1
|
Xu K, Li Z, Qiao J, Wang S, Xie P, Zong Z, Hu C. Persistent organic pollutants exposure and risk of autism spectrum disorders: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122439. [PMID: 37619697 DOI: 10.1016/j.envpol.2023.122439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Accumulating number of epidemiological studies has recently proposed that improvement in the risk of autism spectrum disorders (ASD) is associated with persistent organic pollutants (POPs) exposure. However, evidence from current researches is limited and inconsistent. Thus, we conducted a systematic review and meta-analysis to investigate the potential associations comprehensively. We systematically and extensively searched two electronic databases (PubMed and EMBASE) from inception to July 3, 2022 and an updated search was performed before submission. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were derived from stratified random-effects meta-analyses by type of exposure and outcome. We also tested the potential heterogeneity across studies, conducted sensitivity analysis and evaluated publication bias. A total of 20 studies were finally included in our study. Meta-analytical effect estimates indicated a positive association between prenatal exposure to PCB-138, PCB-153 and PCB-170 and an increased risk of ASD, with OR of 1.89 (95% CI = 1.21-2.95, I2 = 0%), 1.61 (95% CI = 1.05-2.47, I2 = 0%) and 1.46 (95% CI = 1.03-2.06, I2 = 0%) respectively. In contrast, PFDA was found inversely associated with the risk of ASD (OR = 0.70, 95% CI = 0.52-0.94, I2 = 0%). The level of evidence supporting a link between ASD risk and exposure to PCB-138, PCB-153, PCB-170, and PFDA was respectively categorized as low, low, moderate, and low. In summary, this systematic review and meta-analysis suggest that exposure to PCB-138, PCB-153, and PCB-170 correlates with a heightened risk of ASD, with evidence levels rated as "low", "low", and "moderate", respectively. In contrast, PFDA exposure appears to be inversely associated with ASD risk, with a "low" level of supporting evidence. However, due to the limited number of studies available for each exposure and outcome pairing, these results should be interpreted with caution. Sufficiently powered studies are needed to validate our findings.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhuoyan Li
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jianchao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Senzheng Wang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Pinpeng Xie
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhiqiang Zong
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
2
|
Naghdi S, Shahrestani MM, Zendehbad M, Djahaniani H, Kazemian H, Eder D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130127. [PMID: 36303355 DOI: 10.1016/j.jhazmat.2022.130127] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The presence of persistent organic pollutants (POPs) in the aquatic environment is causing widespread concern due to their bioaccumulation, toxicity, and possible environmental risk. These contaminants are produced daily in large quantities and released into water bodies. Traditional wastewater treatment plants are ineffective at degrading these pollutants. As a result, the development of long-term and effective POP removal techniques is critical. In water, adsorption removal and photocatalytic degradation of POPs have been identified as energy and cost-efficient solutions. Both technologies have received a lot of attention for their efforts to treat the world's wastewater. Photocatalytic removal of POPs is a promising, effective, and long-lasting method, while adsorption removal of persistent POPs represents a simple, practical method, particularly in decentralized systems and isolated areas. It is critical to develop new adsorbents/photocatalysts with the desired structure, tunable chemistry, and maximum adsorption sites for highly efficient removal of POPs. As a class of recently created multifunctional porous materials, Metal-organic frameworks (MOFs) offer tremendous prospects in adsorptive removal and photocatalytic degradation of POPs for water remediation. This review defines POPs and discusses current research on adsorptive and photocatalytic POP removal using emerging MOFs for each type of POPs.
Collapse
Affiliation(s)
- Shaghayegh Naghdi
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| | - Masoumeh Moheb Shahrestani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Mohammad Zendehbad
- Institute of Soil Physics and Rural Water Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hoorieh Djahaniani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| | - Dominik Eder
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| |
Collapse
|
3
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
4
|
Frenoy P, Marques C, Fiolet T, Cano-Sancho G, Severi G, Mancini FR. Positive association between dietary exposure to polybrominated diphenyl ethers and breast cancer risk in the French E3N cohort: The role of vegetable oil consumption. ENVIRONMENT INTERNATIONAL 2022; 167:107444. [PMID: 35930981 DOI: 10.1016/j.envint.2022.107444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Exposure to endocrine-disrupting chemicals, like Polybrominated diphenyl ethers (PBDEs), is suspected of playing a role in the occurrence of breast cancer. Moreover, there is growing evidence that food chemical contaminants, especially lipophilic ones such as PBDEs, could interact with different components of the diet. The objective of the present study was to assess the association between dietary intake of PBDEs and breast cancer risk in the French E3N cohort study, and to investigate the potential modification of this association by vegetable oil consumption. The study included 67879 women. Intakes of eight PBDEs were estimated using food consumption data from a validated semi-quantitative food frequency questionnaire, and food contamination levels measured by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES). Cox proportional hazards models were used to estimate Hazard Ratios (HR) and 95% Confidence Intervals (CI) for the association between total PBDEs dietary intake and breast cancer risk. Interaction measures for vegetable oil consumption were estimated on both additive and multiplicative scales. The women were followed for a maximum of 21.4 years, and 5 686 developed an incident breast cancer. A positive linear trend was highlighted between dietary intake of PBDEs in quintile groups and breast cancer risk, borderline with statistical significance (p-trend = 0.06, HRQ5vsQ1 and 95% CI: 1.09 [0.99;1.20]). Interaction measures for vegetable oil consumption were significant in both additive and multiplicative scales. Higher effect sizes of the association were highlighted in high consumers of vegetable oil, i.e. ≥4.6 g/day (HRQ5vsQ1 and 95% CI: 1.23 [1.08; 1.40]), and almost no effect were found in low consumers (HRQ5vsQ1 and 95% CI: 0.97 [0.86; 1.10]). Highlighting such interactions between nutrients and chemicals is crucial to develop efficient dietary recommendations to limit the negative health effects associated with exposure to food chemical contaminants.
