1
|
Slattery O, Dahle MK, Sundaram AYM, Nowak BF, Gjessing MC, Solhaug A. Functional and molecular characterization of the Atlantic salmon gill epithelium cell line ASG-10; a tool for in vitro gill research. Front Mol Biosci 2023; 10:1242879. [PMID: 37916189 PMCID: PMC10616884 DOI: 10.3389/fmolb.2023.1242879] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/08/2023] [Indexed: 11/03/2023] Open
Abstract
Fish gills are not only the respiratory organ, but also essential for ion-regulation, acid-base control, detoxification, waste excretion and host defense. Multifactorial gill diseases are common in farmed Atlantic salmon, and still poorly understood. Understanding gill pathophysiology is of paramount importance, but the sacrifice of large numbers of experimental animals for this purpose should be avoided. Therefore, in vitro models, such as cell lines, are urgently required to replace fish trials. An Atlantic salmon gill epithelial cell line, ASG-10, was established at the Norwegian Veterinary institute in 2018. This cell line forms a monolayer expressing cytokeratin, e-cadherin and desmosomes, hallmarks of a functional epithelial barrier. To determine the value of ASG-10 for comparative studies of gill functions, the characterization of ASG-10 was taken one step further by performing functional assays and comparing the cell proteome and transcriptome with those of gills from juvenile freshwater Atlantic salmon. The ASG-10 cell line appear to be a homogenous cell line consisting of epithelial cells, which express tight junction proteins. We demonstrated that ASG-10 forms a barrier, both alone and in co-culture with the Atlantic salmon gill fibroblast cell line ASG-13. ASG-10 cells can phagocytose and express several ATP-binding cassette transport proteins. Additionally, ASG-10 expresses genes involved in biotransformation of xenobiotics and immune responses. Taken together, this study provides an overview of functions that can be studied using ASG-10, which will be an important contribution to in vitro gill epithelial research of Atlantic salmon.
Collapse
Affiliation(s)
- Orla Slattery
- Marine and Freshwater Research Centre, Atlantic Technological University, Galway, Ireland
| | | | - Arvind Y. M. Sundaram
- Norwegian Veterinary Institute, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Barbara F. Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | | |
Collapse
|
2
|
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. NANO SELECT 2022. [DOI: 10.1002/nano.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lei Xu
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Department of Ultrasound Medicine Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua Zhejiang 321000 P.R. China
| | - Liting Xie
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
| | - ChengYu Fang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - WenJing Lou
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - Tianan Jiang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province Hangzhou Zhejiang 310000 P.R. China
| |
Collapse
|
3
|
Krug HF. A Systematic Review on the Hazard Assessment of Amorphous Silica Based on the Literature From 2013 to 2018. Front Public Health 2022; 10:902893. [PMID: 35784253 PMCID: PMC9240267 DOI: 10.3389/fpubh.2022.902893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022] Open
Abstract
Background Nanomaterials are suspected of causing health problems, as published studies on nanotoxicology indicate. On the other hand, some of these materials, such as nanostructured pyrogenic and precipitated synthetic amorphous silica (SAS) and silica gel, have been used for decades without safety concerns in industrial, commercial, and consumer applications. However, in addition to many in vivo and in vitro studies that have failed to demonstrate the intrinsic toxicity of SAS, articles periodically emerge, in which biological effects of concern have been described. Even though most of these studies do not meet high-quality standards and do not always use equivalent test materials or standardized test systems, the results often trigger substance re-evaluation. To put the results into perspective, an extensive literature study was carried out and an example of amorphous silica will be used to try to unravel the reliability from the unreliable results. Methods A systematic search of studies on nanotoxicological effects has been performed covering the years 2013 to 2018. The identified studies have been evaluated for their quality regarding material and method details, and the data have been curated and put into a data collection. This review deals only with investigations on amorphous silica. Results Of 18,162 publications 1,217 have been selected with direct reference to experiments with synthetically produced amorphous silica materials. The assessment of these studies based on defined criteria leads to a further reduction to 316 studies, which have been included in this systematic review. Screening for quality with well-defined quantitative criteria following the GUIDE nano concept reveals only 27.3% has acceptable quality. Overall, the in vitro and in vivo data showed low or no toxicity of amorphous silica. The data shown do not support the hypothesis of dependency of biological effects on the primary particle size of the tested materials. Conclusion This review demonstrates the relatively low quality of most studies published on nanotoxicological issues in the case of amorphous silica. Moreover, mechanistic studies are often passed off or considered toxicological studies. In general, standardized methods or the Organization for Economic Cooperation and Development (OECD) guidelines are rarely used for toxicological experiments. As a result, the significance of the published data is usually weak and must be reevaluated carefully before using them for regulatory purposes.
