1
|
Giraud-Billoud M, Moreira DC, Minari M, Andreyeva A, Campos ÉG, Carvajalino-Fernández JM, Istomina A, Michaelidis B, Niu C, Niu Y, Ondei L, Prokić M, Rivera-Ingraham GA, Sahoo D, Staikou A, Storey JM, Storey KB, Vega IA, Hermes-Lima M. REVIEW: Evidence supporting the 'preparation for oxidative stress' (POS) strategy in animals in their natural environment. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111626. [PMID: 38521444 DOI: 10.1016/j.cbpa.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Hypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g. hibernation, estivation), stress-tolerant species down-regulate pathways to decrease energy expenditures until the return of less challenging conditions. However, it is with the return of these more favorable conditions and the reactivation of basal metabolic rates that a strong increase of reactive oxygen and nitrogen species (RONS) occurs, leading to oxidative stress. Over the last few decades, cases of species capable of enhancing antioxidant defenses during hypometabolic states have been reported across taxa and in response to a variety of stressors. Interpreted as an adaptive mechanism to counteract RONS formation during tissue hypometabolism and reactivation, this strategy was coined "Preparation for Oxidative Stress" (POS). Laboratory experiments have confirmed that over 100 species, spanning 9 animal phyla, apply this strategy to endure harsh environments. However, the challenge remains to confirm its occurrence in the natural environment and its wide applicability as a key survival element, through controlled experimentation in field and in natural conditions. Under such conditions, numerous confounding factors may complicate data interpretation, but this remains the only approach to provide an integrative look at the evolutionary aspects of ecophysiological adaptations. In this review, we provide an overview of representative cases where the POS strategy has been demonstrated among diverse species in natural environmental conditions, discussing the strengths and weaknesses of these results and conclusions.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis 5730, Argentina.
| | - Daniel C Moreira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil; Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Marina Minari
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aleksandra Andreyeva
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow 119991, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - Élida G Campos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Juan M Carvajalino-Fernández
- Laboratory of Adaptations to Extreme Environments and Global Change Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Aleksandra Istomina
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Cuijuan Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Luciana Ondei
- Universidade Estadual de Goiás, Câmpus Central, 75132-903 Anápolis, GO, Brazil
| | - Marko Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Georgina A Rivera-Ingraham
- Australian Rivers Institute, Griffith University, Southport 4215, Gold Coast, Queensland. Australia; UMR9190-MARBEC, Centre National de la Recherche Scientifique (CNRS), Montpellier, 34090, France
| | - Debadas Sahoo
- Post Graduate Department of Zoology, S.C.S. Autonomous College, Puri, Odis ha-752001, India
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, School of Biology, University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | - Janet M Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Israel A Vega
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Marcelo Hermes-Lima
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
2
|
Paital B, Pati SG, Panda F, Jally SK, Agrawal PK. Changes in physicochemical, heavy metals and air quality linked to spot Aplocheilus panchax along Mahanadi industrial belt of India under COVID-19-induced lockdowns. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:751-770. [PMID: 35306623 PMCID: PMC8934247 DOI: 10.1007/s10653-022-01247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/26/2022] [Indexed: 05/09/2023]
Abstract
Positive effects of COVID-19-induced lockdowns on environment are well documented although pre-planned experiments for such analyses and appearance of fish species are lacking. We hypothesize that spotting the fish Aplocheilus panchax along the industrial belt of Mahanadi River near Cuttack in a never seen manner could be due to the regenerated environment. Heavy metals, water and air qualities along with spotting A. panchax in up, mid and downstream of Mahanadi River near Jagatpur industrial basins were analysed during pre-(end of March 2020) and after 60 days of lockdowns (last week of May 2020). An overall 45, 61, 79, 100, 97 and 90% reduction of Fe, Cu, Ni, Cd, Pb and Zn was recorded in the studied area after lockdowns, respectively. Similarly, dissolved oxygen and pH were elevated by 26 and 7%, respectively. Water temperature, conductivity and total dissolved solute levels were reduced by 7, 46 and 15%, respectively, which were again elevated during post-lockdowns during 2021 as observed from the Landsat-8 OLI satellite data. Air NO2, SO2, NH3, PM2.5, PM10 and CO levels were alleviated by 58.75, 80.33, 72.22, 76.28, 77.33 and 80.15%, respectively. Finally, for the first time, about 12 A. panchax fish per 100 m shore line in the area were spotted. The observed lockdown-induced environmental healing at the studied area could contribute to the appearance of A. panchax in the study site and therefore a stringent environmental audit is suggested during post-COVID-19 periods to make the regenerated environmental status long lasting in such habitats.