Collapse
Affiliation(s)
- Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94807 Villejuif, France
| | - Chloé Marques
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94807 Villejuif, France
| | - Thibault Fiolet
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94807 Villejuif, France
| | | | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94807 Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Italy
| | - Francesca Romana Mancini
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94807 Villejuif, France.
| |
Collapse
|
5
|
Feng Y, Bai Y, Lu Y, Chen M, Fu M, Guan X, Cao Q, Yuan F, Jie J, Li M, Meng H, Wang C, Hong S, Zhou Y, Zhang X, He M, Guo H. Plasma perfluoroalkyl substance exposure and incidence risk of breast cancer: A case-cohort study in the Dongfeng-Tongji cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119345. [PMID: 35472559 DOI: 10.1016/j.envpol.2022.119345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Experimental studies have suggested perfluoroalkyl substances (PFASs) as mammary toxicants, but few studies evaluated the prospective associations of PFASs with breast cancer risk. We performed a case-cohort study within the Dongfeng-Tongji cohort, including incident breast cancer cases (n = 226) and a random sub-cohort (n = 990). Baseline plasma concentrations of four perfluorinated carboxylic acids (PFCAs) [perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroheptanoic acid (PFHpA)] and two perfluorinated sulfonic acids (PFSAs) [perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)] were measured. Barlow-weighted Cox regression models revealed that each 1-unit increase in ln-transformed PFOA and PFHpA was associated with a separate 35% and 20% elevated incident risk of breast cancer [HR(95%CI) = 1.35(1.03, 1.78) and 1.20(1.02, 1.40), respectively], which were also significant among postmenopausal females [HR(95%CI) = 1.34(1.01, 1.77) and 1.23 (1.02, 1.48), respectively]. Quantile g-computation analysis observed a 19% increased incident risk of breast cancer along with each simultaneous quartile increase in all ln-transformed PFCA concentrations [HR(95%CI) = 1.19(1.01, 1.41)], with PFOA accounting for 56% of the positive effect. Our findings firstly revealed the impact of short-chain PFHpA on increased incident risk of breast cancer, suggested exposure to PFASs as a risk factor for breast cancer, and shed light on breast cancer prevention by regulating PFASs as a chemical class.
Collapse
Affiliation(s)
- Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Cao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yuan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Jiang H, Liu H, Liu G, Yu J, Liu N, Jin Y, Bi Y, Wang H. Associations between Polyfluoroalkyl Substances Exposure and Breast Cancer: A Meta-Analysis. TOXICS 2022; 10:toxics10060318. [PMID: 35736926 PMCID: PMC9227283 DOI: 10.3390/toxics10060318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023]
Abstract
Polyfluoroalkyl substances (PFASs) are persistent pollutants that may cause breast cancer. However, associations between exposure to PFASs and the risk of breast cancer are controversial. We retrieved studies on the association between PFASs—perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS)—and breast cancer risk in women from PubMed, Embase, and the Web of Science. The pooled odds ratios (ORs) or relative risks (RRs) and their 95% confidence intervals (CIs) were extracted or calculated from provided data. Moreover, subgroup and metaregression analyses were performed to distinguish the potential sources of heterogeneity between studies. Lastly, eight original studies were included in the meta-analysis. PFOA and PFHxS were positively correlated with breast cancer risk, and the pooled ORs (and 95% CIs) were 1.32 (1.19 and 1.46) and 1.79 (1.51 and 2.11), respectively. PFNA was negatively correlated with breast cancer risk and the pooled OR (and 95% CIs) was 0.76 (0.6 and 0.96), and PFOS was shown to have no correlation with breast cancer risk and the pooled OR (and 95% CIs) was 1.01 (0.87 and 1.17). All results were merged in a random-effects model with significant heterogeneities (I2 > 90%, p < 0.001). The results demonstrated that PFASs might be potential risk factors for breast cancer, and the compounds in low exposure levels could have a more harmful impact on human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Wang
- Correspondence: ; Tel.: +027-6875-8591
| |
Collapse
|
7
|
The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review. Catalysts 2022. [DOI: 10.3390/catal12040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Semiconductors based on transition metal oxides represent an important class of materials used in emerging technologies. For this, the performance of these materials strongly depends on the size and morphology of particles, surface charge characteristics, and the presence of bulk and surface defects that are influenced by the synthesis method and the experimental conditions the materials are prepared. In this context, the present review aims to report the importance of choosing the synthesis methods and experimental conditions to modify structural, morphological, and electronic characteristics of semiconductors, more specifically, tin oxide (SnO2), since these parameters may be a determinant for better performance in various applications, including photocatalysis. SnO2 is an n-type semiconductor with a band gap between 3.6 and 4.0 eV, whose intrinsic characteristics are responsible for its electrical conductivity, good optical characteristics, high thermal stability, and other qualities. Such characteristics have provided excellent results in advanced oxidative processes, i.e., heterogeneous photocatalysis applications. This process involves semiconductors in the production of hydroxyl radicals via activation by light absorption, and it is considered as an emerging and promising technology for domestic-industrial wastewater treatment. In our review article, we focused on the photodegradation of different organic dyes and types of persistent organic pollutants using SnO2-based photocatalysts, and how the efficiency of these materials can be impacted by synthesis methods and experimental conditions employed to prepare them.
