1
|
AnnaDurai KS, Chandrasekaran N, Velraja S, Hikku GS, Parvathi VD. Essential oil nanoemulsion: An emerging eco-friendly strategy towards mosquito control. Acta Trop 2024; 257:107290. [PMID: 38909722 DOI: 10.1016/j.actatropica.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Mosquito borne diseases are impeding to human health due to their uncontrolled proliferation. Various commercial insecticides currently used become ineffective due to the resistance acquired by mosquitoes. It is necessary and a priority to combat mosquito population. Plant-based products are gaining interest over the past few decades due to their environment friendliness and their effectiveness in controlling mosquitoes along with their lack of toxicity. Essential oil nanoemulsions are found to be highly effective when compared to their bulk counterparts. Due to their nano size, they can effectively interact and yield 100 % mortality with the mosquito larvae and encounter with minimal concentrations. This is the main advantage of the nano-sized particles due to which they find application in various disciplines and have also received the attention of researchers globally. There are various components present in essential oils that have been analysed using GC-MS. These findings reflect the challenge to mosquitoes to gain resistance against each component and therefore it requires time. Commercially used repellants are synthesised using materials like DEET are not advisable for topical application on human skin and essential oil nanoemulsions could be an ideal non toxic candidate that can be used against mosquito adults and larvae. However, there are other synthesis, optimisation parameters, and toxicity towards non-target organisms that have to be taken into account when essential oil nanoemulsions are considered for commercial applications. Here we review the strategies used by the nanoemulsions against the mosquito population. Apart from the positive effects, their minor drawbacks also have to be scrutinised in the future.
Collapse
Affiliation(s)
- Kavitha Sri AnnaDurai
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai-600116, Tamil Nadu, India
| | | | - Supriya Velraja
- Department of Clinical Nutrition, Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai 600116, Tamil Nadu, India
| | - Gnanadhas Sobhin Hikku
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamilnadu, India; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai-600116, Tamil Nadu, India.
| |
Collapse
|
2
|
Unni PS, Kirupaanntha-Rajan P, Vasantha-Srinivasan P, Srinivasan S, Han YS, Karthi S, Radhakrishnan N, Park KB, Rajagopal R, Senthil-Nathan S. Chemical composition and toxicity of commercial Mentha spicata and Eucalyptus citriodora essential oils on Culex quinquefasciatus and non-target insects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21610-21631. [PMID: 38393552 DOI: 10.1007/s11356-024-32249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Current vector control strategies based on synthetic chemicals are not eco-friendly against non-target organisms; hence, alternative approaches are highly required. Commercially purchased oil of Mentha spicata (Spearmint) and Eucalyptus citriodora (Citriodora) were examined against the medical pest Cx. quinquefasciatus (Say) and their non-toxicity on the aquatic species was evaluated. Chemical screening with gas chromatography coupled with mass spectrometry (GC-MS) analysis revealed a total of 14 and 11 compounds in Citriodora and Spearmint oils, respectively, with the highest peak (%) at carvone (70.44%) and isopulegol (30.4%). The larvicidal activity on the fourth instar larvae of Cx. quinquefasciatus showed dose-dependent mortality and significance at a 100 ppm concentration 48 h post-treatment with Citriodora (76.4%, P ≤ 0.001) and Spearmint (100%, P ≤ 0.001). Additionally, the photomicrograph of the fourth instar larvae revealed significant physical abnormalities in the head and midgut tissues post-exposure to Spearmint and Citriodora oils. Moreover, the histological assay revealed severe damage in the epithelial cells and gut lumen 2 to 24 h post-treatment. The repellency percentage of adult Culex mosquitoes was prominent across both oils at 150 ppm 210 min post-exposure. Non-target toxicity on the aquatic predator showed both essential oils (Spearmint oil (17.2%) and Citriodora oil (15.2%)) are safer at the maximum treatment (200 ppm) compared to temephos (75.4% at 1 ppm). The in silico screening of phyto-compounds derived by both essential oils with BeeTox (online server) showed no contact toxicity to the honey bee Apis mellifera. Overall, the present research revealed that Spearmint and Citriodora essential oils and their active phyto-compounds were toxic to Cx. quinquefasciatus and harmless to the aquatic predator and honey bee.
