1
|
Mohd Hanif N, Limi Hawari NSS, Othman M, Abd Hamid HH, Ahamad F, Uning R, Ooi MCG, Wahab MIA, Sahani M, Latif MT. Ambient volatile organic compounds in tropical environments: Potential sources, composition and impacts - A review. CHEMOSPHERE 2021; 285:131355. [PMID: 34710962 DOI: 10.1016/j.chemosphere.2021.131355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) are widely recognized to affect the environment and human health. This review provides a comprehensive presentation of the types and levels of VOCs, their sources and potential effects on human health and the environment based on past and current observations made at tropical sites. Isoprene was found to be the dominant biogenic VOC in the tropics. Tropical broad leaf evergreen trees are the main emitters of isoprene, making up more than 70% of the total emissions. The VOCs found in the tropical remote marine atmosphere included isoprene (>100 ppt), dimethyl sulfide (≤100 ppt) and halocarbons, i.e. bromoform (≤8.4 ppt), dibromomethane (≤2.7 ppt) and dibromochloromethane (≤1.6 ppt). VOCs such as benzene, toluene, ethylbenzene and xylene (BTEX) are the most monitored anthropogenic VOCs and are present mainly due to motor vehicles emissions. Additionally, biomass burning contributes to anthropogenic VOCs, especially high molecular weight VOCs, e.g. methanol and acetonitrile. The relative contributions of VOC species to ozone are determined through the level of the Ozone Formation Potential (OFP) of different species. Emissions of VOCs (e.g. very short-lived halogenated gases) in the tropics are capable of contributing to stratospheric ozone depletion. BTEX has been identified as the main types of VOCs that are associated with the cancer risk in urban areas in tropical regions. Finally, future studies related to VOCs in the tropics and their associated health risks are needed to address these concerns.
Collapse
Affiliation(s)
- Norfazrin Mohd Hanif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Nor Syamimi Sufiera Limi Hawari
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Murnira Othman
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Fatimah Ahamad
- AQ Expert Solutions, Jalan Dato Muda Linggi, Seremban, 70100, Negeri Sembilan, Malaysia
| | - Royston Uning
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Maggie Chel Gee Ooi
- Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad Ikram A Wahab
- Environmental Health and Industrial Safety Program, Center for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Mazrura Sahani
- Environmental Health and Industrial Safety Program, Center for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Abstract
Palm oil production is a key industry in tropical regions, driven by the demand for affordable vegetable oil. Palm oil production has been increasing by 9% every year, mostly due to expanding biofuel markets. However, the oil palm industry has been associated with key environmental issues, such as deforestation, peatland exploitation and biomass burning that release carbon dioxide (CO2) into the atmosphere, leading to climate change. This review therefore aims to discuss the characteristics of oil palm plantations and their impacts, especially CO2 emissions in the Southeast Asian region. The tropical climate and soil in Southeast Asian countries, such as Malaysia and Indonesia, are very suitable for growing oil palm trees. However, due to the scarcity of available plantation areas deforestation occurs, especially in peat swamp areas. Total carbon losses from both biomass and peat due to the conversion of tropical virgin peat swamp forest into oil palm plantations are estimated to be around 427.2 ± 90.7 t C ha−1 and 17.1 ± 3.6 t C ha−1 year−1, respectively. Even though measured CO2 fluxes have shown that overall, oil palm plantation CO2 emissions are about one to two times higher than other major crops, the ability of oil palms to absorb CO2 (a net of 64 tons of CO2 per hectare each year) and produce around 18 tons of oxygen per hectare per year is one of the main advantages of this crop. Since the oil palm industry plays a crucial role in the socio-economic development of Southeast Asian countries, sustainable and environmentally friendly practices would provide economic benefits while minimizing environmental impacts. A comprehensive review of all existing oil plantation procedures is needed to ensure that this high yielding crop has highly competitive environmental benefits.
Collapse
|
3
|
Mohamad Nor N, Hashim NHF, Quay DHX, Mahadi NM, Illias RM, Abu Bakar FD, Murad AMA. Functional and structural analyses of an expansin-like protein from the antarctic yeast Glaciozyma antarctica PI12 reveal strategies of nutrient scavenging in the sea ice environment. Int J Biol Macromol 2020; 144:231-241. [DOI: 10.1016/j.ijbiomac.2019.12.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
|