Collapse
|
8
|
Frenoy P, Perduca V, Cano-Sancho G, Antignac JP, Severi G, Mancini FR. Application of two statistical approaches (Bayesian Kernel Machine Regression and Principal Component Regression) to assess breast cancer risk in association to exposure to mixtures of brominated flame retardants and per- and polyfluorinated alkylated substances in the E3N cohort. Environ Health 2022; 21:27. [PMID: 35216589 PMCID: PMC8881807 DOI: 10.1186/s12940-022-00840-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/16/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Brominated flame retardants (BFR) and per- and polyfluorinated alkylated substances (PFAS) are two groups of substances suspected to act as endocrine disruptors. Such substances could therefore be implicated in the occurrence of breast cancer, nevertheless, previous studies have led to inconstant results. Due to the large correlation between these substances, and the possibly non-linear effects they exert, evaluating their joint impact as mixtures on health remains challenging. This exploratory study aimed to generate hypotheses on the relationship between circulating levels of 7 BFR (6 polybrominated diphenyl ethers and 1 polybrominated biphenyls) and 11 PFAS and the risk of breast cancer in a case-control study nested in the E3N French prospective cohort by performing two methods: Principal Component Regression (PCR) models, and Bayesian Kernel Machine Regression (BKMR) models. METHODS 194 post-menopausal breast cancer cases and 194 controls were included in the present study. Circulating levels of BFR and PFAS were measured by gas chromatography coupled to high-resolution mass spectrometry and liquid chromatography coupled to tandem mass spectrometry, respectively. The first statistical approach was based on Principal Component Analysis (PCA) followed by logistic regression models that included the identified principal components as main exposure variables. The second approach used BKMR models with hierarchical variable selection, this latter being suitable for highly correlated exposures. Both approaches were also run separately for Estrogen Receptor positive (ER +) and Estrogen Receptor negative (ER-) breast cancer cases. RESULTS PCA identified four principal components accounting for 67% of the total variance. Component 3 showed a marginal association with ER + breast cancer risk. No clear association between BFR and PFAS mixtures and breast cancer was identified using BKMR models, and the credible intervals obtained were very wide. Finally, the BKMR models suggested a negative cumulative effect of BFR and PFAS on ER- breast cancer risk, and a positive cumulative effect on ER + breast cancer risk. CONCLUSION Although globally no clear association was identified, both approaches suggested a differential effect of BFR and PFAS mixtures on ER + and ER- breast cancer risk. However, the results for ER- breast cancer should be interpreted carefully due to the small number of ER- cases included in the study. Further studies evaluating mixtures of substances on larger study populations are needed.
Collapse
Affiliation(s)
- Pauline Frenoy
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France
| | - Vittorio Perduca
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France
- Laboratoire MAP5 (UMR CNRS 8145), Université de Paris, Paris, France
| | | | | | - Gianluca Severi
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France.
| |
Collapse
|
9
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
10
|
Mustieles V, Pérez-Carrascosa FM, León J, Lange T, Bonde JP, Gómez-Peña C, Artacho-Cordón F, Barrios-Rodríguez R, Olmedo-Requena R, Expósito J, Jiménez-Moleón JJ, Arrebola JP. Adipose Tissue Redox Microenvironment as a Potential Link between Persistent Organic Pollutants and the 16-Year Incidence of Non-hormone-Dependent Cancer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9926-9937. [PMID: 34180659 PMCID: PMC8474112 DOI: 10.1021/acs.est.0c08180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We aimed to assess the relationships among the adipose tissue's (AT) oxidative microenvironment, in situ accumulated persistent organic pollutant (POP) concentrations, and cancer development. POP and oxidative stress levels were quantified in AT samples from 382 adults recruited within the GraMo cohort (2003-2004) in Granada (Spain). The 16-year cancer incidence was ascertained by reviewing health/administrative databases. Cox-regression models and mediation analyses were performed. The enzymes superoxide dismutase (SOD) and glutathione reductase (GRd) were positively associated with the risk of non-hormone-dependent (NHD) cancer [adjusted hazard ratio (HR) 1.76; 95% confidence interval (CI): 1.17, 2.64 and HR 2.35; 95% CI: 1.41, 3.94, respectively]. After adjustment for covariates, polychlorinated biphenyl-138 (PCB-138) (HR 1.78; 95% CI: 1.03, 3.09), β-hexachlorocyclohexane (β-HCH) (HR 1.70; 95% CI: 1.09, 2.64), and hexachlorobenzene (HR 1.54; 95% CI: 1.02, 2.33) were also positively associated with the risk of NHD cancer. Although confidence intervals included the null value, probably because of the modest number of cancer cases, we observed a potential mediation effect of SOD and GRd on the associations between β-HCH and the risk of NHD tumors (percent mediated = 33 and 47%, respectively). Our results highlight the relevance of human AT's oxidative microenvironment as a predictor of future cancer risk as well as its potential mediating role on POP-related carcinogenesis. Given their novelty, these findings should be interpreted with caution and confirmed in future studies.