Collapse
Affiliation(s)
- Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Sujit Kumar Jally
- School of Geography, Gangadhar Meher University, Sambalpur, Odisha, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| |
Collapse
|
3
|
Zhang W, Sun H, Su R, Wang S. Fat rather than health - Ecotoxic responses of Bufo raddei to environmental heavy metal stress during the non-breeding season. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114040. [PMID: 36055043 DOI: 10.1016/j.ecoenv.2022.114040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The non-breeding season is a critical period for iteroparous animals to repair damage and store energy, which is crucial for future survival and reproductive success. However, it is unknown how animals allocate energy efficiently among reproduction, self-maintenance, and repair of oxidative damage caused by breeding during the non-breeding period, particularly under pollution. In the present study, the self-maintenance response and reproductive strategy of Bufo raddei to long-term environmental heavy metal stress was explored during the non-breeding season. Heavy metal enrichment level, organ coefficients, nutritional status, gonadal developmental level, oxidation level, and the immune status of B. raddei during the non-breeding season were tested, energy allocation preferences and energy consumption costs were analyzed. The results revealed significant heavy metal accumulation through biomagnification in the organs of B. raddei from the polluted area. Under long-term environmental heavy metal pollution, the energy investment by B. raddei for growth and energy storage was higher than that for health-maintenance during the early life cycle stage. The energy inputted for immune and antioxidant functions was significantly lower, and the energy inputted for self-maintenance during the early life stage was significantly higher than that during the late stage. B. raddei from a heavy metal polluted area spent more energy consumption cost on immunity and oxidative stress, but suffered higher oxidative stress and lower immune status. Moreover, the reproductive input of individuals in a heavy metal polluted area was generally low during the non-breeding season, and the energy input for reproduction limited the energy input for self-maintenance in females.
Collapse
Affiliation(s)
- Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Hao Sun
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Radovanović TB, Gavrilović BR, Petrović TG, Despotović SG, Gavrić JP, Kijanović A, Mirč M, Tomašević Kolarov N, Faggio C, Prokić MD. Impact of desiccation pre-exposure on deltamethrin-induced oxidative stress in Bombina variegata juveniles. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109191. [PMID: 34536572 DOI: 10.1016/j.cbpc.2021.109191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022]
Abstract
Global warming represents a severe threat to existing ecosystems, especially for anuran tadpoles who encounter significant fluctuations in their habitats. Decreasing water levels in permanent and temporary water bodies is a significant risk for larval survival or fitness. On the other hand, the natural environment of amphibians is extremely polluted by various xenobiotics. This study evaluated how pre-exposure of Bombina variegata tadpoles to chronic environmental stress (desiccation) modulates the biochemical response of juvenile individuals to following acute chemical stressor (pesticide deltamethrin). Our results demonstrated that individually applied pesticide changed the thiol and lipid status of the treated juveniles but animals subjected solely to desiccation pressure were more tolerant to free radicals and showed no induction of lipid peroxidation. Comparison of juveniles exposed to deltamethrin revealed that desiccation pretreatment during the larval stage of development modified cellular protection in the juveniles. Higher activities of CAT, GSH-Px and GR were recorded in the pre-exposed group, as well as a lower degree of lipid peroxidation relative to the group that was not pre-exposed to low water stress. Pre-desiccated groups displayed the greatest range of coordination of investigated antioxidant parameters, supported by Pearson's correlations. Activation of the GSH-redox system is a significant marker in juveniles against stress caused by desiccation and a chemical stressor. The stressful environment experienced during tadpole development produced an adaptive reaction to subsequent exposure to another stressor in juveniles. To develop relevant management and conservation strategies, more studies of the interactive effects of environmental and chemical stressors are necessary.
Collapse
Affiliation(s)
- Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Marko Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
5
|
Rath S, Bal A, Paital B. Heavy metal and organic load in Haripur creek of Gopalpur along the Bay of Bengal, east coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28275-28288. [PMID: 33534104 DOI: 10.1007/s11356-021-12601-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/18/2021] [Indexed: 05/24/2023]
Abstract
Accumulation of heavy metals in zooplanktons is used as an essential tool for the evaluation of health of an ecosystem. Such data are used to set further monitoring strategies especially in (coastal) water bodies. In the present study, seasonal bioaccumulation of heavy metals such as Cu, Zn, Pb, Cd and Hg, organic loads such as nitrite and phosphate, contents loads and physicochemical parameters in Haripur creek along the Bay of Bengal in east coast of India is measured in zooplanktons. Coastal organisms are considered an integral part of marine ecosystems and their frequent massive die-off events along the coast of the Bay of Bengal are correlated with the obtained pollutant data. The levels of heavy metals were also correlated with several extrinsic environmental factors such as water transparency, dissolved oxygen, salinity, pH and temperature. Discriminant function analyses and standardised coefficients for canonical variables for the obtained data indicate that the studied environmental factors and organic loads varied as a function of season. Bioaccumulation of the studied heavy metals in zooplanktons was seasonal and infrequently noticed above the standard limit. The computed bioaccumulation factor of the five metals showed that accumulation of Zn was higher in zooplanktons as compared to that of the other studied metals. So, the entry of heavy metals through the food chains or via direct exposure (to organic loads also) to the other inhabiting organisms including fish may be assumed. This could be one of the possible reasons for the observed frequent (fish) die-off events at Gopalpur Coast along the Bay of Bengal and may be considered a clue for future investigations.