Collapse
Affiliation(s)
- Pavana Sivadasan Unni
- Division of Bio-Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tirunelveli, Tamil Nadu, India
| | - Pandiyan Kirupaanntha-Rajan
- Division of Bio-Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | | | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sengodan Karthi
- Department of Entomology, University of Kentucky, Lexington, KY, 40503, USA
| | - Narayanaswamy Radhakrishnan
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - Ki Beom Park
- Research & Development Centre, Invirustech Co., Inc, Gwangju, 61222, Korea
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sengottayan Senthil-Nathan
- Division of Bio-Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tirunelveli, Tamil Nadu, India.
| |
Collapse
|
3
|
Yousefpoor Y, Esnaashari SS, Baharifar H, Mehrabi M, Amani A. Current challenges ahead in preparation, characterization, and pharmaceutical applications of nanoemulsions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1920. [PMID: 37558229 DOI: 10.1002/wnan.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023]
Abstract
Nanoemulsions (NEs) are emulsions with particle size of less than around 100 nm. Reviewing the literature, several reports are available on NEs, including preparation, characterization, and applications of them. This review aims to brief challenges that researchers or formulators may encounter when working with NEs. For instance, when selecting NE components and identifying their concentrations, stability and safety of the preparation should be evaluated. When preparing an NE, issues over scale-up of the preparation as well as possible effects of the preparation process on the active ingredient need to be considered. When characterizing the NEs, the two major concerns are accuracy of the method and accessibility of the characterizing instrument. Also a highly efficient NE for clinical use to deliver the active ingredient to the target tissue with maximum safety profile is commonly sought. Throughout the review we also have tried to suggest approaches to overcome the challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yaser Yousefpoor
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical, Torbat Heydariyeh, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
4
|
Radice M, Durofil A, Buzzi R, Baldini E, Martínez AP, Scalvenzi L, Manfredini S. Alpha-Phellandrene and Alpha-Phellandrene-Rich Essential Oils: A Systematic Review of Biological Activities, Pharmaceutical and Food Applications. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101602. [PMID: 36295037 PMCID: PMC9605662 DOI: 10.3390/life12101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022]
Abstract
Alpha-phellandrene is a very common cyclic monoterpene found in several EOs, which shows extensive biological activities. Therefore, the main focus of the present systematic review was to provide a comprehensive and critical analysis of the state of the art regarding its biological activities and pharmaceutical and food applications. In addition, the study identified essential oils rich in alpha-phellandrene and summarized their main biological activities as a preliminary screening to encourage subsequent studies on their single components. With this review, we selected and critically analyzed 99 papers, using the following bibliographic databases: PubMed, SciELO, Wiley and WOS, on 8 July 2022. Data were independently extracted by four authors of this work, selecting those studies which reported the keyword "alpha-phellandrene" in the title and/or the abstract, and avoiding those in which there was not a clear correlation between the molecule and its biological activities and/or a specific concentration from its source. Duplication data were removed in the final article. Many essential oils have significant amounts of alpha-phellandrene, and the species Anethum graveolens and Foeniculum vulgare are frequently cited. Some studies on the above-mentioned species show high alpha-phellandrene amounts up to 82.1%. There were 12 studies on alpha-phellandrene as a pure molecule showed promising biological functions, including antitumoral, antinociceptive, larvicidal and insecticidal activities. There were 87 research works on EOs rich in alpha-phellandrene, which were summarized with a focus on additional data concerning potential biological activities. We believe this data is a useful starting point to start new research on the pure molecule, and, in particular, to distinguish between the synergistic effects of the different components of the OEs and those due to alpha-phellandrene itself. Toxicological data are still lacking, requiring further investigation on the threshold values to distinguish the boundary between beneficial and toxic effects, i.e., mutagenic, carcinogenic and allergenic. All these findings offer inspiration for potential applications of alpha-phellandrene as a new biopesticide, antimicrobial and antitumoral agent. In particular, we believe our work is of interest as a starting point for further studies on the food application of alpha-phellandrene.
