1
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2025; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
2
|
Kaushik N, Falch E, Slizyte R, Kumari A, Khushboo, Hjellnes V, Sharma A, Rajauria G. Valorization of fish processing by-products for protein hydrolysate recovery: Opportunities, challenges and regulatory issues. Food Chem 2024; 459:140244. [PMID: 38991448 DOI: 10.1016/j.foodchem.2024.140244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Protein-rich fish processing by-products, often called rest raw materials (RRM), account for approximately 60% of the total fish biomass. However, a considerable amount of these RRM is utilized for low-value products such as fish meal and silage. A promising and valuable approach for maximizing the utilization of RRM involves the extraction of bioactive fish protein hydrolysate (FPH). This review assesses and compares different hydrolyzation methods to produce FPH. Furthermore, the review highlights the purification strategy, nutritional compositions, and bioactive properties of FPH. Finally, it concludes by outlining the application of FPH in food products together with various safety and regulatory issues related to the commercialization of FPH as a protein ingredient in food. This review paves the way for future applications by highlighting efficient biotechnological methods for valorizing RRM into FPH and addressing safety concerns, enabling the widespread utilization of FPH as a valuable and sustainable source of protein.
Collapse
Affiliation(s)
- Nutan Kaushik
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India.
| | - Eva Falch
- NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Asha Kumari
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Khushboo
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Veronica Hjellnes
- NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Abhishek Sharma
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Gaurav Rajauria
- School of Microbiology, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; SUSFERM Centre for Sustainable Fermentation and Bioprocessing Systems for Food and the Bioeconomy, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Liao P, Liu H, Sun X, Zhang X, Zhang M, Wang X, Chen J. A novel ACE inhibitory peptide from Pelodiscus sinensis Wiegmann meat water-soluble protein hydrolysate. Amino Acids 2024; 56:40. [PMID: 38847939 DOI: 10.1007/s00726-024-03399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 11/01/2024]
Abstract
Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.
Collapse
Affiliation(s)
- Pengying Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Huayu Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xueqin Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xinrui Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Miao Zhang
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xianyou Wang
- School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| | - Jun Chen
- Teaching Experiment and Training Centre, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
4
|
Min JH, Lee YJ, Kang HJ, Moon NR, Park YK, Joo ST, Jung YH. Characterization of Yeast Protein Hydrolysate for Potential Application as a Feed Additive. Food Sci Anim Resour 2024; 44:723-737. [PMID: 38765283 PMCID: PMC11097015 DOI: 10.5851/kosfa.2024.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Yeast protein can be a nutritionally suitable auxiliary protein source in livestock food. The breakdown of proteins and thereby generating high-quality peptide, typically provides nutritional benefits. Enzyme hydrolysis has been effectively uesed to generate peptides; however, studies on the potential applications of different types of enzymes to produce yeast protein hydrolysates remain limited. This study investigated the effects of endo- (alcalase and neutrase) and exotype (flavourzyme and prozyme 2000P) enzyme treatments on yeast protein. Endotype enzymes facilitate a higher hydrolysis efficiency in yeast proteins than exotype enzymes. The highest degree of hydrolysis was observed for the protein treated with neutrase, which was followed by alcalase, prozyme 2000P, and flavourzyme. Furthermore, endotype enzyme treated proteins exhibited higher solubility than their exotype counterparts. Notably, the more uniform particle size distribution was observed in endotype treated yeast protein. Moreover, compared with the original yeast protein, the enzymatic protein hydrolysates possessed a higher content of β-sheets structures, indicating their higher structural stability. Regardless of enzyme type, enzyme treated protein possessed a higher total free amino acid content including essential amino acids. Therefore, this study provides significant insights into the production of protein hydrolysates as an alternative protein material.
Collapse
Affiliation(s)
- Ju Hyun Min
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Yeon Ju Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Hye Jee Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Na Rae Moon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | | | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
5
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
6
|
Kabir MA, Nandi SK, Suma AY, Abdul Kari Z, Mohamad Sukri SA, Wei LS, Al Mamun A, Seguin P, Herault M, Khoo MI, Téllez-Isaías G. The Potential of Fish Protein Hydrolysate Supplementation in Nile Tilapia Diets: Effects on Growth and Health Performance, Disease Resistance, and Farm Economic Analysis. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04913-7. [PMID: 38489116 DOI: 10.1007/s12010-024-04913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Fish protein hydrolysate (FPH) has shown immense potential as a dietary protein supplement and immunostimulant in aquaculture, especially in Nile tilapia production. Four isoproteic diets (30% crude protein) were prepared by including FPH at varying percentages (0%, 0.5%, 1%, and 2%). Nile tilapia fed with FPH diets for 90 days, and their growth performance, feed utilization, blood biochemistry, liver and gut morphology, and resistance against Streptococcus iniae were investigated. The findings revealed that diets physical attributes such as pellet durability index and water stability were remarkably (p < 0.05) varied between experimental diet groups. Furthermore, the test diets were more palatable when FPH was included at 1% and 2%. Fish that were fed with a 2% FPH-treated diet had significantly (p < 0.05) greater growth indices than other treatments. Additionally, their feed utilization was significantly (p < 0.05) improved. The experimental diets and intestinal total bacteria count (TBC) exhibited a rising trend with FPH levels, where the 2% FPH-treated diet recorded the highest TBC. Neutrophil (109/L), lymphocyte (109/L), eosinophil (109/L), and red blood cell(1012/L) counts were significantly (p < 0.05) higher in the 2% FPH-treated group, while the white blood cell (109/L), and basophil (109/L) counts were not influenced by the FPH inclusion. Moreover, the FPH-treated groups displayed lower creatinine, bilirubin, and urea levels than the control. The histological examination demonstrated that themid-intestine of 2% FPH-fed Nile tilapia had an unbroken epithelial wall, more villi with frequent distribution of goblet cells, wider tunica muscularis, and stronger stratum compactum bonding than other treatments. Additionally, this group exhibited more nuclei and erythrocytes and less vacuolar cytoplasm in liver than their counterparts. Nile tilapia that were given a diet containing 2% FPH had significantly (p < 0.05) higher resistance (83.33%) to S. iniae during the bacterial challenge test. A significant (p < 0.05) enhancement in farm economic efficiency was observed in the higher inclusion of FPH in diets. In summary, 2% FPH supplementation in Nile tilapia diets improved their growth performance, feed utilization, health status, disease resistance, and farm economic efficiency.
