1
|
McIntosh S, Padilla RV, Rose T, Rose AL, Boukaka E, Erler D. Crop fertilisation potential of phosphorus in hydrochars produced from sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153023. [PMID: 35031380 DOI: 10.1016/j.scitotenv.2022.153023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Sewage sludges are a rich underused source of phosphorus (P) which contributes to environmental degradation, yet if recaptured, could return significant amounts of P to agricultural systems. Hydrothermal carbonisation (HTC) can efficiently recover P, with the added ability to transform P species into potentially more desirable forms for direct application to crops. P dynamics in hydrochars have primarily examined P speciation and chemical extractability as indicators of P bioavailability, but few studies directly evaluate the agronomic effectiveness of hydrochars as P fertilisers. As such, there is a clear need to assess the suitability of hydrochar as a source of bioavailable P in plant systems and the influence of HTC synthesis conditions. Response Surface Modelling of HTC synthesis conditions (pH, temperature and time), revealed initial pH significantly influence P distribution. Mild conditions of 180 °C for 30 min at pH 8.0 maximised P recovery (99%) along with carbon (62%) and nitrogen (43%) in hydrochars. Systematic characterisation of hydrochar P by chemical extraction and P L2,3-edge X-ray absorption near edge spectroscopy revealed H2O, NaHCO3 and NaOH- P fractions were significantly (p < 0.05) reduced in all hydrochars, while HCl-P fraction increased with HTC temperatures at pH 7. In contrast, P L2,3-edge XANES spectra were remarkably similar in raw sludges and corresponding hydrochars, regardless of HTC temperature or pH, revealing P was predominantly present as ferric phosphate with some hydroxyapatite. Multiple linear regression modelling suggested a significant relationship between chemical extractability and P bioavailability to wheat present in the raw sludges and hydrochars. This research provides further insight into the potential to use hydrothermal treatment for recovery and agricultural reuse of P, the importance of operational conditions on P transformation and the relationship between P speciation and bioavailability. The value of sewage sludge in a more sustainable global P cycle is also highlighted.
Collapse
Affiliation(s)
- Shane McIntosh
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia.
| | | | - Terry Rose
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Andrew L Rose
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Exhaussée Boukaka
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Dirk Erler
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
2
|
da Cunha CCRF, Freitas MG, da Silva Rodrigues DA, de Barros ALC, Ribeiro MC, Sanson AL, Afonso RJDCF. Low-temperature partitioning extraction followed by liquid chromatography tandem mass spectrometry determination of multiclass antibiotics in solid and soluble wastewater fractions. J Chromatogr A 2021; 1650:462256. [PMID: 34082187 DOI: 10.1016/j.chroma.2021.462256] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
An analytical method based on low-temperature partitioning extraction (LTPE) followed by high performance liquid chromatography coupled to triple quadrupole mass spectrometry analysis was developed and validated for the determination of eight multiclass antibiotics in wastewater. The analyzed target antibiotics included one β-lactam, two sulfonamides, three fluoroquinolones, one macrolide and one diaminopyrimidine. LTPE parameters such as sample pH, volume ratio between sample and extractor solvent, ultra-sonic extraction time, extraction tube material, solvent and volume to reconstitute the sample extracts, were optimized. Additionally, the influence of solids on extraction efficiency was evaluated. Quantification of the target antibiotics was performed by double consecutive injection method, without the use of a labeled compound, in order to correct matrix effects. The whole samples were analyzed, including, liquid and solid fractions of wastewater. The results revealed that the filtration step can underestimate the total antibiotics concentration, particularly to the hydrophobic compounds that have higher affinity for solids, indicating that the suspended wastewater particulate should not be neglected. The method detection limit ranged from 18.54 ng L-1 (trimethoprim) to 78.49 ng L-1 (ciprofloxacin). Intra-day precision of less than 12.3% was achieved. The recoveries values ranged from 13.9% (sulfadiazine) to 48.9% (erythromycin) in influent samples and from 19.1% (sulfadiazine) to 57.2% (ciprofloxacin) in effluent samples. The method was applied to the measurement of antibiotic residues in influent and effluent from wastewater treatment plants. The majority target antibiotics were detected in wastewater samples. Their concentrations ranged from 237 to 9553 ng L-1 in influent and from 212 to 1660 ng L-1 in effluent. This work provides new insights on the applicability of LTPE for antibiotic residues extraction from wastewater. In addition, the performed analysis highlights the importance of measuring total concentrations of analytes in whole sample.
