release it from the ribosome. Eventually, tetracycline was degraded by deacetylases and novel enzymes. Overall, this study provides novel insights about the active intestinal microbes and their functional genes in insects responding to the high concentration of antibiotics.
Collapse
Affiliation(s)
- Yaxin Pei
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxiao Sun
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiran Zhang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Aojie Lei
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongge Chen
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sen Yang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
4
|
Bosch J, Bezuidenhout C, Coertze R, Molale-Tom L. Metal- and antibiotic-resistant heterotrophic plate count bacteria from a gold mine impacted river: the Mooi River system, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31605-31619. [PMID: 36449242 PMCID: PMC9995416 DOI: 10.1007/s11356-022-24015-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/01/2022] [Indexed: 04/16/2023]
Abstract
The Wonderfonteinspruit, South Africa, is highly impacted by a century of gold mining activities. The aim of this study was to investigate the physico-chemical properties of the Wonderfonteinspruit and the receiving Mooi River system, the levels of antimicrobial (metals and antibiotics) resistance characteristics and heterotrophic bacteria levels in these water systems. Various physico-chemical parameters were determined. R2A agar and R2A agar supplemented with antimicrobials were used to enumerate heterotrophic bacteria. Morphologically distinct antimicrobial-resistant isolates were purified and screened for antibiotic susceptibility by a disc diffusion method. Selected isolates were identified, and minimum inhibitory concentration ranges determined. Among the antimicrobial resistant isolates, 87% were resistant to at least one antibiotic. Of these, almost 50% were resistant to more than 3 antibiotic classes. A large proportion was resistant to all 7 antibiotics tested. Phyla detected were Proteobacteria, Firmicutes and Bacteriodetes. High MIC levels for metals and antibiotics were detected among all the genera. Results demonstrate potential impacts of physico-chemical properties on levels of antimicrobial-resistant bacteria. Metal-resistant bacteria were also resistant to multiple antibiotics, suggesting that metal pollution from mining may be responsible for co-selection and maintenance of antibiotic-resistant bacteria in this aquatic system.
Collapse
Affiliation(s)
- Janita Bosch
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Roelof Coertze
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesego Molale-Tom
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
5
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
6
|
Davis BC, Keenum I, Calarco J, Liguori K, Milligan E, Pruden A, Harwood VJ. Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: A critical review of trends across studies. WATER RESEARCH X 2022; 17:100161. [PMID: 36466738 PMCID: PMC9712764 DOI: 10.1016/j.wroa.2022.100161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance is a major 21st century One Health (humans, animals, environment) challenge whose spread limits options to treat bacterial infections. There is growing interest in monitoring water environments, including surface water and wastewater, which have been identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). Aquatic environments also facilitate the transmission and amplification of ARB. Enterococcus spp. often carry clinically-important antibiotic resistance genes and are of interest as environmental monitoring targets. Enterococcus spp. are Gram-positive bacteria that are typically of fecal origin; however, they are also found in relevant environmental niches, with various species and strains that are opportunistic human pathogens. Although the value of environmental monitoring of antibiotic-resistant Enterococcus has been recognized by both national and international organizations, lack of procedural standardization has hindered generation of comparable data needed to implement integrated surveillance programs. Here we provide a comprehensive methodological review to assess the techniques used for the culturing and characterization of antibiotic-resistant Enterococcus across water matrices for the purpose of environmental monitoring. We analyzed 117 peer-reviewed articles from 33 countries across six continents. The goal of this review is to provide a critical analysis of (i) the various methods applied globally for isolation, confirmation, and speciation of Enterococcus isolates, (ii) the different methods for profiling antibiotic resistance among enterococci, and (iii) the current prevalence of resistance to clinically-relevant antibiotics among Enterococcus spp. isolated from various environments. Finally, we provide advice regarding a path forward for standardizing culturing of Enterococcus spp. for the purpose of antibiotic resistance monitoring in wastewater and wastewater-influenced waters within a global surveillance framework.