Collapse
Affiliation(s)
- Vicente Mustieles
- Center
for Biomedical Research (CIBM), University
of Granada, Instituto de Investigación Biosanitaria Ibs GRANADA, 18016 Granada, Spain
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Department
of Radiology and Physical Medicine, University
of Granada, 18016 Granada, Spain
| | - Francisco M. Pérez-Carrascosa
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Radiotherapy
and Oncology Department, University Hospital
Virgen de las Nieves Granada, 18014 Granada, Spain
| | - Josefa León
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Unidad
de
Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Theis Lange
- Section
of Biostatistics, Department of Public Health, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Jens-Peter Bonde
- Department
of Occupational and Environmental Medicine, Bispebjerg University Hospital, Bispebjerg Bakke 23F, 2400 Copenhagen NV, Denmark
| | - Celia Gómez-Peña
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Unidad
de
Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Francisco Artacho-Cordón
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Department
of Radiology and Physical Medicine, University
of Granada, 18016 Granada, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
| | - Rocío Barrios-Rodríguez
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Universidad
de Granada, Departamento de Medicina Preventiva
y Salud Pública, 18016 Granada, Spain
| | - Rocío Olmedo-Requena
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Universidad
de Granada, Departamento de Medicina Preventiva
y Salud Pública, 18016 Granada, Spain
| | - José Expósito
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Radiotherapy
and Oncology Department, University Hospital
Virgen de las Nieves Granada, 18014 Granada, Spain
| | - José J. Jiménez-Moleón
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Universidad
de Granada, Departamento de Medicina Preventiva
y Salud Pública, 18016 Granada, Spain
| | - Juan P. Arrebola
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Universidad
de Granada, Departamento de Medicina Preventiva
y Salud Pública, 18016 Granada, Spain
| |
Collapse
|
11
|
Varakina Y, Lahmanov D, Aksenov A, Trofimova A, Korobitsyna R, Belova N, Sobolev N, Kotsur D, Sorokina T, Grjibovski AM, Chashchin V, Thomassen Y. Concentrations of Persistent Organic Pollutants in Women's Serum in the European Arctic Russia. TOXICS 2021; 9:6. [PMID: 33430444 PMCID: PMC7828080 DOI: 10.3390/toxics9010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
Persistent organic pollutants (POPs) are heterogeneous carbon-based compounds that can seriously affect human health. The aim of this study was to measure serum concentrations of POPs in women residing in the Euro-Arctic Region of Russia. A total of 204 women from seven rural settlements of the Nenets Autonomous Okrug (NAO) took part in the study. We measured serum concentrations of 11 polychlorinated biphenyls (PCBs) and 17 organochlorine pesticides (OCPs) across the study sites and among Nenets and non-Nenets residents. Measurement of POPs was performed using an Agilent 7890A gas chromatograph equipped with an Agilent 7000 series MS/MS triple quadrupole system. The concentrations of all POPs were low and similar to findings from other Arctic countries. However, significant geographic differences between the settlements were observed with exceptionally high concentrations of PCBs in Varnek located on Vaygach Island. Both ΣDDT (p = 0.011) and ΣPCB (p = 0.038) concentrations were significantly lower in Nenets. Our main findings suggest that the serum concentrations of the legacy POPs in women in the Euro-Arctic Region of Russia are low and similar to those in other Arctic countries. Significant variations between settlements, and between Nenets and non-Nenets residents, were found. Arctic biomonitoring research in Russia should include studies on the associations between nutrition and concentrations of POPs.
Collapse
Affiliation(s)
- Yulia Varakina
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Dmitry Lahmanov
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Andrey Aksenov
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Anna Trofimova
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Rimma Korobitsyna
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Natalia Belova
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- Central Scientific Research Laboratory, Northern State Medical University of the Ministry of Healthcare of the Russian Federation, Troitskiy Ave. 51, 163000 Arkhangelsk, Russia;
| | - Nikita Sobolev
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Dmitry Kotsur
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences, Naberezhnaya Severnoy Dvini 23, 163000 Arkhangelsk, Russia
| | - Tatiana Sorokina
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Andrej M. Grjibovski
- Central Scientific Research Laboratory, Northern State Medical University of the Ministry of Healthcare of the Russian Federation, Troitskiy Ave. 51, 163000 Arkhangelsk, Russia;
- Department of Health Policy and Management, Al-Farabi Kazakh National University, Almay 050040, Kazakhstan
- Department of Epidemiology and Modern Vaccination Technologies, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- West Kazakhstan Marat Ospanov Medical University, Aktobe 0300190, Kazakhstan
| | - Valery Chashchin
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- North-Western State Medical University Named after I.I. Mechnikov, Kirochnaya ul. 41, 191015 Saint-Petersburg, Russia
- Institute of Ecology, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| | - Yngvar Thomassen
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- Institute of Ecology, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
- National Institute of Occupational Health, Gydas vei 8, N-0304 Oslo, Norway
| |
Collapse
|
12
|
Vinggaard AM, Bonefeld-Jørgensen EC, Jensen TK, Fernandez MF, Rosenmai AK, Taxvig C, Rodriguez-Carrillo A, Wielsøe M, Long M, Olea N, Antignac JP, Hamers T, Lamoree M. Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. ENVIRONMENT INTERNATIONAL 2021; 146:106191. [PMID: 33068852 DOI: 10.1016/j.envint.2020.106191] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 05/12/2023]
Abstract
Humans are exposed to a large number of chemicals from sources such as the environment, food, and consumer products. There is growing concern that human exposure to chemical mixtures, especially during critical periods of development, increases the risk of adverse health effects in newborns or later in life. Historically, the one-chemical-at-a-time approach has been applied both for exposure assessment and hazard characterisation, leading to insufficient knowledge about human health effects caused by exposure to mixtures of chemicals that have the same target. To circumvent this challenge researchers can apply in vitro assays to analyse both exposure to and human health effects of chemical mixtures in biological samples. The advantages of using in vitro assays are: (i) that an integrated effect is measured, taking combined mixture effects into account and (ii) that in vitro assays can reduce complexity in identification of Chemicals of Emerging Concern (CECs) in human tissues. We have reviewed the state-of-the-art on the use of receptor-based in vitro assays to assess human exposure to chemical mixtures and related health impacts. A total of 43 studies were identified, in which endpoints for the arylhydrocarbon receptor (AhR), the estrogen receptor (ER), and the androgen receptor (AR) were used. The majority of studies reported biological activities that could be associated with breast cancer incidence, male reproductive health effects, developmental toxicities, human demographic characteristics or lifestyle factors such as dietary patterns. A few studies used the bioactivities to check the coverage of the chemical analyses of the human samples, whereas in vitro assays have so far not regularly been used for identifying CECs in human samples, but rather in environmental matrices or food packaging materials. A huge field of novel applications using receptor-based in vitro assays for mixture toxicity assessment on human samples and effect-directed analysis (EDA) using high resolution mass spectrometry (HRMS) for identification of toxic compounds waits for exploration. In the future this could lead to a paradigm shift in the way we unravel adverse human health effects caused by chemical mixtures.