Collapse
Affiliation(s)
| | - Mylena Gomes Freitas
- Department of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | | | - André Luis Correa de Barros
- Postgraduate Program in Environmental Engineering, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Marcelo Carlos Ribeiro
- Department of Statistics, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Ananda Lima Sanson
- Postgraduate Program in Environmental Engineering, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | | |
Collapse
|
3
|
Buta M, Hubeny J, Zieliński W, Harnisz M, Korzeniewska E. Sewage sludge in agriculture - the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops - a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112070. [PMID: 33652361 DOI: 10.1016/j.ecoenv.2021.112070] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 05/17/2023]
Abstract
In line with sustainable development principles and in order to combat climate change, which contributes to progressive soil depletion, various solutions are being sought to use treated sewage sludge as a soil amendment to improve soil quality and enrich arable soils with adequate amounts of biogenic compounds. This review article focuses on the effects of the agricultural use of biosolids on the environment. The article reviews the existing knowledge on selected emerging contaminants in treated sewage sludge and describes the impact of these pollutants on the environment and living organisms based on 183 publications selected from over 16,000 papers on related topics published over the last ten years. This study deals not only with chemical contaminants but also genetic determinants of resistance to these compounds. Current research has questioned the agricultural use of biosolids due to the presence of mutual interactions between antibiotics, heavy metals, the genetic determinants of resistance (antibiotic resistance genes - ARGs and heavy metal resistance genes - HMRGs) and non-steroidal anti-inflammatory drugs as well as the risks associated with their transfer to the environment. This study emphasizes the need for more extensive legal regulations that account for other pollutants of environmental concern (PEC), particularly in countries where sewage sludge is applied in agriculture most extensively. Future research should focus on more effective methods of eliminating PEC from sewage sludge, especially from the sludge that is used to fertilize agricultural land, because even small amounts of these micropollutants can have serious implications for the health and life of humans and animals.
Collapse
Affiliation(s)
- Martyna Buta
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland.
| |
Collapse
|
4
|
Chen S, Xie J, Wen Z. Removal of pharmaceutical and personal care products (PPCPs) from waterbody using a revolving algal biofilm (RAB) reactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124284. [PMID: 33139107 DOI: 10.1016/j.jhazmat.2020.124284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of Pharmaceutical and Personal Care Products (PPCPs) in the aquatic environment has raised concerns due to their accumulation in the ecosystem. This study aims to explore the feasibility of using a Revolving Algal Biofilm (RAB) reactor for PPCPs removal from waterbody. Five model PPCP compounds including ibuprofen, oxybenzone, triclosan, bisphenol A and N, N-diethyl-3-methylbenzamide (DEET) were mixed and added to the culture medium. It shows that PPCP removal efficiencies of the RAB reactor ranged from 70% to 100%. The degradation of PPCPs by the RAB reactor contributed > 90% PPCP removal while < 10% PPCPs removal was due to accumulation in the algal biomass. The nutrients removal performance of the RAB reactor was not affected by exposing to the PPCPs. The extracellular polysaccharides content of the biomass increased when exposing to PPCPs, while the extracellular proteins content remained constant. The Chl a content maintained constant in the PPCPs-treated biomass, but decreased in the biomass without PPCP treatment. It was also found that the microbial consortium of the RAB reactor was enriched with PPCPs degradation microorganisms with the progressing of feeding PPCPs. Collectively, this work demonstrates that the RAB system is a promising technology for removing PPCPs from wastewater.
Collapse
Affiliation(s)
- Si Chen
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Lane, Ames 50011, Iowa, USA
| | - Jiahui Xie
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Lane, Ames 50011, Iowa, USA
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Lane, Ames 50011, Iowa, USA; Gross-Wen Technologies Inc., 404 Main Street, Slater 50244, Iowa, USA.
| |
Collapse
|
5
|
Chu L, He W. Toxic metals in soil due to the land application of sewage sludge in China: Spatiotemporal variations and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143813. [PMID: 33248760 DOI: 10.1016/j.scitotenv.2020.143813] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Land application has become a promising method for recycling energy and resources from sewage sludge; however, the changes that occur to the toxic metal concentrations in soil following the application of sewage sludge have been poorly investigated in China. The present study attempted to investigate the spatiotemporal variations of toxic metal concentrations in soil due to the land application of sewage sludge and the critical influencing factors. Overall, the results indicated that an increasing ratio of sewage sludge for land application, the concentrated disposal measures, and a shallower soil may lead to elevated toxic metal concentrations in soil. The worst scenario simulation showed that the cumulative discharge of toxic metals through sludge disposal were ranked as: Zn > Cu > Cr > Pb > Ni > As > Cd > Hg. After sewage sludge was applied to previously unaffected soil, i.e., background soil, the toxic metal concentrations in the soil increased annually over the period from 2006 to 2017. However, with respect to the affected soil, the concentrations of Zn and Cu increased, whereas the concentrations of As, Cd, Cr, and Pb decreased annually over the period from 2006 to 2017. The results indicate that, in practice, the selection of soil for sewage sludge disposal depends on the background and actual concentrations of toxic metals in a soil as well as the stress caused by the amount of sewage sludge application to cultivated land. We propose to use sewage sludge containing relatively lower concentrations of metals than the disposal soil for land application. Furthermore, land application of sewage sludge should be suited to local conditions in the future sewage sludge management.