Collapse
Affiliation(s)
- Benjamin C. Davis
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Ishi Keenum
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Jeannette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| | - Krista Liguori
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Erin Milligan
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| |
Collapse
|
7
|
Ogunlaja A, Ogunlaja OO, Olukanni OD, Taylor GO, Olorunnisola CG, Dougnon VT, Mousse W, Fatta-Kassinos D, Msagati TAM, Unuabonah EI. Antibiotic resistomes and their chemical residues in aquatic environments in Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119783. [PMID: 35863703 DOI: 10.1016/j.envpol.2022.119783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The aquatic environment is a hotspot for the transfer of antibiotic resistance to humans and animals. Several reviews have put together research efforts on the presence and distribution of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic chemical residue (ACRs) in food, hospital wastewater, and even in other aquatic environments. However, these reports are largely focused on data from developed countries, while data from developing countries and especially those in Africa, are only marginally discussed. This review is the first effort that distills information on the presence and distribution of ARGs and ACRs in the African aquatic environments (2012-2021). This review provides critical information on efforts put into the study of ARB, ARGs, and ACRs in aquatic environments in Africa through the lens of the different sub-regions in the continent. The picture provided is compared with those from some other continents in the world. It turns out that the large economies in Africa (South Africa, Nigeria, Tunisia, Kenya) all have a few reports of ARB and ARGs in their aquatic environment while smaller economies in the continent could barely provide reports of these in their aquatic environment (in most cases no report was found) even though they have some reports on resistomes from clinical studies. Interestingly, the frequency of these reports of ARB and ARGs in aquatic environments in Africa suggests that the continent is ahead of the South American continent but behind Europe and Asia in relation to providing information on these contaminants. Common ARGs found in African aquatic environment encode resistance to sulfonamide, tetracycline, β-lactam, and macrolide classes of antibiotics. The efforts and studies from African scientists in eliminating ARB and ARGs from the aquatic environment in Africa are also highlighted. Overall, this document is a ready source of credible information for scientists, policy makers, governments, and regional bodies on ARB, ARGs, and ACRs in aquatic environments in Africa. Hopefully, the information provided in this review will inspire some necessary responses from all stakeholders in the water quality sector in Africa to put in more effort into providing more scientific evidence of the presence of ARB, ARGs, and ACRs in their aquatic environment and seek more efficient ways to handle them to curtail the spread of antibiotic resistance among the population in the continent. This will in turn, put the continent on the right path to meeting the United Nations Sustainable Development Goals #3 and #6, which at the moment, appears to be largely missed by most countries in the continent.
Collapse
Affiliation(s)
- Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria.
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, P.M.B. 230, Ede, Nigeria
| | - Gloria O Taylor
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Victorien T Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Wassiyath Mousse
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, South Africa
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| |
Collapse
|
8
|
Kusi J, Ojewole CO, Ojewole AE, Nwi-Mozu I. Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Antibiotics (Basel) 2022; 11:821. [PMID: 35740227 PMCID: PMC9219700 DOI: 10.3390/antibiotics11060821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/03/2023] Open
Abstract
Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.
Collapse
Affiliation(s)
- Joseph Kusi
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Catherine Oluwalopeye Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Akinloye Emmanuel Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Isaac Nwi-Mozu
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA;
| |
Collapse
|
9
|
Furukawa T, Ueno T, Matsumura M, Amarasiri M, Sei K. Inactivation of antibiotic resistant bacteria and their resistance genes in sewage by applying pulsed electric fields. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127382. [PMID: 34879573 DOI: 10.1016/j.jhazmat.2021.127382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
We evaluated the suitability of pulsed electric field (PEF) technology as a new disinfection option in the sewage treatment plants (STPs) that can inactivate antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). It was shown that PEF applied disinfection could inactivate not only vancomycin-resistant enterococci (VRE), but also vanA resistance gene. Cultivable VRE could be effectively inactivated by PEF applied disinfection, and were reduced to below the detection limit (log reduction value of VRE > 5 log). Although the vanA also showed a reduction of more than 4 log, it remained in the order of 105 copies/mL, suggesting that ARGs are more difficult to be inactivated than ARB in PEF applied disinfection. Among parameters in each applying condition verified in this study, the initial voltage was found to be the most important for inactivation of ARB and ARGs. Furthermore, frequency was a parameter that affects the increase or decrease of the duration time, and it was suggested that the treatment time could be shortened by increasing the frequency. Our results strongly suggested that PEF applied disinfection may be a new disinfection technology option for STPs that contributes to the control of ARB and ARGs contamination in the aquatic environments.
Collapse
Affiliation(s)
- Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Minami 252-0373, Japan.
| | - Takahisa Ueno
- Department of Electrical and Electronic Engineering, National Institute of Technology, Oita College, 1666 Maki, Oita 870-0152, Japan
| | - Mina Matsumura
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Minami 252-0373, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Minami 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Minami 252-0373, Japan
| |
Collapse
|
10
|