Collapse
Affiliation(s)
- Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland's Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Tina Kold Jensen
- Dep of Environmental Medicine, University of Southern Denmark, Denmark
| | - Mariana F Fernandez
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Anna Kjerstine Rosenmai
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | | | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Nicolas Olea
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Timo Hamers
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Marja Lamoree
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
13
|
Mohammadi M, Shadnoush M, Sohrabvandi S, Yousefi M, Khorshidian N, Mortazavian AM. Probiotics as potential detoxification tools for mitigation of pesticides: a mini review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mehrdad Mohammadi
- Department of Food Technology Research National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt) Semnan University of Medical Sciences Semnan Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt) Semnan University of Medical Sciences Semnan Iran
| | - Amir M. Mortazavian
- Food Safety Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
14
|
Karimi B, Nabizadeh Nodehi R, Yunesian M. Serum level of PCBs and OCPs and leukocyte telomere length among adults in Tehran, Iran. CHEMOSPHERE 2020; 248:126092. [PMID: 32041072 DOI: 10.1016/j.chemosphere.2020.126092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/14/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) may change leukocyte telomere length (TL) at the end of the DNA sequence. The purpose of this study was to investigate the association between PCBs and OCPs exposure with TL in Tehran adult males. Whole-blood samples were randomly taken from three hundred adult males in population-based cross-section study from October 2016 to November 2017. We studied the serum levels of PCBs, OCPs as well as socio-demographic characteristics of individuals. The quantitative PCR was used to investigate the number of the telomere (T) repeats to the number of a single copy gene. We measured the effect of each PCBs and OCPs congeners on TL using linear regressions adjusted for age, BMI, smoking, and dietary patterns. The median level of the six non-dioxin-likes, five dioxin-likes PCBs three OCPs and TL in the study population were 344.5, 306.0, 45.0 ng/g lipid and 5377.7 ± 573.4 base pairs, respectively. In the adjusted model, the percent difference in the TLs with exposure to Σnon-dioxin-like PCBs, Σdioxin-like PCBs, and OCPs were 1.93 (-0.70 to 5.4), 3.4 (1.8-8.3) and -2.4 (-0.80 to -6.2), respectively. In the fourth quartile compared to the first quartile, the percent difference in the TLs due to Σnon-dioxin-like PCBs, Σdioxin-like PCBs, and OCP exposure were 0.01 (-0.01 to 0.05), 10.3 (2.9-18.1) and -0.20 (-0.10 to -4.5), respectively. Exposures to ndl-PCBs and dl-PCBs (except for PCB28) were related to longer TLs, but OCPs exposure can be related to telomere shortening.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran.
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab St., Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Kargar St., Enghelab Sq., Tehran, Iran
| |
Collapse
|
15
|
Mancini FR, Cano-Sancho G, Mohamed O, Cervenka I, Omichessan H, Marchand P, Boutron-Ruault MC, Arveux P, Severi G, Antignac JP, Kvaskoff M. Plasma concentration of brominated flame retardants and postmenopausal breast cancer risk: a nested case-control study in the French E3N cohort. Environ Health 2020; 19:54. [PMID: 32434563 PMCID: PMC7238573 DOI: 10.1186/s12940-020-00607-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/11/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Brominated flame retardants (BFRs) are lipophilic substances with endocrine-disrupting properties. To date, only few investigations, mainly retrospective case-control studies, have explored the link between internal levels of BFRs and the risk of breast cancer, leading to conflicting results. We investigated the associations between plasma concentrations of two main groups of BFRs, PBDEs (pentabromodiphenyl ethers) and PBBs (polybrominated biphenyls), and the risk of breast cancer in a nested case-control study. METHODS A total of 197 incident breast cancer cases and 197 controls with a blood sample collected in 1994-1999 were included. Plasma levels of PBDE congeners (BDE-28, BDE-47, BDE-99, BDE-100, BDE153, BDE-154) and of PBB-153 were measured by gas chromatography coupled to high-resolution mass spectrometry. Conditional logistic regression models, adjusted for potential confounders, were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Women were aged 56 years on average at blood draw. All cases, except for one, were diagnosed after menopause, with an average age at diagnosis of 68 years. Overall, we found no evidence of an association between plasma levels of PBDEs and PBB-153 and postmenopausal breast cancer risk (log-concentrations of BFRs yielding non-statistically significant ORs of 0.87 to 1.07). The analysis showed a non-linear inverse association for BDE-100 and BDE-153 and postmenopausal breast cancer risk; nevertheless, these findings were statistically significant only when the exposure was modeled as ng/L plasma (third vs. first quintile: OR = 0.42, 95%CI = 0.19-0.93 and OR = 0.42, 95%CI = 0.18-0.98, respectively) and not when modeled as ng/gr of lipids (OR = 0.58, 95%CI = 0.27-1.25 and OR = 0.53, 95%CI = 0.25-1.17). These results were unchanged in stratified analyses by tumor hormone receptor expression or body mass index. CONCLUSIONS Our results suggest no clear association between internal levels of PBDEs and PBB-153 and the risk of breast cancer in postmenopausal women. However, these findings need to be carefully interpreted, taking into account limitations due to the limited number of women included in the study, the lack of information concerning genetic susceptibility of cases, and the unavailability of exposure assessment during critical windows of susceptibility for breast cancer. More studies are warranted to further investigate the relationships between PBDE and PBB exposure and breast cancer risk.