Collapse
Affiliation(s)
- Muhammad Anamul Kabir
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia.
| | - Shishir Kumar Nandi
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Afrina Yeasmin Suma
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia.
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
| | - Abdullah Al Mamun
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Paul Seguin
- Symrise Aqua Feed of Taste, Nutrition & Health Segment of the Symrise AG group, Clichy, 92110, France
| | - Mikael Herault
- Symrise Aqua Feed of Taste, Nutrition & Health Segment of the Symrise AG group, Clichy, 92110, France
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|
7
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Murcia ÁB, Torrestina-Sánchez B, Fernandez-Lafuente R. Peptides with biological and technofunctional properties produced by bromelain hydrolysis of proteins from different sources: A review. Int J Biol Macromol 2023; 253:127244. [PMID: 37806416 DOI: 10.1016/j.ijbiomac.2023.127244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | | | |
Collapse
|
8
|
Roy VC, Islam MR, Sadia S, Yeasmin M, Park JS, Lee HJ, Chun BS. Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Compounds. Mar Drugs 2023; 21:485. [PMID: 37755098 PMCID: PMC10532690 DOI: 10.3390/md21090485] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Fishery production is exponentially growing, and its by-products negatively impact industries' economic and environmental status. The large amount of bioactive micro- and macromolecules in fishery by-products, including lipids, proteins, peptides, amino acids, vitamins, carotenoids, enzymes, collagen, gelatin, chitin, chitosan, and fucoidan, need to be utilized through effective strategies and proper management. Due to the bioactive and healthy compounds in fishery discards, these components can be used as functional food ingredients. Fishery discards have inorganic or organic value to add to or implement in various sectors (such as the agriculture, medical, and pharmaceutical industries). However, the best use of these postharvest raw materials for human welfare remains unelucidated in the scientific community. This review article describes the most useful techniques and methods, such as obtaining proteins and peptides, fatty acids, enzymes, minerals, and carotenoids, as well as collagen, gelatin, and polysaccharides such as chitin-chitosan and fucoidan, to ensure the best use of fishery discards. Marine-derived bioactive compounds have biological activities, such as antioxidant, anticancer, antidiabetic, anti-inflammatory, and antimicrobial activities. These high-value compounds are used in various industrial sectors, such as the food and cosmetic industries, owing to their unique functional and characteristic structures. This study aimed to determine the gap between misused fishery discards and their effects on the environment and create awareness for the complete valorization of fishery discards, targeting a sustainable world.
Collapse
Affiliation(s)
- Vikash Chandra Roy
- Institute of Food Science, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Rakibul Islam
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Sultana Sadia
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Momota Yeasmin
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea;
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea;
| |
Collapse
|
9
|
Naseem S, Imam A, Rayadurga AS, Ray A, Suman SK. Trends in fisheries waste utilization: a valuable resource of nutrients and valorized products for the food industry. Crit Rev Food Sci Nutr 2023; 64:9240-9260. [PMID: 37183680 DOI: 10.1080/10408398.2023.2211167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rise in fisheries production worldwide has caused a remarkable increase in associated anthropogenic waste. This poses significant concerns due to adverse environmental impacts and economic losses. Owing to its renewability, high abundance, and potential as a rich source of many nutrients and bioactive compounds, strategies have been developed to convert fish waste into different value-added products. Conventional and improved methods have been used for the extraction of biomolecules from fish waste. The extracted fish waste-derived value-added products such as enzymes, peptides, fish oil, etc. have been used to fortify different food products. This review aims to provide an overview of the nature and composition of fish waste, strategies for extracting biomolecules from fish waste, and the potential application of fish waste as a source of calcium and other nutrients in food fortification and animal feed has been discussed. In context to fishery waste mitigation, valorization, and circular bioeconomy approach are gaining momentum, aiming to eliminate waste while producing high-quality value-added food and feed products from fishery discards.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
| | - Arfin Imam
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | | | - Anjan Ray
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
10
|
Naghdi S, Rezaei M, Tabarsa M, Abdollahi M. Fish Protein Hydrolysate from Sulfated Polysaccharides Extraction Residue of Tuna Processing By-Products with Bioactive and Functional Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200214. [PMID: 37020628 PMCID: PMC10069310 DOI: 10.1002/gch2.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Indexed: 06/19/2023]
Abstract
The ethanol-induced precipitation after enzymatic hydrolysis commonly used for sulfated polysaccharide extraction from marine resources wastes a large amount of proteins. Here, possible extraction of fish protein hydrolysates (FPH) from the ethanol residue of sulfated polysaccharide precipitation from head, bone, and skin of skipjack tuna is investigated. Antioxidant, antibacterial, angiotensin I-converting enzyme (ACE) inhibitory activities and functional properties of the recovered FPHs are also evaluated. A degree of hydrolysis of 40.93, 38.13, and 37.23 is achieved for FPH from head, bone, and skin, respectively. FPH from the head presents the highest antioxidant and ACE inhibitory activity as well as foam/emulsion capacity among all the FPHs. The FPHs are all able to inhibit three Gram-positive bacteria and three Gram-negative bacteria to varying degrees and have a water solubility >65%. Altogether, the results demonstrate great potential for recovery of bioactive/functional peptides from the residue of sulfated polysaccharide extraction process enabling efficient biorefining of aquatic resources.
