1
|
Shen S, Chen R, Li X, Wang J, Yu S, Li J, Dong F. Regulating the Selectivity of Nitrate Photoreduction for Purification or Ammonia Production by Cooperating Oxidative Half-Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7653-7661. [PMID: 38635861 DOI: 10.1021/acs.est.3c09774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The removal and conversion of nitrate (NO3-) from wastewater has become an important environmental and health topic. The NO3- can be reduced to nontoxic nitrogen (N2) for environmental remediation or ammonia (NH3) for recovery, in which the tailoring of the selectivity is greatly challenging. Here, by construction of the CuOx@TiO2 photocatalyst, the NO3- conversion efficiency is enhanced to ∼100%. Moreover, the precise regulation of selectivity to NH3 (∼100%) or N2 (92.67%) is accomplished by the synergy of cooperative redox reactions. It is identified that the selectivity of the NO3- photoreduction is determined by the combination of different oxidative reactions. The key roles of intermediates and reactive radicals are revealed by comprehensive in situ characterizations, providing direct evidence for the regulated selectivity of the NO3- photoreduction. Different active radicals are produced by the interaction of oxidative reactants and light-generated holes. Specifically, the introduction of CH3CHO as the oxidative reactant results in the generation of formate radicals, which drives selective NO3- reduction into N2 for its remediation. The alkyl radicals, contributed to by the (CH2OH)2 oxidation, facilitate the deep reduction of NO3- to NH3 for its upcycling. This work provides a technological basis for radical-directed NO3- reduction for its purification and resource recovery.
Collapse
Affiliation(s)
- Shujie Shen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xin Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shuangshuang Yu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
2
|
Zhong W, Fu W, Sun S, Wang L, Liu H, Wang J. Characterization of TiO 2 and an as-prepared TiO 2/SiO 2 composite and their photocatalytic performance for the reduction of low-concentration N-NO 3- in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40585-40598. [PMID: 35084675 DOI: 10.1007/s11356-022-18793-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Excessive N-NO3- water pollution has become a widespread and serious problem that threatens human and ecosystem health. Here, a TiO2/SiO2 composite photocatalyst was prepared via the sol-gel/hydrothermal method. TiO2 and TiO2/SiO2 were characterized by X-ray diffraction (XRD), UV-Vis differential reflectance spectroscopy (DRS), Fourier infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Afterward, the photocatalytic performance of TiO2 and TiO2/SiO2 to reduce low nitrate concentrations (30 mgN L-1) under UV light was evaluated and the effects of different factors on this process were investigated, after which the reaction conditions were optimized. Removal rates of up to 99.93% were achieved at a hole scavenger (formic acid) concentration of 0.6 mL L-1, a CO2 flow rate of 0.1 m3 h-1, and a TiO2 concentration of 0.9 g L-1. In contrast, TiO2/SiO2 at a 1.4 g L-1 concentration and a TiO2 load rate of 40% achieved a removal rate of 83.48%, but with more than 98% of nitrogen generation rate. NO2- and NH4+ were the minor products, whereas N2 was the main product.
Collapse
Affiliation(s)
- Wanzhen Zhong
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, China
| | - Weizhang Fu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lingsheng Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Huaihao Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Junzhi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, China
| |
Collapse
|
3
|
Development and Validation of a LC-MS/MS Method for Determination of Multi-Class Antibiotic Residues in Aquaculture and River Waters, and Photocatalytic Degradation of Antibiotics by TiO2 Nanomaterials. Catalysts 2020. [DOI: 10.3390/catal10030356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study presents a multi-residue method for simultaneous qualitative and quantitative analysis of eight antibiotics from some common classes, including beta-lactam, tetracyclines, lincosamides, glycopeptides, and sulfonamides in 39 aquaculture and river water samples from the Mekong Delta (Vietnam) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). As a result, doxycycline (DXC), oxytetracycline (OTC), lincomycin (LCM), sulfamethoxazole (SMX), and sulfamethazine (SMZ) were detected with high frequency over 65% and an average concentration of 22.6–76.8 ng·mL−1. The result suggests that antibiotic residues in the aquaculture and river waters are considered as an emerging environmental problem of the region. To address this issue, we fabricated the well-defined TiO2 nanotube arrays (TNAs) and nanowires on nanotube arrays (TNWs/TNAs) using the anodization method. The TNAs had an inner tube diameter of ~95 nm and a wall thickness of ~25 nm. Meanwhile, the TNWs/TNAs had a layer of TiO2 nanowires with a length of ~6 µm partially covering the TNAs. In addition, both TNAs and TNWs/TNAs had pure anatase phase TiO2 with (101) and (112) dominant preferred orientations. Moreover, the TNAs and TNWs/TNAs effectively and rapidly degraded the antibiotic residues under UV-VIS irradiation at 120 mW/cm2 and obtained over 95% removal at 20 min. Indeed, the photocatalytic reaction rate constants (k) were in the range of 0.14–0.36 min−1 for TNAs, and 0.15–0.38 min−1 for TNWs/TNAs. Noticeably, the k values of TNWs/TNAs were slightly higher than those of TNAs for LCM, DXC, OTC, SMZ, and SMX that could be attributed to the larger surface area of TNWs/TNAs than TNAs when TNWs/TNAs had an additional ~6μm TNWs top layer.