Collapse
Affiliation(s)
- Liquan Chu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei He
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
6
|
Tasca AL, Puccini M, Gori R, Corsi I, Galletti AMR, Vitolo S. Hydrothermal carbonization of sewage sludge: A critical analysis of process severity, hydrochar properties and environmental implications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 93:1-13. [PMID: 31235045 DOI: 10.1016/j.wasman.2019.05.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 05/24/2023]
Abstract
Hydrothermal carbonization (HTC) of sewage sludge reduces the waste volume and can be source of energy and valuable products. Furthermore, HTC offers several advantages over conventional dry-thermal pre-treatments, as no prior drying is requested, and the high quality of the char produced promotes applications as energy production and storage, wastewater remediation, and soil amendment. Relationships between char yields, physicochemical properties and process parameters are here analysed, with the aim to provide insight into the choice of the process severity required to fit the desired application. Moreover, presence and fate of heavy metals and organic contaminants are discussed. The highest reaction temperature is the main parameter affecting the physicochemical characteristics of the char produced, while the heating rate governs the heat mass transfer and the rate of intermediates formation. Depolymerization of the biomass results in a reduction of the oxygen to carbon ratio and, therefore, in augmented high heating values, further increased by deposition of 5-(hydroxymethyl)furfural. Recirculation of process water may enhance dehydration reactions and the deposition of degraded polymers, increasing dewaterability and yield, but field trials are recommended to assess the feasibility of this option. An overuse of chars for energy generation purposes would be deleterious for the environmental life cycle. Further research is encouraged to assess the pollutants abatement and their degradation pathways when incorporated in the carbonaceous product, to promote the application of hydrochars as soil amendment, as well as for environmental remediation purposes.
Collapse
Affiliation(s)
- Andrea Luca Tasca
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy.
| | - Riccardo Gori
- Department of Civil & Environmental Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Strada Laterina 8, 53100 Siena, Italy
| | | | - Sandra Vitolo
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| |
Collapse
|
7
|
Bożym M, Siemiątkowski G. Characterization of composted sewage sludge during the maturation process: a pilot scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34332-34342. [PMID: 30298354 PMCID: PMC6245001 DOI: 10.1007/s11356-018-3335-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/25/2018] [Indexed: 05/07/2023]
Abstract
This paper determines the impact of the maturation process of composted sewage sludge on the quality of the final product and assesses the stabilization effect. The samples of composted sewage sludge were taken from a wastewater treatment plant located in Pomerania in northern Poland. The sewage sludge was composted in an open windrow composting plant with the addition of straw and wood chips in the turning windrow. The aeration of the sewage sludge mixture was conducted based on two methods. The first phase (intensive degradation phase of 6 to 8 weeks) was characterized by frequently turning; the second phase for maturation used aeration channels (2 to 3 months). In three sampling campaigns samples were taken from the same windrow after 2 (no. 1), 8 (no. 2), and 12 weeks (no. 3) of maturation. Fresh samples were used for analyzing the stabilization parameter as static respiration activity (AT4). Furthermore, the values of pH, organic matter (OM), total organic carbon (TOC), elementary composition, nutrients, total content, and mobile forms of heavy metals were analyzed in the compost samples. A significant decrease was found in the stabilization parameter (AT4) during the maturation of tested materials. In turn, no significant differences were found in the elementary composition. The concentration of most metals increased in the final product. The total content of heavy metals in the final product did not exceed the limit values for the agricultural use of sewage sludge, compost from municipal waste, and for organic fertilizers. There were no significant changes in the percentage of bioavailable and mobile forms of heavy metals during compost maturation. Zinc was characterized by the highest level of mobile and bioavailable forms, which may cause bioaccumulation after the fertilization of soil. The study has shown that the process of maturation of compost from sewage sludge not affects changes in the content of heavy metal forms. The scope of this study has been planned on a wider scale for different variants of sewage sludge composting, in order to evaluate the process.