Collapse
Affiliation(s)
- Francesca Romana Mancini
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | | | - Oceane Mohamed
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Iris Cervenka
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Hanane Omichessan
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | | | | | - Patrick Arveux
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
- Breast and Gynaecologic Cancer Registry of Côte d’Or, Georges-François Leclerc Cancer Centre, UNICANCER, Dijon, France
| | - Gianluca Severi
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
- Departement of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | | | - Marina Kvaskoff
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| |
Collapse
|
16
|
Metabolically Healthy Obesity-Heterogeneity in Definitions and Unconventional Factors. Metabolites 2020; 10:metabo10020048. [PMID: 32012784 PMCID: PMC7074352 DOI: 10.3390/metabo10020048] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The concept of heterogeneity among obese individuals in their risk for developing metabolic dysfunction and associated complications has been recognized for decades. At the origin of the heterogeneity idea is the acknowledgement that individuals with central obesity are more prone to developing type 2 diabetes and cardiovascular disease than those with peripheral obesity. There have been attempts to categorize subjects according to their metabolic health and degree of obesity giving rise to different obese and non-obese phenotypes that include metabolically unhealthy normal-weight (MUHNW), metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO). Individuals belonging to the MHO phenotype are obese according to their body mass index although exhibiting fewer or none metabolic anomalies such as type 2 diabetes, dyslipidemia, hypertension, and/or unfavorable inflammatory and fribinolytic profiles. However, some authors claim that MHO is only transient in nature. Additionally, the phenotype categorization is controversial as it lacks standardized definitions possibly blurring the distinction between obesity phenotypes and confounding the associations with health outcomes. To add to the discussion, the factors underlying the origin or protection from metabolic deterioration and cardiometabolic risk for these subclasses are being intensely investigated and several hypotheses have been put forward. In the present review, we compare the different definitions of obesity phenotypes and present several possible factors underlying them (adipose tissue distribution and cellularity, contaminant accumulation on the adipose tissue, dysbiosis and metabolic endotoxemia imposing on to the endocannabinoid tone and inflammasome, and nutrient intake and dietary patterns) having inflammatory activation at the center.
Collapse
|
17
|
Milic J, Curcic M, Brnjas Z, Carapina H, Randjelovic J, Krinulovic K, Jovovic A. The socio-economic impact timeline in Serbia for persistent organic pollutants (POPs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:486-493. [PMID: 31254814 DOI: 10.1016/j.scitotenv.2019.06.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Assessing the socio-economic impact of dangerous chemicals, including persistent organic pollutants (POPs) as a specific segment, includes analysis of their impacts on human health, on the environment and on local economic development. Abundant evidence of these effects of dangerous chemicals throughout the world is provided by published research. According to WHO, these chemicals cause around 4.9 million deaths (8.3%) and 86 million Disability-Adjusted Life Years (5.7%) globally; according to very conservative estimates, 20% of cancer deaths are the consequence of the cancerous effects of chemicals in the work place. Their impact on economic development is manifested primarily through reduced productivity of society due to health impairment of both the population and natural resources. Specific research, the results of which are presented in this article, has been focused on the impact of POPs on human health. This impact is presented in very general terms through estimation of the monetized cost effects for treating those diseases and cancers assumed to be caused by POPs in Serbia. The cost estimation based on available data amounts to approximately € 68 million for a 5-year period.