Collapse
Affiliation(s)
- Harald F. Krug
- NanoCASE GmbH, Engelburg, Switzerland
- Empa—Swiss Federal Laboratories for Science and Materials Technology, St. Gallen, Switzerland
- Faculty of Medicine, University of Berne, Bern, Switzerland
- *Correspondence: Harald F. Krug ; orcid.org/0000-0001-9318-095X
| |
Collapse
|
4
|
Srikanth K, Nutalapati V. Copper ferrite nanoparticles induced cytotoxicity and oxidative stress in Channel catfish ovary cells. CHEMOSPHERE 2022; 287:132166. [PMID: 34826900 DOI: 10.1016/j.chemosphere.2021.132166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials are the sixth most emerging contaminants that are entering into aquatic habitat posing a risk to the inhabiting organisms. Nanoparticles of copper ferrite have been extensively used in biomedical applications. However, very limited studies are available on the cytotoxicity evaluation of copper ferrite nanoparticles (CuFe2O4NPs) on different cell lines. The current work investigates on the cytotoxicity, oxidative stress and morphological variations triggered by CuFe2O4NPs in Channel catfish ovary (CCO) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU), lipid peroxidation (LPO), catalase (CAT), reduced glutathione (GSH), glutathione sulfotransferase (GST) and glutathione peroxidase (GPX) assays after 24 h of treatment. Dose dependent decline in cell survival was noticed in MTT and NRU assays. A significant increase in LPO, GST and GPX was observed in CCO cells exposed to CuFe2O4NPs after 24 h of treatment. However, the CAT and GSH levels in CCO cells exposed to CuFe2O4NPs decreased significantly after 24 h. The CCO cells exposed to 10 μg/mL concentration of CuFe2O4NPs for 24 h showed remarkable changes in their morphology. Further, the study also describes the detailed mechanism of toxicity of CuFe2O4NPs in other model cell lines to probe the risk of inhabiting organisms.
Collapse
Affiliation(s)
- Koigoora Srikanth
- Centre for Environment & Marine Studies (CESAM), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Vadlamudi, 522213, Guntur, Andhra Pradesh, India.
| | - Venkatramaiah Nutalapati
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Chennai, TN, India.
| |
Collapse
|
5
|
Sandoval-Sanhueza A, Aguilera-Belmonte A, Basti L, Figueroa RI, Molinet C, Álvarez G, Oyanedel S, Riobó P, Mancilla-Gutiérrez G, Díaz PA. Interactive effects of temperature and salinity on the growth and cytotoxicity of the fish-killing microalgal species Heterosigma akashiwo and Pseudochattonella verruculosa. MARINE POLLUTION BULLETIN 2022; 174:113234. [PMID: 34922228 DOI: 10.1016/j.marpolbul.2021.113234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Fish-killing blooms of Heterosigma akashiwo and Pseudochattonella verruculosa have been devastating for the farmed salmon industry, but in Southern Chile the conditions that promote the growth and toxicity of these microalgae are poorly understood. This study examined the effects of different combinations of temperature (12, 15, 18 °C) and salinity (10, 20, 30 psu) on the growth of Chilean strains of these two species. The results showed that the optimal growth conditions for H. akashiwo and P. verruculosa differed, with a maximum rate of 0.99 day-1 obtained at 15 °C and a salinity of 20 psu for H. akashiwo, and a maximum rate of 1.06 day-1 obtained at 18 °C and a salinity of 30 psu for P. verruculosa. Cytotoxic assays (2 × 101 - 2 × 105 cell mL-1; cells, filtrates, and cell lysates) performed at salinities of 20 and 30 psu showed a 100% reduction in the viability of embryonic fish cells exposed to intact cells of H. akashiwo and a 39% reduction following exposure to culture filtrates of P. verruculosa. Differences in the fish-killing mechanisms (direct cell contact vs. extracellular substances) and physiological traits of H. akashiwo and P. verruculosa explain the recent occurrence of very large blooms under contrasting (cold-brackish vs. hot-salty) extreme climate conditions in Chile.