Collapse
Affiliation(s)
- Matteo Radice
- Faculty of Earth Sciences, Universidad Estatal Amazónica, Puyo 160150, Ecuador
- Correspondence:
| | - Andrea Durofil
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | | | - Laura Scalvenzi
- Faculty of Earth Sciences, Universidad Estatal Amazónica, Puyo 160150, Ecuador
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Shi J, Yang Y, Zhou X, Zhao L, Li X, Yusuf A, Hosseini MSMZ, Sefidkon F, Hu X. The current status of old traditional medicine introduced from Persia to China. Front Pharmacol 2022; 13:953352. [PMID: 36188609 PMCID: PMC9515588 DOI: 10.3389/fphar.2022.953352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) includes over ten thousand herbal medicines, some of which were introduced from outside countries and territories. The Silk Road enabled the exchange of merchandise such as teas, silks, carpets, and medicines between the East and West of the Eurasia continent. During this time, the ‘Compendium of Materia Medica’ (CMM) was composed by a traditional medicine practitioner, Shizhen Li (1,518–1,593) of the Ming Dynasty. This epoch-making masterpiece collected knowledge of traditional medical materials and treatments in China from the 16th century and before in utmost detail, including the origin where a material was obtained. Of 1892 medical materials from the CMM, 46 came from Persia (now Iran). In this study, the basic information of these 46 materials, including the time of introduction, the medicinal value in TCM theory, together with the current status of these medicines in China and Iran, are summarized. It is found that 20 herbs and four stones out of the 46 materials are registered as medicinal materials in the latest China Pharmacopoeia. Now most of these herbs and stones are distributed in China or replacements are available but saffron, ferula, myrrh, and olibanum are still highly dependent on imports. This study may contribute to the further development, exchange, and internationalization of traditional medicine of various backgrounds in the world, given the barriers of transportation and language are largely eased in nowadays.
Collapse
Affiliation(s)
- Jinmin Shi
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yifan Yang
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Zhou
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | - Lijun Zhao
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaohua Li
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | - Abdullah Yusuf
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry. Kashi University, Kashgar, China
| | - Mohaddeseh S. M. Z. Hosseini
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | | | - Xuebo Hu
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xuebo Hu,
| |
Collapse
|
6
|
Almadiy AA, Nenaah GE. Essential oil of Origanum vulgare, its nanoemulsion and bioactive monoterpenes as eco-friendly novel green pesticides for controlling Aedes aegypti, the common vector of Dengue virus. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2091673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Abdulrhman A. Almadiy
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| | - Gomah E. Nenaah
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
7
|
Gupta P, Preet S, Ananya, Singh N. Preparation of Thymus vulgaris (L.) essential oil nanoemulsion and its chitosan encapsulation for controlling mosquito vectors. Sci Rep 2022; 12:4335. [PMID: 35288571 PMCID: PMC8921314 DOI: 10.1038/s41598-022-07676-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Here, we report a novel comparative assessment of preparation and characterization of thyme oil nanoemulsion and its chitosan encapsulation using high energy approach for the management of three major mosquito species viz., Anopheles stephensi (Liston,1901), Aedes aegypti (Linn., 1762) and Culex tritaeniorhynchus (Giles, 1901). The synthesized formulations were analysed for thermodynamic stability, indicating 1:0.5 (oil: surfactant) ratio to be the most stable of thyme oil nanoemulsion while 1:1 (nanoemulsion: chitosan solution) ratio of its chitosan encapsulation. These were further characterized by dynamic light scattering and transmission electron microscopy which revealed the size and morphology of the droplets which measured 52.18 ± 4.53 nm for thyme oil nanoemulsion and 50.18 ± 2.32 nm for its chitosan encapsulation. All the droplets were well dispersed with distinct flower-shaped nanoemulsion and somewhat mitochondria like chitosan encapsulation. In-vitro release study of thyme essential oil from its nanoemulsion and chitosan encapsulation showed that 91.68% and 73.41% of the total oil concentration in water was released respectively to the environment after 48 h clearly depicting controlled release in the encapsulation. Assessment of insecticidal potential against selected mosquito species revealed that both the nanoemulsion and its chitosan encapsulation were effective on the major mosquito species. Maximum activity of thyme oil nanoemulsion was noticed against C. tritaeniorhynchus (LC50—22.58 ppm) after 24 h of exposure while it was observed that its chitosan encapsulation was most effective on A. stephensi (LC50—18.88 ppm) after 24 h of exposure. Consistent morphological alterations could be noticed in the larvae of mosquito species. Hence, these nanoemulsions and encapsulations could be further tested for their applications against other insect pests in agriculture.