Khare T, Mahalunkar S, Shriram V, Gosavi S, Kumar V. Embelin-loaded chitosan gold nanoparticles interact synergistically with ciprofloxacin by inhibiting efflux pumps in multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. ENVIRONMENTAL RESEARCH 2021; 199:111321. [PMID: 33989619 DOI: 10.1016/j.envres.2021.111321] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 05/20/2023]
Abstract
A global upsurge in emergence and spread of antibiotic resistance (ABR) in bacterial populations is a serious threat for human health. Unfortunately, ABR is no longer confined to nosocomial environments and is frequently reported from community microbes as well. The ABR is resulting in shrinking potent antibiotics pool and thus necessitating novel and alternative therapies and therapeutics. Current investigation was aimed to assess the synergistic potential of a synthesized, phytomolecule-loaded, polysaccharide-stabilized metallic nanoparticles (NPs) against Pseudomonas aeruginosa (PA) and Escherichia coli (EC) isolated from river waters. ABR profiling of these strains characterized them as multidrug resistant (MDR). Synthesized embelin (Emb, isolated from Embelia tsjeriam-cottam)-loaded, chitosan-gold (Emb-Chi-Au) NPs were assessed for their potential synergistic activity with ciprofloxacin (CIP) via checker-board assay and time-kill curve analysis. The NPs reduced the minimal inhibitory concentration (MIC) of CIP by 16- and 4-fold against MDR PA (PA-r) and EC (EC-r) strains, respectively. Fractional inhibitory concentration (FIC) indices with ≤0.5 values confirmed the synergy between the Emb-Chi-Au NPs and CIP, which was further confirmed at ½ MICs in both PA-r and EC-r via time-kill curve analysis. In order to decipher the mode of action, efflux pump inhibitory effects of Emb-Chi-Au NPs were evaluated in terms of the increase in the EtBr mediated fluorescence in control versus NP-treated MDR strains. Molecular docking based in silico simulations were used to predict the interactions between Emb and the active sites of the efflux pump related proteins in PA-r (MexA, MexB and OprM) and EC-r (AcrA, AcrB and TolC), which revealed the probable bond formation between Emb and respective amino acid residues.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Sneha Mahalunkar
- School of Basic Medical Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College (Savitribai Phule Pune University), Pune, 411044, India
| | - Suresh Gosavi
- School of Basic Medical Science, Savitribai Phule Pune University, Pune, 411007, India; Department of Physics, Savitribai Phule Pune University, Pune, 411007, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
11
|
Chaturvedi P, Chowdhary P, Singh A, Chaurasia D, Pandey A, Chandra R, Gupta P. Dissemination of antibiotic resistance genes, mobile genetic elements, and efflux genes in anthropogenically impacted riverine environments. CHEMOSPHERE 2021; 273:129693. [PMID: 33524742 DOI: 10.1016/j.chemosphere.2021.129693] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenically impacted surface waters are an important reservoir for multidrug-resistant bacteria and antibiotic-resistant genes. The present study aimed at MDR, ESBL, AmpC, efflux genes, and heavy metals resistance genes (HMRGs) in bacterial isolates from four Indian rivers belonging to different geo-climatic zones, by estimating the mode of resistance transmission exhibited by the resistant isolates. A total 71.27% isolates exhibited MDR trait, showing maximum resistance towards β-lactams (P = 66.49%; AMX = 59.04%), lincosamides (CD = 65.96%), glycopeptides (VAN = 25.19%; TEI = 56.91%), cephalosporins (CF = 53.72%; CXM = 30.32%) sulphonamide (COT = 43.62%; TRIM = 12.77%), followed by macrolide and tetracycline. The dfrA1 and dfrB genes were detected in total 37.5% isolates whereas; dfrA1 genes were detected in 33.34%. The sul1 gene was detected in 9.76% and sul2 gene was detected in 2.44% isolates. A total of 69.40% MDR integron positive isolates were detected with intI1and intI2 detected at 89.25% and 1.07%, respectively; encoding class 1 and class 2 integron-integrase. ESBL production was confirmed in 73.13% isolates that harboured the genes blaTEM (96.84%), blaSHV (27.37%), blaOXA (13.68%) and blaCTXM (18.95%) while the frequency of HMRGs; 52.24% (zntB), 33.58% (chrA), and 6.72% (cadD). Efflux activity was confirmed in 96.26% isolates that harbored the genes acrA (93.02%), tolC (88.37%), and acrB (86.04%). AmpC (plasmid-mediated) was detected in 20.9% of the riverine isolates. Detection of such hidden molecular modes of antibiotic resistance in the rivers is alarming that requires urgent and stringent measures to control the resistance threats.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India.
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India.
| |
Collapse
|
12
|
Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P, Pandey A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. ENVIRONMENTAL RESEARCH 2021; 194:110664. [PMID: 33400949 DOI: 10.1016/j.envres.2020.110664] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is a global health emergency linked to unrestrained use of pharmaceutical and personal care products (PPCPs) as prophylactic agent and therapeutic purposes across various industries. Occurrence of pharmaceuticals are identified in ground water, surface water, soils, and wastewater treatment plants (WWTPs) in ng/L to μg/L concentration range. The prevalence of organic compounds including antimicrobial agents, hormones, antibiotics, preservatives, disinfectants, synthetic musks etc. in environment have posed serious health concerns. The aim of this review is to elucidate the major sources accountable for emergence of antibiotic resistance. For this purpose, variety of introductory sources and fate of PPCPs in aquatic environment including human and veterinary wastes, aquaculture and agriculture related wastes, and other anthropogenic activities have been discussed. Furthermore, genetic and enzymatic factors responsible for transfer and appearance of antibiotic resistance genes are presented. Ecotoxicity of PPCPs has been studied in environment in order to present risk imposed to human and ecological health. As per published literature reports, the removal of antibiotics and related traces being difficult, couples the possibility of emergence of antibiotic resistance and hence sustainability in global water resources. Therefore, research on environmental behavior and control strategies should be conducted along with assessing their chronic toxicity to identify potential human and ecological risks.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India.
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India.