Collapse
Affiliation(s)
| | - Alejandra Aguilera-Belmonte
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile
| | - Leila Basti
- Faculty of Marine Environment and Resources, Tokyo University of Marine Science and Technology, 108-8477 Tokyo, Japan
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Carlos Molinet
- Programa de Investigación Pesquera, Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Programa Integrativo, Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad de Concepción, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo, Chile
| | - Sandra Oyanedel
- Fraunhofer Chile Research - Fundación Chile, Quillaipe Aquaculture Center, Km 23.8 Quillaipe, Puerto Montt, Chile
| | - Pilar Riobó
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain
| | | | - Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| |
Collapse
|
6
|
Agayeva NJ, Rzayev FH, Gasimov EK, Mamedov CA, Ahmadov IS, Sadigova NA, Khusro A, Al-Dhabi NA, Arasu MV. Exposure of rainbow trout ( Oncorhynchus mykiss) to magnetite (Fe 3O 4) nanoparticles in simplified food chain: Study on ultrastructural characterization. Saudi J Biol Sci 2020; 27:3258-3266. [PMID: 33304131 PMCID: PMC7715042 DOI: 10.1016/j.sjbs.2020.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 01/30/2023] Open
Abstract
The widespread exposure of metallic nanoparticles to the aquatic ecosystem and its adverse impact on human life is the colossal concern worldwide. In view of this, this context was investigated to analyze microscopically the bioaccumulation and localization of magnetite (Fe3O4) nanoparticles in the cellular organelles of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) in aquatic conditions. Initially, Fe3O4 nanoparticles were absorbed on to Elodea (Elodea canadensis) and fed to molluscs (Melanopsis praemorsa). Fish were fed with the same molluscs, and then the intestines and liver were examined using light and transmission electron microscopy. Results showed that nanoparticles were present in the cytoplasm and other organelles of cells (mitochondrion and lysosome) by absorbing through microvilli of the epithelial cells of the tunica mucosa in the intestine. Further, nanoparticles passed through the vessels of the lamina propria of the tunica mucosa and reached to the sinusoids of the liver via blood circulation. It was then accumulated from the endothelium of the sinusoid to the cytoplasm of liver hepatocytes and to mitochondria and lysosome. The accumulation of nanoparticles in the epithelial cells, cytoplasm, mitochondria, and lysosome revealed the degree of transparency of the pattern with slight hesitation. In summary, this investigation contributed towards the understanding of the physiological effects of Fe3O4 nanoparticles on O. mykiss, which ascertains essentiality for sustainable development of nanobiotechnology in the aquatic ecosystem.
Collapse
Affiliation(s)
- Nargiz J Agayeva
- Department of Zoology of Vertebrates, Faculty of Biology, Baku State University, Baku AZ1148, Azerbaijan
| | - Fuad H Rzayev
- Laboratory of Electron Microscopy of the SRC, Azerbaijan Medical University, Baku AZ1078, Azerbaijan.,Institute of Zoology, National Academy of Sciences, Baku AZ1004, Azerbaijan
| | - Eldar K Gasimov
- Laboratory of Electron Microscopy of the SRC, Azerbaijan Medical University, Baku AZ1078, Azerbaijan
| | - Chingiz A Mamedov
- Department of Zoology of Vertebrates, Faculty of Biology, Baku State University, Baku AZ1148, Azerbaijan
| | - Ismat S Ahmadov
- Department of Zoology of Vertebrates, Faculty of Biology, Baku State University, Baku AZ1148, Azerbaijan
| | - Narmina A Sadigova
- Department of Zoology of Vertebrates, Faculty of Biology, Baku State University, Baku AZ1148, Azerbaijan
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai 600034, Tamil Nadu, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Liu Y, Cao F, Sun B, Bellanti JA, Zheng SG. Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis. J Leukoc Biol 2020; 109:415-424. [PMID: 32967052 DOI: 10.1002/jlb.5mr0420-008rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition characterized by articular synovitis that eventually leads to the destruction of cartilage and bone in the joints with resulting pain and disability. The current therapies for RA are divided into 4 categories: non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, nonbiological disease-modifying anti-rheumatic drugs (DMARDs), and biological DMARDs. Each drug grouping is beset with significant setbacks that not only include limited drug bioavailability and high clearance, but also varying degrees of drug toxicity to normal tissues. Recently, nanotechnology has provided a promising tool for the development of novel therapeutic and diagnostic systems in the area of malignant and inflammatory diseases. Among these, magnetic nanoparticles (MNPs) have provided an attractive carrier option for delivery of therapeutic agents. Armed with an extra magnetic probe, MNPs are capable of more accurately targeting the local lesion with avoidance of unpleasant systemic side effects. This review aims to provide an introduction to the applications of magnetic nanoparticles in RA, focusing on the latest advances, challenges, and opportunities for future development.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fenglin Cao