Collapse
|
8
|
Predicting nanoemulsion formulation and studying the synergism mechanism between surfactant and cosurfactant: A combined computational and experimental approach. Int J Pharm 2022; 615:121473. [PMID: 35074435 DOI: 10.1016/j.ijpharm.2022.121473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022]
Abstract
Nanoemulsion (NE) is a dosage form widely used in pharmaceutical, food, agrochemical, cosmetics, and personal care industries. NE systems are usually formulated through trial and error via numerous semi-empirical experiments. Moreover, the complex interaction mechanisms between the formulation surfactant and cosurfactant are difficult to understand. Dissipative particle dynamics (DPD) may be helpful in solving these formulation problems. Silibinin is a flavonolignan isolated from milk thistle, which has demonstrated antioxidant and antimicrobial effects. For this project, silibinin-loaded nanoemulsion (SBNE) was formulated by DPD, including surfactant and cosurfactant screening, pseudo-ternary phase construction, and SBNE characterization, all of which were verified by experimentation. Most importantly, this work shows that DPD can be adopted to explore the synergetic mechanisms between the surfactant and cosurfactant, including emulsification efficiency, distance, angle, arrangement, and order parameter. Additional verification experiments on the antioxidant and antimicrobial applications of simulation-designed SBNE were also carried out and confirmed DPD-predicted results. As such, predicting NE formulation by DPD has been proven to be feasible. For SBNE, the addition of PEG400 cosurfactant stretches the Cremophor RH40 surfactant molecules and assists in a more orderly arrangement. An enhanced interfacial thickness in SBNE could be attributed to the stretched hydrophilic head group and the decreased angle between the molecular axis and interface normal. These DPD and experimentally-verified results indicated that a proper cosurfactant will enhance the interfacial thickness, decrease the consumption of surfactant, and benefit NE formation. This new computationally applied knowledge should facilitate optimizing, designing, and understanding NE formulation more rationally and scientifically.
Collapse
|
9
|
Narasimman M, Natesan V, Mayakrishnan V, Rajendran J, Venkatesan A, Kim SJ. Preparation and Optimization of Peppermint (Mentha Pipertia) Essential Oil Nanoemulsion with Effective Herbal Larvicidal, Pupicidal, and Ovicidal Activity against Anopheles Stephensi. Curr Pharm Biotechnol 2021; 23:1367-1376. [PMID: 34911410 DOI: 10.2174/1389201023666211215125621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The Plasmodium parasite is transmitted directly to humans through the Anopheles mosquito bite and causes vector-borne Malaria disease, which leads to the transmission of the disease in Southeast Asia, including India. The problem of persistent toxicity, along with the growing incidence of insect resistance, has led to the use of green pesticides to control the spread of the disease in a cost-effective and environment-friendly manner. Based on this objective, this work investigated the larvicidal, pupicidal, and ovicidal activity of Mentha pipertia using a natural nanoemulsion technique. METHODS GC-MS characterized essential oils of Mentha pipertia leaves were formulated as a nanoemulsion for herbal larvicidal, pupicidal, and ovicidal activities. Size of the nanoemulsion was analyzed by photon correlation spectroscopy. The herbal activities against Anopheles Stephensi of nanoemulsion were evaluated in terms of the lethal concentration for 50% (LC50) and 90% (LC90) to prove low cost, pollution free active effective formulation. RESULTS Chiral, keto, and alcohol groups attached Mentha pipertia leaves essential oil nanoemulsions demonstrated good results in the larvicidal probit analysis, with values of LC50=09.67 ppm and LC90=20.60 ppm. Activity results of the most stable nano formulation with 9.89 nm size showed a significant increase when compared to the bulk. CONCLUSION The nanoemulsion of Mentha pipertia leaves can be a promising eco-friendly widely available, low-cost herbicide against the Anopheles mosquito.