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India
| |
Collapse
|
13
|
Monteiro S, Santos R. Incidence of enterococci resistant to clinically relevant antibiotics in environmental waters and in reclaimed waters used for irrigation. JOURNAL OF WATER AND HEALTH 2020; 18:911-924. [PMID: 33328363 DOI: 10.2166/wh.2020.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Treated wastewater discharged into the environment or reused in different activities can be a major vehicle for the transmission of antibiotic-resistant bacteria and antibiotic-resistance genes. In this study, environmental and wastewater samples, collected at different stages of treatment, were studied to identify the possibility of a positive selection of antibiotic-resistant organisms in wastewater treatment plants (WWTPs). Enterococci were isolated, characterized into the main human species, and subjected to the Kirby-Bauer test using seven antibiotics (five classes): ampicillin, chloramphenicol, ciprofloxacin, gentamicin, linezolid, tetracycline, and vancomycin. Furthermore, vancomycin-resistant enterococci (VRE), a major cause of nosocomial infection, was identified, and the genes vanA and vanB detected directly in the samples and in all confirmed VRE. Data showed that WWTPs were able to reduce the levels of antibiotic resistance, although 72% of the disinfected wastewaters still presented antibiotic-resistant enterococci. VRE were detected in 6% of the samples, including in reclaimed waters. UV disinfection was not effective at removing VRE and multiple antibiotic-resistant (MAR) enterococci, most commonly Enterococcus faecalis. The use of reclaimed water containing VRE and MAR enterococci in crop production, irrigation of urban gardens, and street cleaning increases immensely the potential risk to human health.
Collapse
Affiliation(s)
- Silvia Monteiro
- Laboratorio Analises, Instituto Superior Tecnico, Universidade Lisboa, Av. Rovisco Pais, 1049-011 Lisbon, Portugal E-mail:
| | - Ricardo Santos
- Laboratorio Analises, Instituto Superior Tecnico, Universidade Lisboa, Av. Rovisco Pais, 1049-011 Lisbon, Portugal E-mail:
| |
Collapse
|
14
|
Prevalence of vancomycin-resistant enterococcus in Africa in one health approach: a systematic review and meta-analysis. Sci Rep 2020; 10:20542. [PMID: 33239734 PMCID: PMC7688635 DOI: 10.1038/s41598-020-77696-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022] Open
Abstract
Vancomycin-resistant enterococci are a global challenge currently as reported by the World Health Organization. It is also important to recognize that combating antimicrobial resistance needs to recognize the interconnections between people, animals, plants and their shared environment in creating public health, the so-called One Health approach. Although the presence of VRE has been described in many regions of the world, there is a lack of comprehensive data indicating their prevalence of in Africa. Therefore, this study aimed to aggregate the result of studies describing VRE reported across multiple regions in Africa. A literature search was conducted on PubMed, Google scholar, and Hinari with the term “Vancomycin resistance enterococcus in Africa” on August 1–3, 2019. All available articles were downloaded to “Endnote version 7.1” then to Microsoft Word 2013. Articles determined to meet our criteria for the review was extracted to Microsoft Excel 2013. Those articles that reported the prevalence of vancomycin resistance Enterococcus obtained from all sample types and published from 2010 to 2019 in the English language were included for the review. A meta-analysis was conducted with OpenMetaAnalyst version R.3.1.0 software. The effect size was determined using a binary random effect model and statically significant considered when p < 0.05. Heterogeneity determined with the inconsistency index. A leave one out analysis used to perform the sensitivity analysis. There were 151 articles identified from the database searches; of this, 36 articles included after extensive review with two independent authors. Out of 4073 samples collected, 1488 isolates identified with an overall pooled prevalence of VRE 26.8% (95% CI; 10.7–43.0%) in Africa with a one-health perspective. The analysis showed that considerable heterogeneity among the studies (I2 = 99.97%; p < 0.001). Subgroup analysis in-country, African region, laboratory method, year of publication, and sample source showed that a high prevalence was identified from South Africa (74.8%), South African regions (74.8%), PCR (959.2%), 2010–2015 years (30.3%) and environmental (52.2%), respectively. This meta-analysis indicates that there was a high-pooled prevalence of vancomycin-resistant enterococci in African. A lot should be done to prevent and control the transmission of vancomycin resistance enterococci to a human being from the environment in the continent.
Collapse
|
15
|
Stange C, Tiehm A. Occurrence of antibiotic resistance genes and microbial source tracking markers in the water of a karst spring in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140529. [PMID: 32629259 DOI: 10.1016/j.scitotenv.2020.140529] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The emergence of antimicrobial resistances causes serious public health concerns worldwide. In recent years, the aquatic ecosystem has been recognized as a reservoir for antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). The prevalence of 11 ARGs, active against six antibiotic classes (β-lactams, aminoglycosides, tetracycline, macrolides, trimethoprim, and sulfonamides), was evaluated at a karst spring (Gallusquelle) in Germany, using molecular biological methods. In addition, fecal indicator bacteria (FIB), turbidity, electrical conductivity, spring discharge, and microbial source tracking markers specific for human, horse, chicken, and cow were determined. The ARGs most frequently detected were ermB (42.1%), tet(C) (40.8%), sul2 (39.5%), and sul1 (36.8%), which code for resistance to macrolides, tetracycline and sulfonamides, respectively. After a heavy rain event, the increase in FIB in the spring water was associated with the increase in ARGs and human-specific microbial source tracking (MST) markers. The determined correlations of the microbiological parameters, the observed overflow of a combined sewer overflow basin a few days before the increase of these parameters, and the findings of previous studies indicate that the overflow of this undersized basin located 9 km away from the spring could be a factor affecting the water quality of the karst spring. Our results provide a scientific basis for minimization of the input of fecal pollution and thus ARGs into the karst spring.