Collapse
Affiliation(s)
- Shahab Naghdi
- Department of Seafood ProcessingFaculty of Marine SciencesTarbiat Modares UniversityP.O. Box 46414‐356NoorIran
| | - Masoud Rezaei
- Department of Seafood ProcessingFaculty of Marine SciencesTarbiat Modares UniversityP.O. Box 46414‐356NoorIran
| | - Mehdi Tabarsa
- Department of Seafood ProcessingFaculty of Marine SciencesTarbiat Modares UniversityP.O. Box 46414‐356NoorIran
| | - Mehdi Abdollahi
- Department of Life Sciences–Food and Nutrition ScienceChalmers University of TechnologyGothenburgSE 412 96Sweden
| |
Collapse
|
11
|
Naghdi S, Rezaei M, Tabarsa M, Abdollahi M. Parallel Extraction of Sulfated polysaccharides and Protein Hydrolysate from Skipjack Tuna Head and Their Bioactive and Functional Properties. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Pan MV, Cadiz RE, Mameloco EJG, Traifalgar RFM. Squid industry by-product hydrolysate supplementation enhances growth performance of Penaeus monodon fed plant protein-based diets without fish meal. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1027753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The poor growth of aquatic animals fed with diets containing high plant proteins has been attributed to low diet acceptability and feed value. Supplementation of protein hydrolysate, with high contents of free amino acids and soluble low molecular weight peptides, may increase the acceptability and feed value of a plant protein-based diet. In the present work, squid processing by-products were enzymatically hydrolyzed and used as a supplement in a plant protein-based diet, without fish meal, of Penaeus monodon to fully maximize the utilization of this marine resource. The hydrolysate was incorporated at 0, 0.5, and 1% levels in P. monodon diets containing 0 and 10% fish meal levels. Growth, digestive enzyme activities, muscle growth-, gut pro-inflammatory and immune-related gene expressions, and muscle morphometric measurements were evaluated as biological indices in an 8-week feeding trial. The squid by-product hydrolysate produced in the present study contains 90.25% protein, 5.84% lipid, and 3.91% ash, and has a molecular weight of 3.76 kDa. Supplementation at 1% hydrolysate in the experimental shrimp diet without fish meal resulted in the highest growth performance associated with increased feed intake, efficient feed and nutrient conversion and retention, enhanced digestive enzyme activities, upregulation of muscle growth- and immune-related genes, and suppression of the gut pro-inflammatory gene. The growth promotion is also linked with a significant increase in muscle mean fiber area, which suggests hypertrophic growth in shrimp. Generally, the supplementation of 1% squid by-product hydrolysate supported the growth of P. monodon fed on a plant protein-based diet without fish meal.
Collapse
|
13
|
Tai HJ, Lee MC, Hsu YJ, Kuo CY, Huang CC, Wang MF. Sea Bass Essence from Lates calcarifer Improves Exercise Performance and Anti-Fatigue in Mice. Metabolites 2022; 12:metabo12060531. [PMID: 35736463 PMCID: PMC9227615 DOI: 10.3390/metabo12060531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Sea bass (Lates calcarifer) is rich in protein, amino acids, and long-chain omega 3 (omega-3), which have many health benefits. In East Asian food culture, soup is often eaten as a nutritional supplement. The purpose of this study was to investigate the benefits of Hi-Q sea bass essence (SBE) supplementation for improved exercise performance and anti-fatigue. Fifty male Institute of Cancer Research (ICR) mice were divided to five groups (10 mice/group) and administered different doses of SBE (EC): (1) vehicle (water); (2) isocaloric (0.94 g casein/kg/mice/day); (3) SBE-1X (1.04 g/kg/mice/day); (4) SBE-2X (2.08 g/kg/mice/day); and (5) SBE-4X (4.16 g/kg/mice/day). We found that SBE supplementation significantly improved more than 1.96-fold endurance exercise performance (p < 0.05) and more than 1.13-fold glycogen storage in the liver and muscles (p < 0.05), and had dose-dependent by SBE dose (p < 0.05). In addition, supplementation with SBE at different doses had significant effects on the fatigue-related biochemical markers, i.e., lactate, ammonia, and blood urea nitrogen (BUN) levels were reduced significantly (p < 0.05), and were also dose-dependent. In conclusion, supplementation with SBE for 4 weeks was able to effectively improve exercise performance and had an anti-fatigue effect. In addition, it did not cause any physiological or histopathological damage.
Collapse
Affiliation(s)
- Hong-Jun Tai
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Chun-Yen Kuo
- Program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung 43301, Taiwan;
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
- Correspondence: (C.-C.H.); (M.-F.W.); Tel.: +886-3-328-3201 (ext. 2409) (C.-C.H.); +886-4-042-632-8001 (M.-F.W.)
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
- Correspondence: (C.-C.H.); (M.-F.W.); Tel.: +886-3-328-3201 (ext. 2409) (C.-C.H.); +886-4-042-632-8001 (M.-F.W.)
| |
Collapse
|
14
|
David Troncoso F, Alberto Sánchez D, Luján Ferreira M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen 2022; 11:e202200017. [PMID: 35286022 PMCID: PMC8919702 DOI: 10.1002/open.202200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
An updated review of emerging plant proteases with potential biotechnological application is presented. Plant proteases show comparable or even greater performance than animal or microbial proteases for by-product valorization through hydrolysis for, for example, cheese whey, bird feathers, collagen, keratinous materials, gelatin, fish protein, and soy protein. Active biopeptides can be obtained as high added value products, which have shown numerous beneficial effects on human health. Plant proteases can also be used for wastewater treatment. The production of new plant proteases is encouraged for the following advantages: low cost of isolation using simple procedures, remarkable stability over a wide range of operating conditions (temperature, pH, salinity, and organic solvents), substantial affinity to a broad variety of substrates, and possibility of immobilization. Vegetable proteases have enormous application potential for the valorization of industrial waste and its conversion into products with high added value through low-cost processes.