Collapse
Affiliation(s)
- Mathumitha Narasimman
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu. India
| | - Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu. India
| | - Vijay Mayakrishnan
- Department of Zoology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu. India
| | - Jayaprakash Rajendran
- Department of Chemistry, School of Arts and Science, Aarupadai Veedu Campus, Vinayaka Missions Research Foundation (DU), Paiyanoor, Tamilnadu. India
| | - Amalan Venkatesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu. India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University. Korea
| |
Collapse
|
10
|
Chitosan nanoparticles containing Elettaria cardamomum and Cinnamomum zeylanicum essential oils; repellent and larvicidal effects against a malaria mosquito vector, and cytotoxic effects on a human skin normal cell line. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01829-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Lobato Rodrigues AB, Martins RL, Rabelo ÉDM, Tomazi R, Santos LL, Brandão LB, Faustino CG, Ferreira Farias AL, dos Santos CBR, de Castro Cantuária P, Galardo AKR, de Almeida SSMDS. Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PLoS One 2021; 16:e0254225. [PMID: 34242328 PMCID: PMC8270136 DOI: 10.1371/journal.pone.0254225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Ayapana triplinervis is a plant species used in traditional medicine and in mystical-religious rituals by traditional communities in the Amazon. The aim of this study are to develop a nano-emulsion containing essential oil from A. triplinervis morphotypes, to evaluate larvicidal activity against Aedes aegypti and acute oral toxicity in Swiss albino mice (Mus musculus). The essential oils were extracted by steam dragging, identified by gas chromatography coupled to mass spectrometry, and nano-emulsions were prepared using the low energy method. Phytochemical analyses indicated the major compounds, expressed as area percentage, β-Caryophyllene (45.93%) and Thymohydroquinone Dimethyl Ether (32.93%) in morphotype A; and Thymohydroquinone Dimethyl Ether (84.53%) was found in morphotype B. Morphotype A essential oil nano-emulsion showed a particle size of 101.400 ± 0.971 nm (polydispersity index = 0.124 ± 0.009 and zeta potential = -19.300 ± 0.787 mV). Morphotype B essential oil nano-emulsion had a particle size of 104.567 ± 0.416 nm (polydispersity index = 0.168 ± 0.016 and zeta potential = -27.700 ± 1.307 mV). Histomorphological analyses showed the presence of inflammatory cells in the liver of animals treated with morphotype A essential oil nano-emulsion (MAEON) and morphotype B essential oil nano-emulsion (MBEON). Congestion and the presence of transudate with leukocyte infiltration in the lung of animals treated with MAEON were observed. The nano-emulsions containing essential oils of A. triplinervis morphotypes showed an effective nanobiotechnological product in the chemical control of A. aegypti larvae with minimal toxicological action for non-target mammals.