Collapse
Affiliation(s)
- C Stange
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, D-76139 Karlsruhe, Germany
| | - A Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, D-76139 Karlsruhe, Germany.
| |
Collapse
|
16
|
Ekwanzala MD, Dewar JB, Kamika I, Momba MNB. Comparative genomics of vancomycin-resistant Enterococcus spp. revealed common resistome determinants from hospital wastewater to aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137275. [PMID: 32109727 DOI: 10.1016/j.scitotenv.2020.137275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The rise of vancomycin-resistant Enterococcus spp. (VRE) has led to treatment challenges in hospital settings worldwide. Hospital wastewater (HW) might disseminate this threat to the aquatic environment. Thus, this study elucidates the VRE resistance quotient (RQ) of different environmental matrixes in wastewater and compares genomic determinants of VRE strains recovered from HW to water resources. Presumptive Enterococcus spp. and VRE were quantified and isolated using standard microbiological procedures. Fourteen VRE genomes were then sequenced using an Illumina HiSeq X™ Ten platform. Subsequently, VRE genomes were compared based on antibiotic resistance genes, plasmids, bacteriophages, insertion sequences, transposons, virulence and pathogenicity. Wastewater effluent showed the highest RQ among all sampled matrixes. The phylogeny of vancomycin-resistant E. faecalis (VREfs) and E. faecium (VREfm) revealed a tree structure based on their respective sequence type. A comparative genomic analysis of 14 genomes highlighted regions encoding phage protein, phage holin, phage integrase, integrase and transposase on both query genomes and the reference genome. Acquired resistance to vancomycin was conferred by vanA, vanN, vanL, vanG and the intrinsic resistance vanC operons. Plasmids were dominated by the presence of conserved areas of the replication initiating genes (rep). The Tn3-like and Tn917 transposons were present in all erythromycin-carrying erm(B) isolated VRE genomes. All VRE genomes expect one were putatively predicted as human pathogens with varying degrees of virulence. The presence of such resistant bacteria in African water resource is of great public health concern. It is, therefore, recommended that these bacteria be tracked and characterised from different environments to contribute to improved epidemiological containment action.
Collapse
Affiliation(s)
- Mutshiene Deogratias Ekwanzala
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria 0001, South Africa.
| | - John Barr Dewar
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Ilunga Kamika
- Nanotechnology and Water Sustainability Research Unit; School of Science; College of Science, Engineering and Technology; University of South Africa, Johannesburg, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
17
|
Cho S, Jackson C, Frye J. The prevalence and antimicrobial resistance phenotypes of
Salmonella
,
Escherichia coli
and
Enterococcus
sp. in surface water. Lett Appl Microbiol 2020; 71:3-25. [DOI: 10.1111/lam.13301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- S. Cho
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit United States Department of Agriculture, Agricultural Research Service Athens GA United States of America
| | - C.R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit United States Department of Agriculture, Agricultural Research Service Athens GA United States of America
| | - J.G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit United States Department of Agriculture, Agricultural Research Service Athens GA United States of America
| |
Collapse
|
18
|
Cho S, Hiott LM, McDonald JM, Barrett JB, McMillan EA, House SL, Adams ES, Frye JG, Jackson CR. Diversity and antimicrobial resistance of Enterococcus from the Upper Oconee Watershed, Georgia. J Appl Microbiol 2020; 128:1221-1233. [PMID: 31834656 DOI: 10.1111/jam.14550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
Abstract
AIM It is well-known that enterococci are abundant in the environment; however, the role of surface water as a reservoir of antimicrobial-resistant enterococci remains largely undefined. In this study, surface water samples were collected over a 2-year period from the Upper Oconee watershed, Athens, GA to examine enterococci and their antimicrobial resistance. METHODS AND RESULTS Approximately 97% (445/458) of the samples were positive for enterococci and a total of 637 enterococci were isolated. The predominant species were Enterococcus casseliflavus (33·6%) followed by Enterococcus faecalis (26·5%) and Enterococcus hirae (13·2%). Regardless of species, the highest levels of resistance were to lincomycin (88·5%) and tetracycline (13%); isolates also exhibited resistance to newer antimicrobials, daptomycin (8·9%) and tigecycline (6·4%). Multidrug resistance (resistance ≥3 antimicrobial classes) was observed to as many as five classes of antimicrobials. Resistant enterococci appeared to be randomly dispersed over the seasons rather than clustered by species or antimicrobial resistance. CONCLUSIONS This study demonstrated that surface waters contain a large population of diverse species of antimicrobial-resistant enterococci, including resistance to new antimicrobials. SIGNIFICANCE AND IMPACT OF THE STUDY These results may indicate the potential of human intestinal illness and/or colonization of the human gut with resistant enterococci as enterococci correlate with increased disease risk to humans during recreational exposure to water.