Collapse
Affiliation(s)
- Sasmita Rath
- Department of Marine Sciences, Berhampur University, Berhampur, Odisha, 760007, India
| | - Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
6
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
7
|
Prokić MD, Gavrić JP, Petrović TG, Despotović SG, Gavrilović BR, Radovanović TB, Krizmanić II, Pavlović SZ. Oxidative stress in Pelophylax esculentus complex frogs in the wild during transition from aquatic to terrestrial life. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:98-105. [DOI: 10.1016/j.cbpa.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
8
|
Paital B, Guru D, Mohapatra P, Panda B, Parida N, Rath S, Kumar V, Saxena PS, Srivastava A. Ecotoxic impact assessment of graphene oxide on lipid peroxidation at mitochondrial level and redox modulation in fresh water fish Anabas testudineus. CHEMOSPHERE 2019; 224:796-804. [PMID: 30851531 DOI: 10.1016/j.chemosphere.2019.02.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Rapidly expanding nanoparticle industries are predicted to have turnover of ∼$173.95 billion by 2025, indicating an urgency to study their comprehensive toxicological impact(s). Toxic effects of Graphene Oxide (GO) on oxidative stress physiology especially at mitochondrial level and redox modulation in fish in general and in climbing perch Anabas testudineus is absent. Therefore, we have investigated the toxic impacts of sub lethal doses of GO on selected oxidative stress physiology markers, protein and nucleic acid content along with haematological parameters in A. testudineus. Discriminant function and correlation analyses suggest that GO had toxic effects on the fish, as revealed from the studied parameters. Liver and gill tissues had shown strong response to GO than muscle. Augmented gradual accumulation of cellular lipid peroxides, specifically in mitochondria, was noticed. Activity of superoxide dismutase, catalase, and glutathione-S-transferase was augmented in contrast to the lowered level of the reduced glutathione titre. Alleviated total red blood corpuscle count and haemoglobin titre was parallel with an augmentation of white blood corpuscle count under GO administration. The protein level was also alleviated gradually in liver with clear changes in tissue specific nucleic acid levels, which was reduced under GO treatment. Results of the present study indicate that GO induces oxidative stress in cell and mitochondria in fish. Therefore, very careful future practices of use of GO directly, or as cargo in environmental monitoring processes in aquatic models in vitro in general and Pisces model in particular are suggested.
Collapse
Affiliation(s)
- Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Deeptimayee Guru
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Priyadarsini Mohapatra
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Biswajit Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Nibedita Parida
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Sasmita Rath
- Department of Zoology, Centurion University, Odisha, 761211, India
| | - Vinod Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, 221005, India; Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-sheva, 84105, Israel
| | - Preeti S Saxena
- Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Anchal Srivastava
- Department of Physics, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
9
|
Comparative assessment of the antioxidative defense system in subadult and adult anurans: A lesson from the Bufotes viridis toad. ZOOLOGY 2018; 130:30-37. [DOI: 10.1016/j.zool.2018.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022]
|
10
|
Guerriero G, D'Errico G, Di Giaimo R, Rabbito D, Olanrewaju OS, Ciarcia G. Reactive oxygen species and glutathione antioxidants in the testis of the soil biosentinel Podarcis sicula (Rafinesque 1810). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18286-18296. [PMID: 28936697 DOI: 10.1007/s11356-017-0098-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/04/2017] [Indexed: 04/16/2023]
Abstract
Important toxicological achievements have been made during the last decades using reptiles. We focus our investigation on gonadal reproductive health of the soil biosentinel Podarcis sicula which is very sensitive to endocrine-disrupting chemicals. The aim of this study is to quantitatively detect, by sensitive microassays, reactive oxygen species and the glutathione antioxidants in the testis and investigate if they are differentially expressed before and after remediation of a site of the "Land of Fires" (Campania, Italy) subject to illicit dumping of unknown material. The oxidative stress level was evaluated by electron spin resonance spectroscopy applying a spin-trapping procedure able to detect products of lipid peroxidation, DNA damage and repair by relative mobility shift, and poly(ADP-ribose) polymerase enzymatic activity, respectively, the expression of glutathione peroxidase 4 transcript by real-time quantitative PCR analysis, the antioxidant glutathione S-transferase, a well-assessed pollution index, by enzymatic assay and the total soluble antioxidant capacity. Experimental evidences from the different techniques qualitatively agree, thus confirming the robustness of the combined experimental approach. Collected data, compared to those from a reference unpolluted site constitute evidence that the reproductive health of this lizard is impacted by pollution exposure. Remediation caused significant reduction of reactive oxygen species and downregulation of glutathione peroxidase 4 mRNAs in correspondence of reduced levels of glutathione S-transferase, increase of antioxidant capacity, and repair of DNA integrity. Taken together, our results indicate directions to define new screening approaches in remediation assessment.