Collapse
Affiliation(s)
| | - Rosany Lopes Martins
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Érica de Menezes Rabelo
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Rosana Tomazi
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Lizandra Lima Santos
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Lethícia Barreto Brandão
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Cleidjane Gomes Faustino
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | | | | | - Patrick de Castro Cantuária
- Amapaense Herbarium, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Allan Kardec Ribeiro Galardo
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Sheylla Susan Moreira da Silva de Almeida
- Department of Exact and Technological Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| |
Collapse
|
12
|
Kelidari HR, Moemenbellah-Fard MD, Morteza-Semnani K, Amoozegar F, Shahriari-Namadi M, Saeedi M, Osanloo M. Solid-lipid nanoparticles (SLN)s containing Zataria multiflora essential oil with no-cytotoxicity and potent repellent activity against Anopheles stephensi. J Parasit Dis 2021; 45:101-108. [PMID: 33746393 DOI: 10.1007/s12639-020-01281-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 01/27/2023] Open
Abstract
Malaria is still a global health concern with more than 400,000 death annually. Personal protection using mosquitoes' repellent is an effective prevention strategy, especially in endemic areas. The toxic effects of synthetics repellents and their adverse effects on fabricated goods have made the development of green repellent critical. In this study, ingredients of Zataria multiflora essential oil (ZMEO) were identified using GC-MS analysis. Solid-lipid nanoparticles containing ZMEO (1%) were prepared (SLN-ZMEO) using the high-pressure homogenizer method. The repellent activity of ZMEO and SLN-ZMEO was investigated using Klun and Debboun method and compared together. Besides, their cytotoxicity on a human skin normal cell line (HFFF2) was evaluated. Five major components of ZMEO were carvacrol (27.05%), thymol (26.452%), γ-terpinene (15.144%), o-cymene (13.584%), and α-pinene (9.483%). The SLN-ZMEO showed a spherical shape with a particle size of 134 ± 7 nm. Moreover, their polydispersity index (PDI), zeta potential and entrapment efficiency were determined as 0.24 ± 0.1, - 9.82 ± 0.95 mV and 64.6 ± 3.8%, respectively. Interestingly, the protection time of nanoformulation (93 ± 5 min) was three times longer than that of the non-formulated essential oil (29 ± 2 min). Interestingly, both samples did not show cytotoxicity on HFFF2. Therefore, the prepared nanoformulation can be used as a green and potent repellent.
Collapse
Affiliation(s)
- Hamid Reza Kelidari
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Djaefar Moemenbellah-Fard
- Research Center for Health Sciences, Department of Medical Entomology and Vector Control, School of Health, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Amoozegar
- Student Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Marziae Shahriari-Namadi
- Research Center for Health Sciences, Department of Medical Entomology and Vector Control, School of Health, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Saeedi
- Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
13
|
Dehghankar M, Maleki-Ravasan N, Tahghighi A, Karimian F, Karami M. Bioactivities of rose-scented geranium nanoemulsions against the larvae of Anopheles stephensi and their gut bacteria. PLoS One 2021; 16:e0246470. [PMID: 33556110 PMCID: PMC7870081 DOI: 10.1371/journal.pone.0246470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
Anopheles stephensi with three different biotypes is a major vector of malaria in Asia. It breeds in a wide range of habitats. Therefore, safer and more sustainable methods are needed to control its immature stages rather than chemical pesticides. The larvicidal and antibacterial properties of the Pelargonium roseum essential oil (PREO) formulations were investigated against mysorensis and intermediate forms of An. stephensi in laboratory conditions. A series of nanoemulsions containing different amounts of PREO, equivalent to the calculated LC50 values for each An. stephensi form, and various quantities of surfactants and co-surfactants were developed. The physical and morphological properties of the most lethal formulations were also determined. PREO and its major components, i.e. citronellol (21.34%), L-menthone (6.41%), linalool (4.214%), and geraniol (2.19%), showed potent larvicidal activity against the studied mosquitoes. The LC50/90 values for mysorensis and intermediate forms were computed as 11.44/42.42 ppm and 12.55/47.69 ppm, respectively. The F48/F44 nanoformulations with 94% and 88% lethality for the mysorensis and intermediate forms were designated as optimized formulations. The droplet size, polydispersity index, and zeta-potential for F48/F44 were determined as 172.8/90.95 nm, 0.123/0.183, and -1.08/-2.08 mV, respectively. These results were also confirmed by TEM analysis. Prepared formulations displayed antibacterial activity against larval gut bacteria in the following order of decreasing inhibitory: LC90, optimized nanoemulsions, and LC50. PREO-based formulations were more effective against mysorensis than intermediate. Compared to the crude PREO, the overall larvicidal activity of all nanoformulations boosted by 20% and the optimized formulations by 50%. The sensitivity of insect gut bacteria may be a crucial factor in determining the outcome of the effect of toxins on target insects. The formulations designed in the present study may be a good option as a potent and selective larvicide for An. stephensi.