- Department of Internal Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
8
|
Özgür ME, Ulu A, Balcıoğlu S, Özcan İ, Köytepe S, Ateş B. The Toxicity Assessment of Iron Oxide (Fe₃O₄) Nanoparticles on Physical and Biochemical Quality of Rainbow Trout Spermatozoon. TOXICS 2018; 6:toxics6040062. [PMID: 30340322 PMCID: PMC6315697 DOI: 10.3390/toxics6040062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to evaluate the in vitro effect of different doses (50, 100, 200, 400, and 800 mg/L) of Fe₃O₄ nanoparticles (NPs) at 4 °C for 24 h on the kinematics of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) spermatozoon. Firstly, Fe₃O₄ NPs were prepared at about 30 nm from Iron (III) chloride, Iron (II) chloride, and NH₃ via a co-precipitation synthesis technique. Then, the prepared Fe₃O₄ NPs were characterized by different instrumental techniques for their chemical structure, purity, morphology, surface properties, and thermal behavior. The size, microstructure, and morphology of the prepared Fe₃O₄ NPs were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) spectroscopy, and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS). The thermal properties of the Fe₃O₄ NPs were determined with thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimeter (DSC) analysis techniques. According to our results, there were statistically significant (p < 0.05) decreases in the velocities of spermatozoon after treatment with 400 mg/L Fe₃O₄ NPs. The superoxide dismutase (SOD) and catalase (CAT) activities were significant (p < 0.05) decrease after 100 mg/L in after exposure to Fe₃O₄ NPs in 24 h. As the doses of Fe₃O₄ NPs increases, the level of malondialdehyde (MDA) and total glutathione (tGSH) significantly (p < 0.05) increased at doses of 400 and 800 mg/L.
Collapse
Affiliation(s)
- Mustafa Erkan Özgür
- Department of Aquaculture, Faculty of Fishery, Malatya Turgut Özal University, Malatya 44280, Turkey.
| | - Ahmet Ulu
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - Sevgi Balcıoğlu
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - İmren Özcan
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - Süleyman Köytepe
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - Burhan Ateş
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| |
Collapse
|
9
|
Abstract
Application of nanomaterials in nearly every single branch of industry results in their accumulation in both abiotic environment and tissues of living organisms. Despite the common use of nanomaterials, we are not able to precisely define their toxicity towards humans and surrounding biota. Although we were able to determine final effects of chronic exposure to nanoparticles which consist of many pathologies such as respiratory diseases, allergies, diseases of cardiovascular system, disorders in embryonic life differentiation and growth disorders, toxic effects on the immune system and cancers. The most predominantly investigated feature of most nanoparticles is their ability to induce oxidative stress on cellular level. Imbalance in redox state of cells can lead to various malfunctions in their internal metabolism, which in turn can lead to mentioned pathologies on the organismal level if the exposure is persistent and spread wide enough. Imbalance in redox state translate into production of reactive oxygen species in amounts impossible to be scavenged in given time. Many reactive oxygen species play crucial role in physiological processes in properly functioning cells. It was proven on numerous occasions that abundance of ROS, aside from oxidative damage, can lead to more subtle adverse effects tied to disturbances in intra- and intercellular signaling pathways. In this chapter we would like to address the nanoparticle-induced redox imbalance in cells and its effects.
Collapse
|
10
|
Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:977-990. [PMID: 29409836 PMCID: PMC5899012 DOI: 10.1016/j.nano.2018.01.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations.
Collapse
Affiliation(s)
- Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.
