1
|
Nos D, Montalvo T, Cortés-Francisco N, Figuerola J, Aymí R, Giménez J, Solé M, Navarro J. Sources of persistent organic pollutants and their physiological effects on opportunistic urban gulls. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133129. [PMID: 38056272 DOI: 10.1016/j.jhazmat.2023.133129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Urbanization is associated with drastic shifts in biodiversity. While some species thrive in urban areas, the impact of inhabiting these human-altered environments on organism physiology remains understudied. We investigated how exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) affects the physiology of yellow-legged gulls (Larus michahellis) inhabiting a densely populated, industrialized city. We analyzed blood samples from 50 gulls (20 immatures and 30 adults) and assessed 27 physiological parameters and biomarkers related to xenobiotic protection, health, and feeding habits in these same individuals. We also tracked the movements of 25 gulls (15 immatures and 10 adults) to identify potential sources of persistent organic pollutants (POPs). Both adult and immature gulls primarily inhabited urban areas, followed by marine habitats. Immature gulls spent more time in freshwater, landfills, and agricultural areas. Bioaccumulated ΣPCB (median = 92.7 ng g-1 ww, 1.86-592) and ΣPBDE (median = 1.44 ng g-1 ww, 0.022-9.58) showed no significant differences between age and sex groups. Notably, immature males exhibited the highest correlations with POP concentrations, particularly with the activity of carboxylesterases (CEs), suggesting a higher sensitivity than adults. These findings highlight the potential of plasmatic CEs in immature yellow-legged gulls as effective tracers of POPs exposure and effects, offering insights into the anthropogenic impacts on urban biodiversity.
Collapse
Affiliation(s)
- David Nos
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Tomas Montalvo
- Agència de Salut Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau - IIB St. Pau, Barcelona, Spain
| | - Núria Cortés-Francisco
- Agència de Salut Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau - IIB St. Pau, Barcelona, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana - CSIC, Avenida Américo Vespucio 26, 41092 Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Raül Aymí
- Institut Català d'Ornitologia, Museu de Ciències Naturals de Barcelona, Pl. Leonardo da Vinci, 4-5, 08019, Barcelona, Spain
| | - Joan Giménez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Montserrat Solé
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| |
Collapse
|
2
|
Solé M, Figueres E, Mañanós E, Rojo-Solís C, García-Párraga D. Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120149. [PMID: 36115493 DOI: 10.1016/j.envpol.2022.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
A total of 164 blood samples from 16 clinically healthy bottlenose dolphins (Tursiops truncatus), were obtained from an aquarium in Spain between 2019 and 2020, as part of their preventive medicine protocol. In addition to conventional haematological and biochemical analyses, plasmatic B-esterase activities were characterised to determine the potential application of such analyses in wild counterparts. The hydrolysis rates for the substrates of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) activity in plasma were measured, the last using two commercial substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB). Activity rates (mean ± SEM in nmol/min/mL plasma) were (in descending order): AChE (125.6 ± 3.8), pNPB-CE (65.0 ± 2.2), pNPA-CE (49.7 ± 1.1) and BuChE (12.8 ± 1.3). These values for dolphins are reported in here for the first time in this species. Additionally, the in vitro sensitivity of two B-esterases (AChE and pNPB-CE) to chemicals of environmental concern was determined, and the protective role of plasmatic albumin assessed. Out of the B-esterases measured in plasma of dolphin, AChE activity was more responsive in vitro to pesticides, while CEs had a low response to plastic additives, likely due to the protective presence of albumin. However, the clear in vitro interaction of these environmental chemicals with purified AChE from electric eels and recombinant human hCEs (hCE1 and hCE2) and albumin, predicts their impact in other tissues that require in vivo validation. A relationship between esterase-like activities and health parameters in terrestrial mammals has already been established. Thus, B-esterase measures could be easily included in marine mammal health assessment protocols for dolphins as well, once the relationship between these measures and the animal's fitness has been established.
Collapse
Affiliation(s)
- M Solé
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain.
| | - E Figueres
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain
| | - E Mañanós
- Institute of Aquaculture Torre La Sal (IATS),-CSIC, 12595, Cabanes, Castellón, Spain
| | - C Rojo-Solís
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| | - D García-Párraga
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| |
Collapse
|
3
|
Bjedov D, Mikuška A, Lackmann C, Begović L, Mikuška T, Velki M. Application of Non-Destructive Methods: Biomarker Assays in Blood of White Stork ( Ciconia ciconia) Nestlings. Animals (Basel) 2021; 11:2341. [PMID: 34438798 PMCID: PMC8388685 DOI: 10.3390/ani11082341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 01/31/2023] Open
Abstract
White stork (Ciconia ciconia) nestlings can provide quantitative information on the quality of the surrounding environment by indicating the presence of pollutants, as they depend on locally foraged food. This study represents the first comparison of biomarkers in two fractions of white stork nestling blood: plasma and S9 (the post-mitochondrial fraction). The aim of this study was to evaluate acetylcholinesterase (AChE), carboxylesterase (CES), glutathione S-transferase (GST), and glutathione reductase (GR), as well as to establish a novel fluorescence-based method for glutathione (GSH) and reactive oxygen species (ROS) detection in plasma and S9. Considering the enzymatic biomarkers, lower variability in plasma was detected only for AChE, as CES, GST, and GR had lower variability in S9. Enzyme activity was higher in plasma for AChE, CES, and GST, while GR had higher activity in S9. Regarding the fluorescence-based method, lower variability was detected in plasma for GSH and ROS, although higher GSH detection was reported in S9, and higher ROS was detected in plasma. The present study indicated valuable differences by successfully establishing protocols for biomarker measurement in plasma and S9 based on variability, enzyme activity, and fluorescence. For a better understanding of the environmental effects on nestlings' physiological condition, biomarkers can be measured in plasma and S9.
Collapse
Affiliation(s)
- Dora Bjedov
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.B.); (A.M.); (L.B.)
| | - Alma Mikuška
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.B.); (A.M.); (L.B.)
| | - Carina Lackmann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.B.); (A.M.); (L.B.)
| | - Tibor Mikuška
- Croatian Society for Birds and Nature Protection, 31000 Osijek, Croatia;
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.B.); (A.M.); (L.B.)
| |
Collapse
|