Collapse
Affiliation(s)
- Maryam Dehghankar
- Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Azar Tahghighi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Laboratory of Medicinal Chemistry, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohsen Karami
- Department of Parasitology and Mycology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
14
|
Preparation of Nanoemulsions of Mentha piperita Essential Oil and Investigation of Their Cytotoxic Effect on Human Breast Cancer Lines. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00827-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Sharma S, Loach N, Gupta S, Mohan L. Phyto-nanoemulsion: An emerging nano-insecticidal formulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Hashemi FS, Farzadnia F, Aghajani A, Ahmadzadeh NobariAzar F, Pezeshki A. Conjugated linoleic acid loaded nanostructured lipid carrier as a potential antioxidant nanocarrier for food applications. Food Sci Nutr 2020; 8:4185-4195. [PMID: 32884699 PMCID: PMC7455976 DOI: 10.1002/fsn3.1712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
The encapsulation of fatty acids in nanocarrier systems is a very effective technique in improving their biological efficiency and controlled delivery. Nanostructured lipid carrier (NLC) is a major type of lipid-based nanoparticle. This study is focused on producing nanolipid carrier containing conjugated linoleic acid and fortifying low-fat milk using this nanoparticle. Nanostructured lipid carriers were produced by hot high-shear homogenization containing 1.5% Poloxamer 407, cocoa butter as solid lipid, and conjugated linoleic acid as liquid oil in ratio of 10:1. Results showed that the nanoparticles sized 81 nm with monomodular dispersity and the system was stable at 4 and 22°C for 40 days. Zeta potential and encapsulation efficiency (%EE) were -15.8 mV and 98.2%, respectively. Scanning electron microscopy (SEM) showed that the particles are in spiral form and small size and no significant aggregation was observed because of few changes in the system turbidity after storage time. The result of oxidative stability showed that using Nanostructured lipid carriers system resulted in lower malone dialdehyde production. Conjugated linoleic acid was protected at level of 3.9% of milk fatty acids in Nanostructured lipid carrier formulation during storage time. Based on these findings, Nanostructured lipid carriers system is an appropriate and stable nanocarrier system for delivery of nutraceuticals in foods and can be used in protecting them against oxidation, heating, and other processes in order to fortify foods and beverages.
Collapse
Affiliation(s)
- Fatemeh Sadat Hashemi
- Department of Food Science and TechnologyElmi‐karbordi University of Samin Nan SaharTehranIran
| | - Farin Farzadnia
- Department of Food Science and TechnologyFaculty of AgricultureMamaghan BranchIslamic Azad University of MamaghanMamaghanIran
| | - Abdoreza Aghajani
- Department of Food Science and TechnologyFaculty of Industrial and Mechanical EngineeringQazvin BranchIslamic Azad UniversityQazvinIran
| | | | - Akram Pezeshki
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
17
|
Heydari M, Amirjani A, Bagheri M, Sharifian I, Sabahi Q. Eco-friendly pesticide based on peppermint oil nanoemulsion: preparation, physicochemical properties, and its aphicidal activity against cotton aphid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6667-6679. [PMID: 31873908 DOI: 10.1007/s11356-019-07332-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/06/2019] [Indexed: 05/24/2023]
Abstract
Using organic insecticides including plant oils, it is possible to design a new perspective for the control of insect pests. In this research, nanoemulsion formulations of Mentha piperita, wild-type essential oil (EO) were prepared utilizing high-energy ultrasonication process. Physicochemical properties of nanoemulsions were precisely studied by measurement various parameters including pH, viscosity, conductivity, and zeta potential. Experimental design by the aid of response surface methodology (RSM) was used to highlight the physicochemical roles of EO percentage (1% to 5% (v/v)) and surfactant concentration (3% to 15% (v/v)) for achieving minimum droplet diameter with high physical stability. The nanoemulsion formulations were then characterized using dynamic light scattering, transmission electron microscopy, and optical clarity. Afterward, an appropriate model between the variable factors (EO percentage and surfactant concentration) and the response (hydrodynamic particle size) was statistically developed. Under the optimum conditions, nanoemulsion with hydrodynamic particle size less than 10 nm with high physical stability is obtainable. Bioassay experiments were carried out to elucidate the effects of nanoemulsion on the cotton aphid. Synthesized nanoemulsion formulations showed relatively high contact toxicity (average value of LC50 was about 3879.5 ± 16.2 μl a.i./L) against the pest. On the basis of the obtained results, prepared nanoemulsion using M. piperita is potentially applicable as organic insecticides against cotton aphid. Graphical abstract.