Collapse
Affiliation(s)
- Franco David Troncoso
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - Daniel Alberto Sánchez
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - María Luján Ferreira
- Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| |
Collapse
|
15
|
Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2022; 148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunomodulatory peptides are a complex class of bioactive peptides that encompasses substances with different mechanisms of action. Immunomodulatory peptides could also be used in vaccines as adjuvants which would be extremely desirable, especially in response to pandemics. Thus, immunomodulatory peptides in food of plant origin could be regarded both as valuable suplements of novel functional food preparation and/or as precursors or possible active ingredients for drugs design for treatment variety of conditions arising from impaired function of immune system. Given variety of mechanisms, different tests are required to assess effects of immunomodulatory peptides. Some of those effects show good correlation with in vivo results but others, less so. Certain plant peptides, such as defensins, show both immunomodulatory and antimicrobial effect, which makes them interesting candidates for preparation of functional food and feed, as well as templates for design of synthetic peptides.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Serbia
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Maestri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
16
|
Hau EH, Teh SS, Yeo SK, Mah SH. Physicochemical and functional properties of Alcalase-extracted protein hydrolysate from oil palm leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:233-240. [PMID: 34081335 DOI: 10.1002/jsfa.11350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The oil palm tree produces 90% of wastes and the limited usage of these wastes causes a major disposal problem in the mills. Nevertheless, these by-products have a large amount of nutritional components. Thus, the present study aimed to determine the physicochemical and functional properties of protein hydrolysates (PH) from oil palm leaves (OPL) extracted using different concentrations of Alcalase (0-10%) at 2 h of hydrolysis time. RESULTS Fourier transform infrared spectral analyses showed that the enzymatic hydrolysis altered functional groups of OPL where a secondary amine was present in the PH. Changes were also observed in the thermal stability where the enthalpy heat obtained for PH (933.93-1142.57 J g-1 ) was much lower than OPL (7854.11 J g-1 ). The results showed that the PH extracted by 8% Alcalase exhibited absolute zeta potential, as well as a high emulsifying activity index (70.64 m2 g-1 of protein) and emulsion stability index (60.58 min). Furthermore, this PH showed higher solubility (96.32%) and emulsifying properties compared to other PHs. It is also comparable with commercial plant proteins, indicating that 8% Alcalase is an optimum concentration for hydrolysis. CONCLUSION In summary, the physicochemical and functional properties of PH extracted from OPL showed good functional properties, suggesting that it can be used as an alternative plant protein in food industries. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eng Huan Hau
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Siok Koon Yeo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Siau Hui Mah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
17
|
Vásquez P, Sepúlveda CT, Zapata JE. Functional properties of rainbow trout (Oncorhynchus mykiss) viscera protein hydrolysates. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Jaziri AA, Shapawi R, Mohd Mokhtar RA, Md. Noordin WN, Huda N. Tropical Marine Fish Surimi By-products: Utilisation and Potential as Functional Food Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | | | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
19
|
Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Mongkonkamthorn N, Malila Y, Regenstein JM, Wangtueai S. Enzymatic Hydrolysis Optimization for Preparation of Tuna Dark Meat Hydrolysate with Antioxidant and Angiotensin I-Converting Enzyme (ACE) Inhibitory Activities. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1974138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Yuwares Malila
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Joe M. Regenstein
- Department of Food Science, College of Agriculture and Life Science, Cornell University, Ithaca, New York, USA
| | - Sutee Wangtueai
- Faculty of Agro-industry, Chiang Mai University, Chiang Mai, Thailand
- College of Maritime Studies and Management, Chiang Mai University, Smut Sakhon, Thailand
| |
Collapse
|
21
|
De Rinaldis G, Leone A, De Domenico S, Bosch-Belmar M, Slizyte R, Milisenda G, Santucci A, Albano C, Piraino S. Biochemical Characterization of Cassiopea andromeda (Forsskål, 1775), Another Red Sea Jellyfish in the Western Mediterranean Sea. Mar Drugs 2021; 19:md19090498. [PMID: 34564160 PMCID: PMC8472248 DOI: 10.3390/md19090498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing frequency of native jellyfish proliferations and massive appearance of non-indigenous jellyfish species recently concur to impact Mediterranean coastal ecosystems and human activities at sea. Nonetheless, jellyfish biomass may represent an exploitable novel resource to coastal communities, with reference to its potential use in the pharmaceutical, nutritional, and nutraceutical Blue Growth sectors. The zooxanthellate jellyfish Cassiopea andromeda, Forsskål, 1775 (Cnidaria, Rhizostomeae) entered the Levant Sea through the Suez Canal and spread towards the Western Mediterranean to reach Malta, Tunisia, and recently also the Italian coasts. Here we report on the biochemical characterization and antioxidant activity of C. andromeda specimens with a discussion on their relative biological activities. The biochemical characterization of the aqueous (PBS) and hydroalcoholic (80% ethanol) soluble components of C. andromeda were performed for whole jellyfish, as well as separately for umbrella and oral arms. The insoluble components were hydrolyzed by sequential enzymatic digestion with pepsin and collagenase. The composition and antioxidant activity of the insoluble and enzymatically digestible fractions were not affected by the pre-extraction types, resulting into collagen- and non-collagen-derived peptides with antioxidant activity. Both soluble compounds and hydrolyzed fractions were characterized for the content of proteins, phenolic compounds, and lipids. The presence of compounds coming from the endosymbiont zooxanthellae was also detected. The notable yield and the considerable antioxidant activity detected make this species worthy of further study for its potential biotechnological sustainable exploitation.
Collapse
Affiliation(s)
- Gianluca De Rinaldis
- Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; (G.D.R.); (S.D.D.); (C.A.)
- Department of Biotechnology Chemistry and Pharmacy (DBCF), Università Degli Studi Di Siena, Via A. Moro, 53100 Siena, Italy;
| | - Antonella Leone
- Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; (G.D.R.); (S.D.D.); (C.A.)
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa, Local Unit of Lecce), Via Monteroni, 73100 Lecce, Italy;
- Correspondence: ; Tel.: +39-0832-422615
| | - Stefania De Domenico
- Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; (G.D.R.); (S.D.D.); (C.A.)