Collapse
Affiliation(s)
- Jelena Milic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, 11000 Belgrade, Serbia.
| | - Marijana Curcic
- University of Belgrade, Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Zvonko Brnjas
- Institute for Economic Science, 11000 Belgrade, Serbia
| | - Hristina Carapina
- Faculty of Environmental Protection, University EDUCONS, 21208 Sremska Kamenica, Serbia
| | | | | | - Aleksandar Jovovic
- University of Belgrade, Faculty of Mechanical Engeneering, 11000 Belgrade, Serbia
| |
Collapse
|
18
|
Li Y, Zhang MW, Wang YJ. Association between the persistent organic pollutants and polycystic ovary syndrome: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e16948. [PMID: 31441890 PMCID: PMC6716724 DOI: 10.1097/md.0000000000016948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Current evidence concerning the association between persistent organic pollutants (POPs) and polycystic ovary syndrome (PCOS) is inconsistent. The aim of the present systematic review and meta-analysis is to evaluate the role of POPs in PCOS. METHODS Databases including PubMed, Embase, Web of Science, and CNKI will be searched to identify qualified studies. All qualified studies regarding the association between POPs and PCOS will be included. The primary outcome of the present study is POPs levels in serum of subjects. Pooled analysis with corresponding 95% confidence intervals will be performed. RESULTS The comprehensive analysis and quantitative assessment will provide a better understanding of POPs concentrations in patients with PCOS. CONCLUSION This meta-analysis and systematic review will generate evidence of the association between POPs and PCOS. PROSPERO REGISTRATION NUMBER PROSPERO CRD42019126373.
Collapse
Affiliation(s)
- Yan Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine
| | - Mei-wei Zhang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine
| | - Ying-ji Wang
- College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Hurley S, Goldberg D, Park JS, Petreas M, Bernstein L, Anton-Culver H, Neuhausen SL, Nelson DO, Reynolds P. A breast cancer case-control study of polybrominated diphenyl ether (PBDE) serum levels among California women. ENVIRONMENT INTERNATIONAL 2019; 127:412-419. [PMID: 30954728 PMCID: PMC6522143 DOI: 10.1016/j.envint.2019.03.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 05/13/2023]
Abstract
PURPOSE Polybrominated diphenyl ethers (PBDEs) are among the most persistent and pervasive global environmental contaminants. Their toxic and endocrine-disrupting properties have made them a focus of concern for breast cancer. Our objective was to evaluate the risk of breast cancer associated with serum PBDE levels in a case-control study nested within the California Teachers Study. METHODS Participants were 902 women with invasive breast cancer (cases) and 936 with no such diagnosis (controls) who provided 10 mL of blood and were interviewed between 2011 and 2015. Blood samples were collected from cases an average of 35 months after diagnosis. PBDEs were measured in serum using automated solid phase extraction and gas chromatography/high resolution mass spectrometry. Statistical analyses were restricted to the three congeners with detection frequencies ≥75%: 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',6-pentabromodiphenyl ether (BDE-100), and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153). Unconditional logistic regression was used to estimate multivariable-adjusted odds ratios (ORs) and their 95% confidence intervals (CI) for each BDE congener, adjusting for serum lipids and other potential confounders. RESULTS The OR for each of the three BDE congeners was close to unity with a CI that included one. Analyses stratified by menopausal status, tumor hormone responsiveness, BMI, and changes in body weight yielded similarly null results. CONCLUSIONS Our findings provide no evidence that serum levels of BDE-47, BDE-100 or BDE-153 are associated with breast cancer risk. These results should be interpreted in the context of study limitations which include the reliance on PBDE measurements that may not represent pre-diagnostic, early-life or chronic exposures and a lack of information on genetic polymorphisms and other factors which may affect endogenous estrogen levels.
Collapse
Affiliation(s)
- Susan Hurley
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Cancer Prevention Institute of California, Berkeley, CA, USA.
| | - Debbie Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Cancer Prevention Institute of California, Berkeley, CA, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, Berkeley, CA, USA
| | - Myrto Petreas
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, Berkeley, CA, USA
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Hoda Anton-Culver
- Department of Epidemiology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - David O Nelson
- Cancer Prevention Institute of California, Berkeley, CA, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Cancer Prevention Institute of California, Berkeley, CA, USA; Stanford University School of Medicine, Department of Health Research and Policy, Stanford, CA, USA
| |
Collapse
|
20
|
Kulkarni S, Lewis K, Adams SA, Brandt HM, Lead JR, Ureda JR, Fedrick D, Mathews C, Friedman DB. A Comprehensive Analysis of How Environmental Risks of Breast Cancer are Portrayed on the Internet. AMERICAN JOURNAL OF HEALTH EDUCATION 2018; 49:222-233. [PMID: 30079123 PMCID: PMC6075842 DOI: 10.1080/19325037.2018.1473182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Effective online communication about the environmental risk factors of breast cancer is essential because of the multitude of environmental exposures and debate regarding the conclusiveness of scientific evidence. PURPOSE The aim of this study was to assess the content, readability, and cultural sensitivity of online resources focused on the environmental risks factors of breast cancer. METHODS A purposive sample of webpages focused on environmental risk factors of breast cancer was obtained through a Google search using 17 search terms. Using nonparametric statistics, we assessed the content, readability, and cultural appropriateness of 235 webpages. RESULTS Eighty-two percent of webpages referred to research studies in their content. For the majority of sites, readability was at a high-school reading grade level. Webpages were not explicitly intended for specific racial/ethnic groups. DISCUSSION Technical language and non-culturally specific messages may hinder users' attention to and comprehension of online breast cancer information. Additional research is needed to examine in-depth the accuracy of this online content. TRANSLATION TO HEALTH EDUCATION PRACTICE Findings suggest that collaborations between scientists, health educators, website designers/media professionals, and the community will be critical to the delivery of accurate, up-to-date, plain-language, and culturally sensitive information about breast cancer and the environment.