| |
Collapse
|
11
|
Association between Exposure to Ambient Air Particulates and Metabolic Syndrome Components in a Saudi Arabian Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 15:ijerph15010027. [PMID: 29295575 PMCID: PMC5800127 DOI: 10.3390/ijerph15010027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Recent epidemiological evidence suggests that exposure to particulates may be a factor in the etiology of metabolic syndrome (MetS). In this novel study, we investigated the relationship between particulate levels and prevalence of MetS component abnormalities (hypertension, hyperglycemia, obesity) in a recruited cohort (N = 2025) in Jeddah, Saudi Arabia. We observed significant associations between a 10 μg/m³ increase in PM2.5 and increased risks for MetS (Risk Ratio (RR): 1.12; 95% Confidence Interval (CI): 1.06-1.19), hyperglycemia (RR: 1.08; 95% CI: 1.03-1.14), and hypertension (RR: 1.09; 95% CI: 1.04-1.14). PM2.5 from soil/road dust was found to be associated with hyperglycemia (RR: 1.12; 95% CI: 1.06-1.19) and hypertension (RR: 1.11; 95% CI: 1.05-1.18), while PM2.5 from traffic was associated with hyperglycemia (RR: 1.33; 95% CI: 1.05-1.71). We did not observe any health associations with source-specific mass exposures. Our findings suggest that exposure to specific elemental components of PM2.5, especially Ni, may contribute to the development of cardiometabolic disorders.
Collapse
|
12
|
Yaman S, Çömelekoğlu Ü, Değirmenci E, Karagül Mİ, Yalın S, Ballı E, Yıldırımcan S, Yıldırım M, Doğaner A, Ocakoğlu K. Effects of silica nanoparticles on isolated rat uterine smooth muscle. Drug Chem Toxicol 2017; 41:465-475. [PMID: 29115178 DOI: 10.1080/01480545.2017.1384005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In spite of their widespread use, toxicity of silica nanoparticles (SiO2 NPs) to mammalian has not been extensively investigated. In the present study, it is aimed to investigate the effects and the mechanism of action of 20 nm sized SiO2 NPs on isolated uterine smooth muscle. A total number of 84 preparations of uterine strips were used in the experiments. Study was designed as four groups: group I (control), group II (0.2 mM SiO2 NPs), group III (0.4 mM SiO2 NPs) and group IV (0.8 mM SiO2 NPs). Spontaneous contractions were recorded using mechanical activity recording system. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) levels were measured using the spectrophotometric methods. Apoptosis of the cells was detected using immunofluorescence staining assay. SiO2 NP distribution and ultrastructural changes were determined by transmission electron microscopy. In groups II-IV, the frequency of contraction was significantly lower than that of the group I, whereas the contraction energy significantly decreased only in group IV. SOD and GSH-Px activities were significantly lower in experimental groups compared to the control group. MDA level and apoptotic cells were significantly higher in all SiO2 groups compared to the control group. Numerous SiO2 NPs in cytoplasm and connective tissue were observed in all dose groups. These findings showed that 20 nm sized SiO2 NPs enter the connective tissue and cytoplasm of uterine muscle cells and cause oxidative stress and apoptosis leading to impaired uterine contractile activity.
Collapse
Affiliation(s)
- Selma Yaman
- a Department of Biophysics, Faculty of Medicine , Kahramanmaraş Sütçü İmam University , Kahramanmaraş , Turkey
| | - Ülkü Çömelekoğlu
- b Department of Biophysics, Faculty of Medicine , Mersin University , Mersin , Turkey
| | - Evren Değirmenci
- c Department of Electrical and Electronics Engineering, Faculty of Engineering , Mersin University , Mersin , Turkey
| | - Meryem İlkay Karagül
- d Department of Histology and Embryology, Faculty of Medicine , Mersin University , Mersin , Turkey
| | - Serap Yalın
- e Department of Biochemistry, Faculty of Pharmacy , Mersin University , Mersin , Turkey
| | - Ebru Ballı
- d Department of Histology and Embryology, Faculty of Medicine , Mersin University , Mersin , Turkey
| | - Saadet Yıldırımcan
- f Advanced Technology Education, Research and Application Center , Mersin University , Mersin , Turkey
| | - Metin Yıldırım
- e Department of Biochemistry, Faculty of Pharmacy , Mersin University , Mersin , Turkey
| | - Adem Doğaner
- g Department of Biostatistics, Faculty of Medicine , Kahramanmaraş Sütçü Imam University , Kahramanmaraş , Turkey
| | - Kasım Ocakoğlu
- f Advanced Technology Education, Research and Application Center , Mersin University , Mersin , Turkey.,h Department of Energy Systems Engineering, Faculty of Tarsus Technology , Mersin University , Mersin , Turkey
| |
Collapse
|
13
|
Wei L, Wang J, Chen A, Liu J, Feng X, Shao L. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells. Int J Nanomedicine 2017; 12:1891-1903. [PMID: 28331313 PMCID: PMC5352242 DOI: 10.2147/ijn.s129375] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1−/− BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity.
Collapse
Affiliation(s)
- Limin Wei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jianfeng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Aijie Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jia Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoli Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|