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Mar Bosch-Belmar
- Laboratory of Ecology, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, 90128 Palermo, Italy;
| | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway;
| | - Giacomo Milisenda
- Centro Interdipartimentale della Sicilia, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo, 90142 Palermo, Italy;
| | - Annalisa Santucci
- Department of Biotechnology Chemistry and Pharmacy (DBCF), Università Degli Studi Di Siena, Via A. Moro, 53100 Siena, Italy;
| | - Clara Albano
- Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; (G.D.R.); (S.D.D.); (C.A.)
| | - Stefano Piraino
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa, Local Unit of Lecce), Via Monteroni, 73100 Lecce, Italy;
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
22
|
Phadke GG, Rathod NB, Ozogul F, Elavarasan K, Karthikeyan M, Shin KH, Kim SK. Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates. Mar Drugs 2021; 19:md19090480. [PMID: 34564142 PMCID: PMC8468292 DOI: 10.3390/md19090480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Developing peptide-based drugs are very promising to address many of the lifestyle mediated diseases which are prevalent in a major portion of the global population. As an alternative to synthetic peptide-based drugs, derived peptides from natural sources have gained a greater attention in the last two decades. Aquatic organisms including plants, fish and shellfish are known as a rich reservoir of parent protein molecules which can offer novel sequences of amino acids in peptides, having unique bio-functional properties upon hydrolyzing with proteases from different sources. However, rather than exploiting fish and shellfish stocks which are already under pressure due to overexploitation, the processing discards, regarded as secondary raw material, could be a potential choice for peptide based therapeutic development strategies. In this connection, we have attempted to review the scientific reports in this area of research that deal with some of the well-established bioactive properties, such as antihypertensive, anti-oxidative, anti-coagulative, antibacterial and anticarcinogenic properties, with reference to the type of enzymes, substrate used, degree of particular bio-functionality, mechanism, and wherever possible, the active amino acid sequences in peptides. Many of the studies have been conducted on hydrolysate (crude mixture of peptides) enriched with low molecular bioactive peptides. In vitro and in vivo experiments on the potency of bioactive peptides to modulate the human physiological functions beneficially have demonstrated that these peptides can be used in the prevention and treatment of non-communicable lifestyle mediated diseases. The information synthesized under this review could serve as a point of reference to drive further research on and development of functionally active therapeutic natural peptides. Availability of such scientific information is expected to open up new zones of investigation for adding value to underutilized secondary raw materials, which in turn paves the way for sustainability in fish processing. However, there are significant challenges ahead in exploring the fish waste as a source of bioactive peptides, as it demands more studies on mechanisms and structure–function relationship understanding as well as clearance from regulatory and statutory bodies before reaching the end user in the form of supplement or therapeutics.
Collapse
Affiliation(s)
- Girija Gajanan Phadke
- Network for Fish Quality Management & Sustainable Fishing (NETFISH), The Marine Products Export Development Authority (MPEDA), Navi Mumbai 410206, Maharashtra, India;
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha 402109, Maharashtra, India;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Krishnamoorthy Elavarasan
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Kochi 682029, Kerala, India;
| | - Muthusamy Karthikeyan
- The Marine Products Export Development Authority (MPEDA), Kochi 682036, Kerala, India;
| | - Kyung-Hoon Shin
- Department of Marine Science & Convergence Engineering, Hanyang University, ERICA Campus, Ansan 11558, Gyeonggi-do, Korea;
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, Hanyang University, ERICA Campus, Ansan 11558, Gyeonggi-do, Korea;
- Correspondence: ; Tel.: +82-31-400-5539 or +82-10-7223-6375
| |
Collapse
|
23
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Morellon-Sterling R, Tavano O, Berenguer-Murcia Á, Vela-Gutiérrez G, Rather IA, Fernandez-Lafuente R. Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. Int J Biol Macromol 2021; 184:415-428. [PMID: 34157329 DOI: 10.1016/j.ijbiomac.2021.06.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Papain is a cysteine endopeptidase of vegetal origin (papaya (Carica papaya L.) with diverse applications in food technology. In this review we have focused our attention on its application in the production of bio-peptides by hydrolysis of proteins from fish residues. This way, a residual material, that can become a contaminant if dumped without control, is converted into highly interesting products. The main bioactivity of the produced peptides is their antioxidant activity, followed by their nutritional and functional activities, but peptides with many other bioactivities have been produced. Thera are also examples of production of hydrolysates with several bioactivities. The enzyme may be used alone, or in combination with other enzymes to increase the degree of hydrolysis.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Gilber Vela-Gutiérrez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Irfan A Rather
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
24
|
Sierra-Lopera LM, Zapata-Montoya JE. Optimization of enzymatic hydrolysis of red tilapia scales ( Oreochromis sp.) to obtain bioactive peptides. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00611. [PMID: 33912403 PMCID: PMC8063752 DOI: 10.1016/j.btre.2021.e00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/06/2021] [Accepted: 03/19/2021] [Indexed: 01/09/2023]
Abstract
The objective of this study was to optimize the conditions of enzymatic hydrolysis (type of enzyme, pH, temperature (T), substrate (S) and enzyme concentration (E)) to increase content of soluble peptides (P), antioxidant activities and degree of hydrolysis DH (%), in hydrolysates. Also, the effect of scaling up from a 0.5 L to a 7.5 L reactor, was evaluated. Hydrolysis was carried out for 3 h in a 500 mL reactor, with Alcalase® 2.4 L and Flavourzyme® 500 L enzymes. A second experimental design was then developed with S and E as factors, where DH, P and antioxidant activity, were response variables. The Alcalase® 2.4 L was the most productive enzyme, with optimal S and E of 45 g/L and 4.4 g/L, respectively. Its hydrolysates showed antioxidant activities with IC50 of 0.76 g/L, 12 g/L and 8 g/L for ABTS, FRAP and ICA, respectively. The scale up didn't showed negative effect on the hydrolysis.
Collapse
Affiliation(s)
- Leidy Maritza Sierra-Lopera
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| | - Jose Edgar Zapata-Montoya
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| |
Collapse
|
25
|
Kvangarsnes K, Kendler S, Rustad T, Aas GH. Induced oxidation and addition of antioxidant before enzymatic hydrolysis of heads of rainbow trout ( Oncorhynchus mykiss) - effect on the resulting oil and protein fraction. Heliyon 2021; 7:e06816. [PMID: 33997377 PMCID: PMC8093460 DOI: 10.1016/j.heliyon.2021.e06816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of freshness of heads of rainbow trout (Onchorhynchus mykiss) for hydrolysing fish protein was investigated. To simulate storage and transportation, hydrogen peroxide and iron was added to minced heads to induce oxidation in the raw material prior to one week of storage. The effect of antioxidant in retarding oxidative changes during hydrolysis or to the raw material was investigated by adding butylated hydroxy toluene (BHT) prior to hydrolysis or storage. Enzymatic hydrolysis was carried out using bromelain and papain. The oil fraction was separated from the water soluble proteins, and the soluble phase was freeze dried. Both the oil fraction and protein fraction from enzymatic hydrolysis was affected by oxidative state of raw material. FFA was significantly higher in those FPH made from raw material added pro-oxidants, addition of antioxidant did not affect the level of FFA. The solubility of proteins in dried fish protein hydrolysates (FPH) decreased significantly when using oxidized raw material. Although addition of antioxidant improved the solubility, it was still significantly lower compared to those FPHs not added pro-oxidants. The FPH with decreased solubility also had higher levels of carbonyl groups which indicate protein oxidation. However, the oxidative state of raw material did not affect fatty acid composition in oil fraction or the amino acid composition in the FPH.