Collapse
Affiliation(s)
- Giulia Guerriero
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy.
- Interdepartmental Research Center for Environment (I.R.C.Env.), Federico II University, Naples, Italy.
| | - Gerardino D'Errico
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 26, 80126, Naples, Italy
| | - Rossella Di Giaimo
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy
| | - Dea Rabbito
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy
| | - Oladokun Sulaiman Olanrewaju
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy
- School of Ocean Engineering, University Malaysia , Terengganu Kuala Terengganu, Malaysia
| | - Gaetano Ciarcia
- Department of Biology, Federico II University,Complesso Universitario Monte Sant'Angelo , Edificio 7 Via Cinthia, 26, Naples, (80126), Italy
- Interdepartmental Research Center for Environment (I.R.C.Env.), Federico II University, Naples, Italy
| |
Collapse
|
11
|
Subtropical hibernation in juvenile tegu lizards (Salvator merianae): insights from intestine redox dynamics. Sci Rep 2018; 8:9368. [PMID: 29921981 PMCID: PMC6008456 DOI: 10.1038/s41598-018-27263-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Juvenile tegu lizards (Salvator merianae) experience gradual and mild temperature changes from autumn to winter in their habitat. This tropical/subtropical reptile enter a state of dormancy, with an 80% reduction in metabolic rate, that remains almost constant during winter. The redox metabolism in non-mammalian vertebrates that hibernate under such distinguished conditions is poorly understood. We analyzed the redox metabolism in the intestine of juvenile tegus during different stages of their first annual cycle. The effect of food deprivation (in spring) was also studied to compare with fasting during hibernation. Both winter dormancy and food deprivation caused decreases in reduced glutathione levels and glutathione transferase activity. While glutathione peroxidase and glutathione transferase activities decreased during winter dormancy, as well as glutathione (GSH) levels, other antioxidant enzymes (catalase, superoxide dismutase and glutathione reductase) remained unchanged. Notably, levels of disulfide glutathione (GSSG) were 2.1-fold higher in late autumn, when animals were in the process of depressing metabolism towards hibernation. This increased “oxidative tonus” could be due to a disruption in NADPH-dependent antioxidant systems. In dormancy, GSSG and lipid hydroperoxides were diminished by 60–70%. The results suggest that the entrance into hibernation is the main challenge for the redox homeostasis in the intestine of juvenile tegus.
Collapse
|
12
|
Prokić MD, Borković-Mitić SS, Krizmanić II, Mutić JJ, Gavrić JP, Despotović SG, Gavrilović BR, Radovanović TB, Pavlović SZ, Saičić ZS. Oxidative stress parameters in two Pelophylax esculentus complex frogs during pre- and post-hibernation: Arousal vs heavy metals. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:19-25. [PMID: 28757213 DOI: 10.1016/j.cbpc.2017.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 11/29/2022]
Abstract
In spring, frogs from temperate regions are faced with arousal-induced oxidative stress and exposure to various xenobiotics from the environment. The question is whether pollutants can significantly modify the antioxidative defense system (AOS) response of hibernators during recovery from hibernation. If this assumption is true, we would then expect different patterns of seasonal variations in the AOS between individuals exposed to different levels of pollution. To examine this assumption, we determined the relationship between seasonal variations of accumulated metals and AOS parameters in the skin and muscle of two frog species from the Pelophylax esculentus complex (P. ridibundus and P. esculentus) inhabiting two localities (the Danube-Tisza-Danube canal and the Ponjavica River) with different levels of pollution during pre- and post-hibernation periods, respectively autumn and spring. Our results showed that even though there were differences in the concentrations of accumulated metals and AOS parameters between localities and species, the frogs displayed almost the same patterns of AOS variations during seasons, with a higher AOS response observed in spring. The parameters SH groups, GSH, GR and SOD had been contributed most rather than others. Our findings indicate that oxidative stress during the post-hibernation period was mainly caused by the organisms' recovery from hibernation, as the result of natural selection acting on the AOS, and that the accumulated metals did not significantly modify the AOS response. The present study provides new insight into the biological and physiological cellular responses of frogs to arousal stress.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Slavica S Borković-Mitić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Imre I Krizmanić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Jelena J Mutić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Slađan Z Pavlović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Zorica S Saičić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|