Collapse
Affiliation(s)
- S Cho
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - L M Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS Russell Research Center, Athens, GA, USA
| | - J M McDonald
- Lewis F. Rogers Institute for Environmental and Spatial Analysis, University of North Georgia, Oakwood, GA, USA
| | - J B Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS Russell Research Center, Athens, GA, USA
| | - E A McMillan
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - S L House
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS Russell Research Center, Athens, GA, USA
| | - E S Adams
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS Russell Research Center, Athens, GA, USA
| | - J G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS Russell Research Center, Athens, GA, USA
| | - C R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS Russell Research Center, Athens, GA, USA
| |
Collapse
|
19
|
Zhang Y, Zhang Y, Kuang Z, Xu J, Li C, Li Y, Jiang Y, Xie J. Comparison of Microbiomes and Resistomes in Two Karst Groundwater Sites in Chongqing, China. GROUND WATER 2019; 57:807-818. [PMID: 31297792 DOI: 10.1111/gwat.12924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Karst groundwater is an important water resource, as it accounts for about 15% of the total landscape of the earth and supplies 20% of potable water worldwide. The antibiotics resistance is an emerging global concern, and antibiotics residual and increase of antibiotic resistance genes represent serious global concerns and emerging pollutants. There is no report on the antibiotic resistance genes in groundwater. To survey resistome and microbiome in karst groundwater, two karst water samples were chosen for metagenome and metatranscriptome study, namely the 37th spring (C) and Dongcao spring (R) in Beibei, Chongqing, China. The two sites differ significantly in sulfur content, geochemical parameters, community structure, antibiotic resistance genes, and mechanisms, and these results may be influenced by anthropogenic activities. Combining with the Antibiotic Resistance Genes Database, three types of resistance genes baca, sul2, sul1 are present in R and C, and ant3ia, ermc, tetpa are also present in R. The number of all resistance genes in R was more than C, and Proteobacteria, Bacteroidetes, Nitrospirae are the main sources of antibiotic resistance genes. In addition, a large number of genes related to antibiotic gene transmission and drug resistance were found in both samples. Karst groundwater is an important source of drinking water and a possible venue for the transmission of microbial antibiotic resistance genes. However, few studies addressed this issue in karst groundwater, despite its widespread and great importance to global ecosystem. Karst groundwater is a reservoir for antibiotic resistant genes, and measures to control these resistant genes are urgently needed.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, 2 Tiansheng, Chongqing, China
| | - Yuanzhu Zhang
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, 2 Tiansheng, Chongqing, 400715, China
| | - Zhongmei Kuang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, 2 Tiansheng, Chongqing, China
| | - Junqi Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, 2 Tiansheng, Chongqing, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, 2 Tiansheng, Chongqing, China
| | - Yong Li
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, 2 Tiansheng, Chongqing, 400715, China
| | - Yongjun Jiang
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, 2 Tiansheng, Chongqing, 400715, China
| | | |
Collapse
|
20
|
Draft Genome Sequences of Potentially Pathogenic Clostridium perfringens Strains from Environmental Surface Water in the North West Province of South Africa. Microbiol Resour Announc 2019; 8:8/32/e00407-19. [PMID: 31395628 PMCID: PMC6687915 DOI: 10.1128/mra.00407-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Surface water systems in South Africa are experiencing a major decline in quality due to various anthropogenic factors. This poses a possible health risk for humans. Here, we present the draft genome sequences of three Clostridium perfringens isolates obtained from a fecally polluted river system in the North West province of South Africa. Surface water systems in South Africa are experiencing a major decline in quality due to various anthropogenic factors. This poses a possible health risk for humans. Here, we present the draft genome sequences of three Clostridium perfringens isolates obtained from a fecally polluted river system in the North West province of South Africa.
Collapse
|
21
|
Detection of Virulence Genes in Multidrug Resistant Enterococci Isolated from Feedlots Dairy and Beef Cattle: Implications for Human Health and Food Safety. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5921840. [PMID: 31317033 PMCID: PMC6601486 DOI: 10.1155/2019/5921840] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
The misuse/abuse of antibiotics in intensive animal rearing and communities led to the emergence of resistant isolates such as vancomycin-resistant enterococci (VREs) worldwide. This has become a major source of concern for the public health sector. The aim of this study was to report the antibiotic resistance profiles and to highlight the presence of virulence genes in VREs isolated from feedlots cattle of the North-West Province of South Africa. 384 faecal samples, 24 drinking troughs water, and 24 soil samples were collected aseptically from 6 registered feedlots. Biochemical and molecular methods were used to identify and categorise the enterococci isolates. Their antibiotic resistance profiles were assessed and genotypic methods were used to determine their antibiotic resistance and their virulence profiles. 527 presumptive isolates were recovered, out of which 289 isolates were confirmed as Enterococcus sp. Specifically, E. faecalis (9%), E. faecium (10%), E. durans (69%), E. gallinarum (6%), E. casseliflavus (2%), E. mundtii (2%), and E. avium (2%) were screened after molecular assays. VanA (62%), vanB (17%), and vanC (21%) resistance genes were detected in 176 Enterococcus sp., respectively. Moreover, tetK (26), tetL (57), msrA/B (111), and mefA (9) efflux pump genes were detected in 138 VRE isolates. Multiple antibiotic resistances were confirmed in all the VRE isolates of this study; the most common antibiotic resistance phenotype was TETR-AMPR-AMXR-VANR-PENR-LINR-ERYR. CylA, hyl, esp, gelE, and asa1 virulence genes were detected in 86 VREs with the exception of vancomycin-resistant E. mundtii isolates that did not display any virulence factor. Most VRE isolates had more than one virulence genes but the most encountered virulence profile was gelE-hyl. Potentially pathogenic multidrug resistant VREs were detected in this study; this highlights the impact of extensive usage of antimicrobials in intensive animal rearing and its implications on public health cannot be undermined.