Collapse
Affiliation(s)
- Kristine Kvangarsnes
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), PO Box 1517, 6025 Aalesund, Norway
| | - Sophie Kendler
- Faculty of Natural Sciences, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Turid Rustad
- Faculty of Natural Sciences, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Grete Hansen Aas
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), PO Box 1517, 6025 Aalesund, Norway
| |
Collapse
|
26
|
Pavlicevic M, Maestri E, Marmiroli M. Marine Bioactive Peptides-An Overview of Generation, Structure and Application with a Focus on Food Sources. Mar Drugs 2020; 18:E424. [PMID: 32823602 PMCID: PMC7460072 DOI: 10.3390/md18080424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The biggest obstacles in the application of marine peptides are two-fold, as in the case of non-marine plant and animal-derived bioactive peptides: elucidating correlation between the peptide structure and its effect and demonstrating its stability in vivo. The structures of marine bioactive peptides are highly variable and complex and dependent on the sources from which they are isolated. They can be cyclical, in the form of depsipeptides, and often contain secondary structures. Because of steric factors, marine-derived peptides can be resistant to proteolysis by gastrointestinal proteases, which presents an advantage over other peptide sources. Because of heterogeneity, amino acid sequences as well as preferred mechanisms of peptides showing specific bioactivities differ compared to their animal-derived counterparts. This review offers insights on the extreme diversity of bioactivities, effects, and structural features, analyzing 253 peptides, mainly from marine food sources. Similar to peptides in food of non-marine animal origin, a significant percentage (52.7%) of the examined sequences contain one or more proline residues, implying that proline might play a significant role in the stability of bioactive peptides. Additional problems with analyzing marine-derived bioactive peptides include their accessibility, extraction, and purification; this review considers the challenges and proposes possible solutions.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11070 Belgrade, Serbia;
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
- Consorzio Italbiotec, Via Fantoli 16/15, 20138 Milan, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
| |
Collapse
|
27
|
Prihanto AA, Nurdiani R, Bagus AD. Production and characteristics of fish protein hydrolysate from parrotfish ( Chlorurus sordidus) head. PeerJ 2019; 7:e8297. [PMID: 31890351 PMCID: PMC6934333 DOI: 10.7717/peerj.8297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Fish byproducts are commonly recognized as low-value resources. In order to increase the value, fish byproducts need to be converted into new products with high functionality such as fish protein hydrolysate (FPH). In this study, FPH manufactured from parrotfish (Chlorurus sordidus) heads using different pH, time and sample ratio was investigated. METHODS Hydrolysis reactions were conducted under different pHs (5, 7, and 9) and over different durations (12 and 24 h). Control treatment (without pH adjustment (pH 6.4)) and 0 h hydrolsisis duration were applied. Hydrolysates were characterized with respect to proximate composition, amino acid profile, and molecular weight distribution. The antioxidant activity of the hydrolysate was also observed. RESULTS The pH and duration of hydrolysis significantly affected (p < 0.05) the characteristics of FPH. The highest yield of hydrolysate (49.04 ± 0.90%), with a degree of hydrolysis of 30.65 ± 1.82%, was obtained at pH 9 after 24 h incubation. In addition, the FPH had high antioxidant activity (58.20 ± 0.55%), with a high level of essential amino acids. Results suggested that FPH produced using endogenous enzymes represents a promising additive for food and industrial applications.
Collapse
Affiliation(s)
- Asep A. Prihanto
- Department of Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java, Indonesia
- BIO-SEAFOOD Research Unit, Brawijaya University, Malang, East Java, Indonesia
| | - Rahmi Nurdiani
- Department of Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java, Indonesia
- BIO-SEAFOOD Research Unit, Brawijaya University, Malang, East Java, Indonesia
| | - Annas D. Bagus
- BIO-SEAFOOD Research Unit, Brawijaya University, Malang, East Java, Indonesia
| |
Collapse
|
28
|
Hidayat M, Prahastuti S, Riany DU, Soemardji AA, Suliska N, Garmana AN, Assiddiq BF, Hasan K. Kidney therapeutic potential of peptides derived from the bromelain hydrolysis of green peas protein. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1016-1025. [PMID: 31807245 PMCID: PMC6880536 DOI: 10.22038/ijbms.2019.33945.8075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Kidney disease is a global health problem that needs a solution to its therapy. In the previous study, we found that protein hydrolysate of green peas origin of Indonesia hydrolysed by bromelain (PHGPB) showed improve kidney function in cisplatin-induced nephropathy rats. In this study, we investigated the effect of PHGPB to obtain effective dose that exerts a therapeutic effect on chronic kidney disease (CKD) based on reducing urea and creatinine levels and to elucidate its mechanism of action. MATERIALS AND METHODS Two sets of experiments were conducted: (1) characteristics and proteomic profile of PHGPB, (2) in vivo test of PHGPB in gentamycin-induced Wistar rats, including urea and creatinine measurements, activities of antioxidant and kidney-related peptides (ANP, COX-1, and renin). RESULTS PHGPB showed three bands under 10 kDa using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and contained 10 identified proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Significant differences in urea and creatinine levels were found between all PHGPB treatments and positive controls (P<0.01). The lowest levels of urea and creatinine that were validated by high super oxide dismutase (SOD) activity and atrial natriuretic peptide (ANP) level were obtained in the 200 mg/day PHGPB treatment. However, the mean renin level was high and cyclooxygenase-1 (COX-1) level did not exceed positive and negative control levels. CONCLUSION PHGPB at dose 200 mg/kgBW shows a potential CKD therapeutic effect that is dose-dependent. Higher PHGPB dose corresponds to better effect on kidney function by increasing antioxidant activity and ANP levels in gentamycin-induced Wistar rats.