Collapse
|
4
|
Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Top Curr Chem (Cham) 2019; 378:7. [DOI: 10.1007/s41061-019-0272-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
|
5
|
Abstract
It has been often reported that an efficient and green photocatalytic dissociation of water under irradiated semiconductors likely represents the most important goal for modern chemistry. Despite decades of intensive work on this topic, the efficiency of the water photolytic process under irradiated semiconductors is far from reaching significant photocatalytic efficiency. The use of a sacrificial agent as hole scavenger dramatically increases the hydrogen production rate and might represent the classic “kill two birds with one stone”: on the one hand, the production of hydrogen, then usable as energy carrier, on the other, the treatment of water for the abatement of pollutants used as sacrificial agents. Among metal oxides, TiO2 has a central role due to its versatility and inexpensiveness that allows an extended applicability in several scientific and technological fields. In this review we focus on the hydrogen production on irradiated TiO2 and its fundamental and environmental implications.
Collapse
|
6
|
Cui P, Hu Y, Zheng M, Wei C. Enhancement of visible-light photocatalytic activities of BiVO 4 coupled with g-C 3N 4 prepared using different precursors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32466-32477. [PMID: 30238256 DOI: 10.1007/s11356-018-3119-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Graphitic-like carbon nitride (g-C3N4) photocatalyst was synthesized by a facile chemical pyrolysis method, which was built on the self-condensation of different precursors to generate g-C3N4, e.g., melamine, urea, and thiocarbamide. And the different precursors produced a great influence on the photocatalytic activities of g-C3N4. Heterojunctions of g-C3N4 and BiVO4 were synthesized using a facile solvent evaporation method. The formation of BiVO4/g-C3N4 composites were confirmed by XRD, FT-IR, SEM, XPS, and UV-Vis DRS. The photocatalytic activities for RhB degradation were evaluated under visible-light irradiation. The photocatalytic activity of g-C3N4 prepared by urea was higher than that of g-C3N4 prepared by melamine and thiocarbamide, which was attributed to its favorable dispersibility, larger specific surface area, and higher oxidation capacity. The heterojunction composites exhibited higher photocatalytic activity than pure g-C3N4 or BiVO4. The results showed obvious removal efficiency for RhB, and the optimal sample with a BiVO4 content of 10% exhibited higher efficiency than pure g-C3N4 and BiVO4, and 10 wt%BiVO4/CN-U showed the highest photocatalytic activity. The enhanced photocatalytic activity of BiVO4/g-C3N4 composite can be attributed to the intimate coupling between the two host substrates, resulting in an efficient charge separation.
Collapse
Affiliation(s)
- Peipei Cui
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yun Hu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
| | - Mengmeng Zheng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Chaohai Wei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
7
|
Khalaj M, Kamali M, Khodaparast Z, Jahanshahi A. Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:813-824. [PMID: 29197796 DOI: 10.1016/j.ecoenv.2017.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects.
Collapse
Affiliation(s)
- Mohammadreza Khalaj
- Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mohammadreza Kamali
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Zahra Khodaparast
- Department of Biology, Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Akram Jahanshahi
- Department of Economics, Management, Industrial Engineering and Tourism, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Xu P, Huang S, Lv Y, Chen Y, Liu M, Fan H. Surfactant-assisted hydrothermal synthesis of rGO/SnIn4S8 nanosheets and their application in complete removal of Cr(vi). RSC Adv 2018; 8:5749-5759. [PMID: 35539578 PMCID: PMC9078249 DOI: 10.1039/c7ra12863k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
To solve the problem of contamination of hexavalent chromium (Cr(vi)), visible-light-driven graphene-based ternary metal chalcogenide nanosheets (rGO/SnIn4S8) were synthesized via a one-pot surfactant-assisted hydrothermal method for the photoreduction of Cr(vi). Characterizations demonstrated that SnIn4S8 nanosheets were uniformly distributed on the surface of rGO and the as-synthesized nanosheets exhibited excellent photocatalytic activity under visible light. In addition, the effects of pH, concentration of critic acid, holes and electron scavengers on the reduction of Cr(vi) were systematically investigated. It was found that 50 mg L−1 of Cr(vi) could be completely removed within 30 min at pH 2 when citric acid served as a hole scavenger. Kinetic studies showed that the photocatalytic reduction of Cr(vi) processes obeyed the pseudo first order model. Further study indicated that the Cr(iii) species was immediately adsorbed onto the surface of the rGO/SnIn4S8 nanosheets after photocatalytic reduction of Cr(vi). Additionally, recycling results suggested that rGO/SnIn4S8 nanosheets possessed high recycle ability and stability after repeated use (5 times). This effective and promising work might provide a new strategy for the photoreduction of Cr(vi) and complete removal of chromium from effluent through the novel photocatalyst rGO/SnIn4S8. Fabrication of visible-light-responsive photocatalyst (rGO/SnIn4S8) for photoreduction of Cr(vi) and adsorption of Cr(iii).![]()
Collapse
Affiliation(s)
- Pingfan Xu
- National Engineering Laboratory for Clean Technology of Leather Manufacture
- Sichuan University
- Chengdu 610065
- China
| | - Siyi Huang
- College of Environment & Resource
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Yuancai Lv
- College of Environment & Resource
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Yi Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture
- Sichuan University
- Chengdu 610065
- China
- Light Industry, Textile and Food Institution
| | - Minghua Liu
- College of Environment & Resource
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Haojun Fan
- National Engineering Laboratory for Clean Technology of Leather Manufacture
- Sichuan University
- Chengdu 610065
- China
- Light Industry, Textile and Food Institution
| |
Collapse
|