Collapse
Affiliation(s)
- Marta Bożym
- Opole University of Technology, Proszkowska 76 street, 45-758, Opole, Poland.
| | - Grzegorz Siemiątkowski
- Building Materials Engineering Division in Opole, Institute of Ceramics and Building Materials, Oswiecimska 21 street, 45-641, Opole, Poland
| |
Collapse
|
8
|
Ezzariai A, Riboul D, Lacroix MZ, Barret M, El Fels L, Merlina G, Bousquet-Melou A, Patureau D, Pinelli E, Hafidi M. A pressurized liquid extraction approach followed by standard addition method and UPLC-MS/MS for a fast multiclass determination of antibiotics in a complex matrix. CHEMOSPHERE 2018; 211:893-902. [PMID: 30119021 DOI: 10.1016/j.chemosphere.2018.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
In this work a fast analytical method for the determination of macrolides, tetracyclines and fluoroquinolones in a compost originating from a mixture of sewage sludge, palm waste and grass was developed by ultra-high performance liquid chromatography coupled to mass spectrometry (U-HPLC/MS). Antibiotics were extracted from compost by using the accelerated solvent extraction (ASE). The chromatographic separation was carried out on a T3 Cortecs C18 column using a mobile phase gradient mixture of water acidified with 1% of formic acid and acetonitrile. Recoveries of 24-30%, 53-93%, 33-57%, 69-135% and 100-171% were obtained for roxithromycin (ROX), chlortetracycline (CTC), oxytetracycline (OTC), enrofloxacin (ENR) and ciprofloxacin (CIP), respectively. As the most part of antibiotics showed significant matrix effect (ME), the method was validated using the standard addition method (SAM) to correct the observed ME. Instrumental variation, of LC/MS system, showed that 93.75% of the relative standard deviation (RSD %) are below 15%, although the organic load of extracts. This analytical method was applied to assess the fate of antibiotics during composting. Two composting experiments were conducted separately after spiking sludge at 2 different concentrations levels. The resulting elimination rates were of 52-76, 69-100, 100 and 24-50% for ROX, CTC, OTC and CIP, respectively. These results suggest that composting process contributes to the removal of residuals concentrations of macrolides and tetracyclines while the fluoroquinolones persist in the final compost product.
Collapse
Affiliation(s)
- Amine Ezzariai
- Laboratoire Ecologie et Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco; EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - David Riboul
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Marlène Z Lacroix
- Higher Institute of Nursing Professions and Health Techniques, Marrakech-Safi, Morocco
| | - Maialen Barret
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Loubna El Fels
- Laboratoire Ecologie et Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Marrakech-Safi, Morocco
| | - Georges Merlina
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | | | | | - Eric Pinelli
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Mohamed Hafidi
- Laboratoire Ecologie et Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco; Agrobiosciences & Fertlizers Program, University Mohammed IV Polytechnic (UM6P), Benguerir, Morocco.
| |
Collapse
|
9
|
Sjoeholm KK, Schmidt SN, Jahnke A, Svensmark B, Mayer P. Equilibrium sampling reveals increasing thermodynamic potential of polycyclic aromatic hydrocarbons during sewage sludge digestion. CHEMOSPHERE 2018; 207:421-429. [PMID: 29807341 DOI: 10.1016/j.chemosphere.2018.05.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The reuse of digested sludge from wastewater treatment plants (WWTPs) as soil fertilizer poses a risk for contamination of soil and water environments. The present study provides a new approach for investigating the exposure of hydrophobic organic chemicals in sewage sludge. The methodology of equilibrium sampling with multiple thicknesses of silicone was successfully validated and applied to complex sludge matrices. Polycyclic aromatic hydrocarbon (PAH) concentrations in silicone (Csilicone) were determined and compared across four WWTPs. Activity ratios (ARs), defined as Csilicone at equilibrium with digested sludge (final product) over Csilicone at equilibrium with secondary sludge (intermediate product), were in the range 0.85-20 with all except one AR>1. These ARs thus revealed increased thermodynamic potential of both parent and alkylated PAHs in digested sludge compared with secondary sludge, and thereby higher exposure of PAHs in sludge after digestion than before digestion. This observation can be explained by the concept of "solvent depletion" as organic matter decreased by a factor of 1.3 during digestion, resulting in reduced sorptive capacity and increased freely dissolved concentrations (Cfree). The PAHs with logKow > 6 had ARs close to 1.3, whereas PAHs with logKow < 6 showed higher ARs than the organic matter decrease factor of 1.3. Cfree in digested sludge were higher than reported in rural soil and generally consistent with levels reported for Baltic Sea sediment.
Collapse
Affiliation(s)
- Karina K Sjoeholm
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, DK-2800, Kgs, Lyngby, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
| | - Stine N Schmidt
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, DK-2800, Kgs, Lyngby, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
| | - Annika Jahnke
- Department of Cell Toxicology, Helmholtz Center for Environmental Research GmbH - UFZ, Permoserstraβe 15, DE-04318, Leipzig, Germany.
| | - Bo Svensmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, DK-2800, Kgs, Lyngby, Denmark.
| |
Collapse
|