Collapse
Affiliation(s)
- Meilinah Hidayat
- Faculty of Medicine, Universitas Kristen Maranatha, Bandung Indonesia
| | - Sijani Prahastuti
- Faculty of Medicine, Universitas Kristen Maranatha, Bandung Indonesia
| | | | | | - Nova Suliska
- School of Pharmacy, Institute Teknologi Bandung Indonesia
| | | | | | - Khomaini Hasan
- Faculty of Medicine, Universitas Jenderal Achmad Yani, Bandung Indonesia
| |
Collapse
|
29
|
Zhang F, Qu J, Thakur K, Zhang JG, Mocan A, Wei ZJ. Purification and identification of an antioxidative peptide from peony (Paeonia suffruticosa Andr.) seed dreg. Food Chem 2019; 285:266-274. [PMID: 30797344 DOI: 10.1016/j.foodchem.2019.01.168] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
The present study demonstrated the hydrolysis of peony seed protein isolate (PSPI) by using alcalase and resulted in the generation of an anti-oxidative peptide. In brief, a model was used to illustrate the enzymolysis of PSPI with the determination of kinetic factors as per investigation information. The model proved suitable to explain the PSPI hydrolysis by alcalase. A novel anti-oxidative peptide was obtained successfully by ultrafiltration and a series of chromatography techniques. Subsequently, a purified fragment was identified with the amino acid sequence of SMRKPPG followed by its synthesis and evaluation of its anti-oxidative activities. After hydrolysis, the peony seed protein hydrolysate (PSPH) with the degree of hydrolysis of 18% displayed the most significant antioxidant action which was further used to isolate the anti-oxidative peptide.
Collapse
Affiliation(s)
- Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Qu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Huaheng Biological Engineering Co., Ltd., Hefei 231131, China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Huaheng Biological Engineering Co., Ltd., Hefei 231131, China.
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd., Jieshou 236500, China.
| |
Collapse
|
30
|
Marine Waste Utilization as a Source of Functional and Health Compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:187-254. [PMID: 30678815 DOI: 10.1016/bs.afnr.2018.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Consumer demand for convenience has led to large quantities of seafood being value-added processed before marketing, resulting in large amounts of marine by-products being generated by processing industries. Several bioconversion processes have been proposed to transform some of these by-products. In addition to their relatively low value conventional use as animal feed and fertilizers, several investigations have been reported that have demonstrated the potential to add value to viscera, heads, skins, fins, trimmings, and crab and shrimp shells by extraction of lipids, bioactive peptides, enzymes, and other functional proteins and chitin that can be used in food and pharmaceutical applications. This chapter is focused on reviewing the opportunities for utilization of these marine by-products. The chapter discusses the various products and bioactive compounds that can be obtained from seafood waste and describes various methods that can be used to produce these products with the aim of highlighting opportunities to add value to these marine waste streams.
Collapse
|
31
|
Liao P, Lan X, Liao D, Sun L, Zhou L, Sun J, Tong Z. Isolation and Characterization of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from the Enzymatic Hydrolysate of Carapax Trionycis (the Shell of the Turtle Pelodiscus sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7015-7022. [PMID: 29916239 DOI: 10.1021/acs.jafc.8b01558] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carapax Trionycis (the shell of the turtle Pelodiscus sinensis) was hydrolyzed by six different commercial proteases. The hydrolysate prepared from papain showed stronger inhibitory activity against angiotensin I-converting enzyme (ACE) than other extracts. Two noncompetitive ACE inhibitory peptides were purified successively by ultrafiltration, gel filtration chromatography, ion exchange column chromatography, and high-performance liquid chromatography (HPLC). The amino acid sequences of them were identified as KRER and LHMFK, with IC50 values of 324.1 and 75.6 μM, respectively, confirming that Carapax Trionycis is a potential source of active peptides possessing ACE inhibitory activities. Besides, both enzyme kinetics and isothermal titration calorimetry (ITC) assay showed that LHMFK could form more stable complex with ACE than KRER, which is in accordance with the better inhibitory activity of LHMFK.
Collapse
Affiliation(s)
- Pengying Liao
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning 530200 , Guangxi , P. R. China
| | - Xiongdiao Lan
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Dankui Liao
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Lixia Sun
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Liqin Zhou
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Jianhua Sun
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Zhangfa Tong
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| |
Collapse
|
32
|
Paiva L, Lima E, Neto AI, Baptista J. Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity, Antioxidant Properties, Phenolic Content and Amino Acid Profiles of Fucus spiralis L. Protein Hydrolysate Fractions. Mar Drugs 2017; 15:E311. [PMID: 29027934 PMCID: PMC5666419 DOI: 10.3390/md15100311] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023] Open
Abstract
Food protein-derived hydrolysates with multi-bioactivities such as antihypertensive and antioxidant properties have recently received special attention since both activities can play significant roles in preventing cardiovascular diseases. This study reports, for the first time, the angiotensin I-converting enzyme (ACE)-inhibition and antioxidant properties of ultrafiltrate fractions (UF) with different molecular weight ranges (<1, 1-3 and ≥3 kDa) obtained from Fucus spiralis protein hydrolysate (FSPH) digested with cellulase-bromelain. The amino acids profile, recovery yield, protein, peptide and total phenolic contents of these FSPH-UF, and the in vitro digestibility of F. spiralis crude protein were also investigated. FSPH-UF ≥3 kDa presented remarkably higher ACE-inhibition, yield, peptide and polyphenolic (phlorotannins) contents. Antioxidant analysis showed that FSPH-UF <1 kDa and ≥3 kDa exhibited significantly higher scavenging of 2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion-chelating (FIC) activity. FSPH-UF ≥3 kDa had also notably higher ferric reducing antioxidant power (FRAP). Strong correlations were observed between ACE-inhibition and antioxidant activities (FIC and FRAP). The results suggest that ACE-inhibition and antioxidant properties of FSPH-UF may be due to the bioactive peptides and polyphenols released during the enzymatic hydrolysis. In conclusion, this study shows the potential use of defined size FSPH-UF for the prevention/treatment of hypertension and/or oxidative stress-related diseases.