Collapse
|
22
|
Matlou DP, Bissong MEA, Tchatchouang CDK, Adem MR, Foka FET, Kumar A, Ateba CN. Virulence profiles of vancomycin-resistant enterococci isolated from surface and ground water utilized by humans in the North West Province, South Africa: a public health perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15105-15114. [PMID: 30924038 DOI: 10.1007/s11356-019-04836-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Vancomycin-resistant enterococci (VRE) have been responsible for numerous outbreaks of serious infections in humans worldwide. Enterococcus faecium and Enterococcus faecalis are the principal species that are frequently associated with vancomycin resistance determinants, thus usually implicated in hospital- and community-acquired infections in humans. The study aim was to determine the antibiotic resistance and virulence profiles of VREs isolated from surface and groundwater samples that are used by humans in the North West Province, South Africa. A total of 170 water samples were collected and analyzed. Eighty-one potential isolates were screened for characteristics of Enterococcus species using preliminary biochemical tests, PCR assays and sequence analysis. The antimicrobial resistance profiles of the isolates against nine antibiotics were determined and a dendrogram was generated to access the relatedness of the isolates. The isolates were screened for the presence of antibiotic resistance and virulence genes by multiplex PCR analysis. A total of 56 isolates were confirmed as Enterococcus species and the proportion of E. faecium (46.9%) was higher than E. faecalis (29%) and E. saccharolyticus (1.2%). Sequence data of E. faecium, E. faecalis, and E. saccharolyticus isolates revealed 97 to 98% similarities to clinical strains deposited in NCBI Genbank. Large proportions (44; 78.6%) of the isolates were resistant to vancomycin while 16 and 3.6% of the isolates possessed the vanA and vanB genes respectively. The MAR phenotype Vancomycin-Nalidixic Acid-Streptomycin-Chloramphenicol-Ampicillin-Oxytetracycline-Gentamycin-Nitrofurantoin-Sulphamethoxazole indicated that some isolates were resistant to all of the nine antibiotics tested. Cluster analysis of antibiotic resistance data revealed two major clusters. Sixteen (36.4%), 14 (27.3%), 3 (6.8%), and 2 (4.5%) of the VRE isolates possessed the gel, asa1, hyl, and esp virulence genes respectively while the cylA gene was not detected in the study. Multiple antibiotic-resistant enterococci were also resistant to vancomycin and possessed virulence determinants indicating that they can pose severe public health complications on individuals who consume contaminated water.
Collapse
Affiliation(s)
- Daniel Pheeha Matlou
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Marie Ebob AgborTabot Bissong
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Christ-Donald Kaptchouang Tchatchouang
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Mohomud Rashid Adem
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Frank Eric Tatsing Foka
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ajay Kumar
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Collins Njie Ateba
- Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho, 2735, South Africa.
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
23
|
Shiadeh SMJ, Hashemi A, Fallah F, Lak P, Azimi L, Rashidan M. First detection of efrAB, an ABC multidrug efflux pump in Enterococcus faecalis in Tehran, Iran. Acta Microbiol Immunol Hung 2019; 66:57-68. [PMID: 30246548 DOI: 10.1556/030.65.2018.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enterococcus faecalis is one of the most significant pathogen in both nosocomial and community-acquired infections. Reduced susceptibility to antibiotics is in part due to efflux pumps. This study was conducted on 80 isolates of E. faecalis isolated from outpatients with urinary tract infection during a period of 1 year from April 2014 to April 2015. The antibiotic susceptibility patterns of isolates were determined by the disk diffusion method and presence of efrA and efrB genes was detected by PCR and sequencing. Minimum inhibitory concentrations (MICs) to ciprofloxacin (CIP) were measured with and without carbonyl cyanide 3-chlorophenylhydrazone (CCCP) by broth microdilution. The highest resistance rate was observed to erythromycin (83.3%) and the prevalence of efrA and efrB genes in all E. faecalis isolates was 100%. This study showed that 9 out of 13 (69.2%) ciprofloxacin-resistant isolates became less resistant at least fourfolds to CIP in the presence of efflux pump inhibitor. Our result showed that CCCP as an efflux inhibitor can increase effect of CIP as an efficient antibiotic and it is suggested that efrAB efflux pumps are involved in resistance to fluoroquinolone.
Collapse
Affiliation(s)
| | - Ali Hashemi
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- 2 Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parnian Lak
- 3 Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Leila Azimi
- 2 Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Rashidan
- 4 School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
24
|
Ekwanzala MD, Dewar JB, Kamika I, Momba MNB. Systematic review in South Africa reveals antibiotic resistance genes shared between clinical and environmental settings. Infect Drug Resist 2018; 11:1907-1920. [PMID: 30425540 PMCID: PMC6203169 DOI: 10.2147/idr.s170715] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A systematic review was conducted to determine the distribution and prevalence of antibiotic-resistant bacteria (ARB), antimicrobial-resistant genes (ARGs), and antimicrobial-resistant gene determinants (ARGDs) in clinical, environmental, and farm settings and to identify key knowledge gaps in a bid to contain their spread. Fifty-three articles were included. The prevalence of a wide range of antimicrobial-resistant bacteria and their genes was reviewed. Based on the studies reviewed in this systematic review, mutation was found to be the main genetic element investigated. All settings shared 39 ARGs and ARGDs. Despite the fact that ARGs found in clinical settings are present in the environment, in reviewed articles only 12 were found to be shared between environmental and clinical settings; the inclusion of farm settings with these two settings increased this figure to 32. Data extracted from this review revealed farm settings to be one of the main contributors of antibiotic resistance in healthcare settings. ARB, ARGs, and ARGDs were found to be ubiquitous in all settings examined.