Collapse
Affiliation(s)
- Shibani Kulkarni
- Department of Health Promotion, Education, and Behavior, University of South Carolina, 915 Greene Street, Room 529, Columbia, SC 29208
| | - Kaleea Lewis
- Department of Health Promotion, Education, and Behavior, University of South Carolina, 915 Greene Street, Room 529, Columbia, SC 29208
| | - Swann Arp Adams
- Department of Epidemiology & Biostatistics, University of South Carolina
- College of Nursing, University of South Carolina
- Statewide Cancer Prevention and Control Program, 915 Greene Street, Room 244, Columbia SC 29208
| | - Heather M Brandt
- Department of Health Promotion, Education, and Behavior, University of South Carolina
- Statewide Cancer Prevention and Control Program, University of South Carolina, 915 Greene Street, Discovery I Building, Columbia, SC 29208
| | - Jamie R Lead
- Department of Environmental Health Sciences, University of South Carolina
- Center for Environmental Nanoscience and Risk, University of South Carolina, 921 Assembly Street, Public Health Research Center, Suite 511, Columbia, SC 29208
| | - John R Ureda
- Insights Consulting, Inc. 2728 Wilmot Ave., Columbia, SC 29205-254
| | - Delores Fedrick
- Chester County Literacy Council, 109 Ella Street, Chester, SC, 29706
| | - Chris Mathews
- Turning Pages Greater Columbia Literacy Council, 4711 Forest Drive, Suite 3, PMB 267, Columbia SC 29206
| | - Daniela B Friedman
- Department of Health Promotion, Education, and Behavior, University of South Carolina
- Statewide Cancer Prevention and Control Program, University of South Carolina, 915 Greene Street, Suite 557, Columbia SC, 29208
| |
Collapse
|
21
|
Roswall N, Sørensen M, Tjønneland A, Raaschou-Nielsen O. Organochlorine concentrations in adipose tissue and survival in postmenopausal, Danish breast cancer patients. ENVIRONMENTAL RESEARCH 2018; 163:237-248. [PMID: 29459306 DOI: 10.1016/j.envres.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Several studies have investigated an association between organochlorine-concentrations and breast cancer incidence, whereas few have investigated an association with breast cancer mortality. METHODS We used Cox Proportional Hazards Models to estimate the association between adipose organochlorine-concentrations and mortality after breast cancer in a survivor-cohort of 399 postmenopausal women. During a median follow-up of 16.1 years, 177 women died; 119 from breast cancer. RESULTS There was a general inverse association with PCB-concentration (e.g. ΣPCBs: Mortality Rate Ratio (MRR) 0.79, 95% confidence interval (CI) (0.64-0.98) per inter-quartile range (IQR)), and for all pesticides, except β-Hexachlorocyclohexane, which was not associated with mortality (MRR 1.02(0.87-1.18) per IQR), and dieldrin, which was associated with a significantly increased risk of death (MRR 1.22(1.05-1.41) per IQR). We found an interaction with prognostic factors for all PCBs, confining the inverse association to those with adverse prognostic factors. Results for pesticides suggested a similar, but mostly non-significant interaction. Dieldrin diverged from the general picture by being associated with increased mortality across all strata. CONCLUSION A higher concentration of PCBs and several organochlorine pesticides may be inversely associated with breast cancer mortality among women with adverse prognostic factors. Further studies are required to investigate if this is a causal association. Dieldrin was associated with a higher mortality, regardless of prognostic factors. IMPACT This is the first study to investigate an association between organochlorine concentrations in adipose tissue and breast cancer mortality. A prominent finding is a strong interaction with prognostic factors. The unexpected direction of association for most organochlorines encourages further studies of the role of individual metabolism of the organochlorines and a potentially stronger effect of the metabolites on mortality.
Collapse
Affiliation(s)
- Nina Roswall
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark.
| | - Mette Sørensen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| |
Collapse
|
22
|
Xie SL, Junaid M, Bian WP, Luo JJ, Syed JH, Wang C, Xiong WX, Ma YB, Niu A, Yang XJ, Zou JX, Pei DS. Generation and application of a novel transgenic zebrafish line Tg(cyp1a:mCherry) as an in vivo assay to sensitively monitor PAHs and TCDD in the environment. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:723-732. [PMID: 29154098 DOI: 10.1016/j.jhazmat.2017.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/24/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) are classified as human carcinogens, and can also cause serious health problems. To develop a convenient bio-monitoring tool for the detection of PAHs and TCDD in the environment, we generated a transgenic zebrafish line Tg(cyp1a:mCherry) with cyp1a promoter driving mCherry expression. Here, Tg(cyp1a:mCherry) embryos were treated with different concentrations of TCDD and five US EPA priority PAHs congeners. The results showed that the expressions of mCherry and endogenous cyp1a were consistent with the PAHs exposure concentrations and were largely induced by TCDD and ≥4-ring PAHs. Moreover, the sensitivity of Tg(cyp1a:mCherry) embryos was also evaluated through monitoring of the PAHs contamination in the water and soil samples. The elevated red fluorescent signals and cyp1a expression levels were observed in Tg(cyp1a:mCherry) zebrafish after exposure to water samples and soil organic extracts with higher concentrations of ≥4-ring PAHs. These results further strengthen our findings of concentration- and congener-dependent response of the newly established zebrafish. Taken together, the newly established zebrafish line will prove as a sensitive, efficient and convenient tool for monitoring PAHs and TCDD contamination in the environment.
Collapse
Affiliation(s)
- Shao-Lin Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ping Bian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan-Juan Luo
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Center for Neuroscience, Shantou University Medical College, Shantou 515041, China
| | - Jabir Hussain Syed
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Xu Xiong
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aping Niu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jun Yang
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, China
| | - Ji-Xing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|