Collapse
Affiliation(s)
- Lisete Paiva
- Biotechnology Centre of Azores (CBA), University of Azores, 9501-801 Ponta Delgada, Portugal.
| | - Elisabete Lima
- Biotechnology Centre of Azores (CBA), University of Azores, 9501-801 Ponta Delgada, Portugal.
- Research Center for Agricultural Technology (CITA-A), University of Azores, 9501-801 Ponta Delgada, Portugal.
| | - Ana Isabel Neto
- Azorean Biodiversity Group, Centre for Ecology, Evolution and Environmental Changes (CE3C), Department of Biology, University of Azores, 9501-801 Ponta Delgada, Portugal.
| | - José Baptista
- Biotechnology Centre of Azores (CBA), University of Azores, 9501-801 Ponta Delgada, Portugal.
- Research Center for Agricultural Technology (CITA-A), University of Azores, 9501-801 Ponta Delgada, Portugal.
| |
Collapse
|
33
|
Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology. Mar Drugs 2017; 15:md15100306. [PMID: 28994711 PMCID: PMC5666414 DOI: 10.3390/md15100306] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 11/17/2022] Open
Abstract
Fish discards are of major concern in new EU policies. Alternatives for the management of the new biomass that has to be landed is compulsory. The production of bioactive compounds from fish protein hydrolysates (FPH) has been explored in recent years. However, the viability of Scyliorhinus canicula discards, which might account for up to 90-100% of captures in mixed trawler, gillnet, and longline industrial fisheries, to produce FPH from the muscle with bioactivities has still not been studied in terms of the optimization of the experimental conditions to enhance its production. The effect of pH and temperature on the hydrolysis of the S.canicula muscle was mediated by three commercial proteases using response surface methodology. Temperatures of 64.6 °C and 60.8 °C and pHs of 9.40 and 8.90 were established as the best hydrolysis conditions for Alcalase and Esperase, respectively. Optimization of the best conditions for the maximization of antihypertensive and antioxidant activities was performed. Higher Angiotensin-converting enzyme (ACE) activity was found with Esperase. The pH optimum and temperature optimum for antioxidants were 55 °C/pH8.0 for ABTS/DPPH-Esperase, 63.1 °C/pH9.0 for DPPH-Alcalase, and 55 °C/pH9.0 for ABTS-Alcalase. No hydrolysis was detected when using Protamex.
Collapse
|
34
|
Fernández-Lucas J, Castañeda D, Hormigo D. New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Mazorra-Manzano MA, Ramírez-Suarez JC, Yada RY. Plant proteases for bioactive peptides release: A review. Crit Rev Food Sci Nutr 2017; 58:2147-2163. [DOI: 10.1080/10408398.2017.1308312] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. A. Mazorra-Manzano
- Laboratorio de Biotecnología de Lácteos, Química y Autenticidad de Alimentos, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora, México
| | - J. C. Ramírez-Suarez
- Laboratorio de Calidad de Productos Pesqueros, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora, México
| | - R. Y. Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Murthy LN, Phadke GG, Mohan CO, Chandra MV, Annamalai J, Visnuvinayagam S, Unnikrishnan P, Ravishankar CN. Characterization of Spray-Dried Hydrolyzed Proteins from Pink Perch Meat Added with Maltodextrin and Gum Arabic. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1362684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lakshmi Narasimha Murthy
- Fish Processing Technology Division, Mumbai Research Centre of Central Institute of Fisheries Technology, Vashi, Navi Mumbai, Maharashtra, India
| | - Girija Gajanan Phadke
- Fish Processing Technology Division, Mumbai Research Centre of Central Institute of Fisheries Technology, Vashi, Navi Mumbai, Maharashtra, India
| | - Chitradurga Obaiah Mohan
- Fish Processing Technology Division, ICAR- Central Institute of Fisheries Technology, Kochi, Kerala, India
| | | | - Jeyakumari Annamalai
- Fish Processing Technology Division, Mumbai Research Centre of Central Institute of Fisheries Technology, Vashi, Navi Mumbai, Maharashtra, India
| | - Sivam Visnuvinayagam
- Fish Processing Technology Division, Mumbai Research Centre of Central Institute of Fisheries Technology, Vashi, Navi Mumbai, Maharashtra, India
| | - Parvathy Unnikrishnan
- Fish Processing Technology Division, Mumbai Research Centre of Central Institute of Fisheries Technology, Vashi, Navi Mumbai, Maharashtra, India
| | | |
Collapse
|
37
|
Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Mar Drugs 2017; 15:md15050143. [PMID: 28524092 PMCID: PMC5450549 DOI: 10.3390/md15050143] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023] Open
Abstract
Marine fish provide a rich source of bioactive compounds such as proteins and peptides. The bioactive proteins and peptides derived from marine fish have gained enormous interest in nutraceutical, pharmaceutical, and cosmeceutical industries due to their broad spectrum of bioactivities, including antioxidant, antimicrobial, and anti-aging activities. Recently, the development of cosmeceuticals using marine fish-derived proteins and peptides obtained from chemical or enzymatical hydrolysis of fish processing by-products has increased rapidly owing to their activities in antioxidation and tissue regeneration. Marine fish-derived collagen has been utilized for the development of cosmeceutical products due to its abilities in skin repair and tissue regeneration. Marine fish-derived peptides have also been utilized for various cosmeceutical applications due to their antioxidant, antimicrobial, and matrix metalloproteinase inhibitory activities. In addition, marine fish-derived proteins and hydrolysates demonstrated efficient anti-photoaging activity. The present review highlights and presents an overview of the current status of the isolation and applications of marine fish-derived proteins and peptides. This review also demonstrates that marine fish-derived proteins and peptides have high potential for biocompatible and effective cosmeceuticals.
Collapse
|