Collapse
Affiliation(s)
| | - John Barr Dewar
- Department of Life and Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | - Ilunga Kamika
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa,
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa,
| |
Collapse
|
25
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
26
|
Pillay S, Zishiri OT, Adeleke MA. Prevalence of virulence genes in Enterococcus species isolated from companion animals and livestock. ACTA ACUST UNITED AC 2018; 85:e1-e8. [PMID: 30035595 PMCID: PMC6238777 DOI: 10.4102/ojvr.v85i1.1583] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 11/29/2022]
Abstract
Enterococcus species have developed from being commensal bacteria to leading pathogens that cause infections in humans and animals. The gastrointestinal tract of mammals is the normal habitat of these species. Virulence factors are proteins that are produced by the bacterium which are used to enhance their pathogenicity. The objectives of this study were to isolate Enterococcus spp. from livestock and companion animals, differentiate between the different sub-species and detect the presence of important virulence genes. Rectal and saliva swabs were collected from dogs and cats, whereas only rectal swabs were collected from cattle and cloacal swabs from chickens. Presumptive Enterococcus was selected using Bile Esculin Azide (BEA) agar, and Enterococcus species were confirmed using the polymerase chain reaction (PCR) by amplifying the tuf gene. In order to differentiate between E. faecalis and E. faecium, a multiplex PCR was used to detect the SodA gene. The genes responsible for gelatinase production (gelE) and for conjugation (ccf) were also detected using PCR. Out of 211 animal swabs, 182 (86%) were positive for the tuf gene. Overall, there were 55 isolates of E. faecalis (30%) compared to 22 isolates of E. faecium (12%). The virulence genes had a prevalence of 52% and 36% for gelE and ccf, respectively, in all animal hosts. The results demonstrated that chicken cloacal samples had the highest prevalence for E. faecalis, gelE and ccf genes compared to all the other isolates detected from other animal hosts. The results also demonstrated a statistically significant (p < 0.05) association between the prevalence of virulence genes (gelE and ccf) and animal species from which Enterococcus spp. was isolated. We provided evidence that healthy livestock and companion animals can harbour pathogenic Enterococcus that can be transferred via the food chain as well as through close association such as petting and licking of humans. This study partially demonstrated that Enterococci spp. are capable of evolving from being simple commensal bacteria to becoming pathogens that cause infection in humans and animals through the acquisition of virulence factors through mobile genetic elements.
Collapse
Affiliation(s)
- Shirwin Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal.
| | | | | |
Collapse
|
27
|
Heidari H, Hasanpour S, Ebrahim-Saraie HS, Motamedifar M. High Incidence of Virulence Factors Among Clinical Enterococcus faecalis Isolates in Southwestern Iran. Infect Chemother 2017; 49:51-56. [PMID: 28332345 PMCID: PMC5382050 DOI: 10.3947/ic.2017.49.1.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Over the past two decades, enterococci have emerged as an important agent responsible for hospital acquired infection. Several virulence factors contribute to the adherence, colonization, evasion of the host immune response, and pathogenicity and severity of the infection. Enterococcus faecalis is the most common and virulent species causing infections in hospitalized patients. The aim of the present study was to examine the prevalence of genes encoding virulence factors and antimicrobial resistance patterns of E. faecalis strains isolated from hospitalized patients in Shiraz, south west of Iran. MATERIALS AND METHODS A total of 51 E. faecalis isolates from the urine, blood, pleural fluid, peritoneal fluid, eye discharge, endotracheal tube (ETT) and transjugular intrahepatic portosystemic shunt (TIPS) specimens of patients were identified by phenotypic and genotypic methods. Antimicrobial sensitivity tests and detection of virulence factors were performed using standard methods. RESULTS The efa and asa1 were the most frequently detected gene (100%) among the isolates, followed by esp (94.1%), ace (90.2%), gelE (80.4%), cylA (64.7%), and hyl (51%). More than half of the isolates (52.9%) were high level gentamicin resistant (HLGR). Vancomycin resistance was observed among 23 (45.1%) isolates. The lowest antimicrobial activity was related to erythromycin (3.9%), tetracycline (5.9%) and ciprofloxacin (9.8%). No isolate was found resistant to fosfomycin and linezolid. CONCLUSION Our data indicated a high incidence of virulence factors among E. faecalis strains isolated from clinical samples. Colonization of drug resistant virulent isolates in hospital environment may lead to life threatening infection in hospitalized patients. Therefore, infection control procedures should be performed.
Collapse
Affiliation(s)
- Hamid Heidari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Hasanpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Sedigh Ebrahim-Saraie
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|