Collapse
Affiliation(s)
- Mojgan Heydari
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran.
| | - Amirmostafa Amirjani
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique FÉdÉrale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mozhgan Bagheri
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran
| | - Iman Sharifian
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 14155-6619, Karaj, Iran
| | - Qodrat Sabahi
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 14155-6619, Karaj, Iran
| |
Collapse
|
18
|
|
19
|
Osanloo M, Arish J, Sereshti H. Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03042-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Osanloo M, Sedaghat MM, Sanei-Dehkordi A, Amani A. Plant-Derived Essential Oils; Their Larvicidal Properties and Potential Application for Control of Mosquito-Borne Diseases. Galen Med J 2019; 8:e1532. [PMID: 34466524 PMCID: PMC8344124 DOI: 10.31661/gmj.v8i0.1532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/05/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Mosquito-borne diseases are currently considered as important threats to human health in subtropical and tropical regions. Resistance to synthetic larvicides in different species of mosquitoes, as well as environmental pollution, are the most common adverse effects of excessive use of such agents. Plant-derived essential oils (EOs) with various chemical entities have a lower chance of developing resistance. So far, no proper classification based on lethal concentration at 50% (LC50) has been made for the larvicidal activity of EOs against different species of Aedes, Anopheles and Culex mosquitoes. To better understand the problem, a summary of the most common mosquito-borne diseases have been made. Related articles were gathered, and required information such as scientific name, used part(s) of plant, target species and LC50 values were extracted. 411 LC50 values were found about the larvicidal activity of EOs against different species of mosquitoes. Depending on the obtained results in each species, LC50 values were summarized as follows: 24 EOs with LC50 < 10 µg/mL, 149 EOs with LC50 in range of 10- 50 µg/mL, 143 EOs having LC50 within 50- 100 µg/mL and 95 EOs showing LC50 > 100 µg/mL. EOs of Callitris glaucophylla and Piper betle against Ae. aegypti, Tagetes minuta against An. gambiae, and Cananga odorata against Cx. quinquefasciatus and An. dirus having LC50 of ~ 1 µg/mL were potentially comparable to synthetic larvicides. It appears that these plants could be considered as candidates for botanical larvicides.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
- Correspondence to: Amir Amani, Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran Telephone Number: 00982143052130 Email Address:
| |
Collapse
|
21
|
Evaluation of Larvicidal and Repellent Activity of Nanocrystal Emulsion Synthesized from F. glomerata and Neem Oil Against Mosquitoes. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01611-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Nanoemulsions of Essential Oils: New Tool for Control of Vector-Borne Diseases and In Vitro Effects on Some Parasitic Agents. MEDICINES 2019; 6:medicines6020042. [PMID: 30934720 PMCID: PMC6630918 DOI: 10.3390/medicines6020042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
Abstract
The control of infectious/parasitic diseases is a continuing challenge for global health, which in turn requires new methods of action and the development of innovative agents to be used in its prevention and/or treatment. In this context, the control of vectors and intermediate hosts of etiological agents is an efficient method in the prevention of human and veterinary diseases. In later stages, it is necessary to have bioactive compounds that act efficiently on the agents that produce the disease. However, several synthetic agents have strong residual effects in humans and other animals and cause environmental toxicity, affecting fauna, flora and unbalancing the local ecosystem. Many studies have reported the dual activity of the essential oils (EOs): (i) control of vectors that are important in the cycle of disease transmission, and (ii) relevant activity against pathogens. In general, EOs have an easier degradation and cause less extension of environmental contamination. However, problems related to solubility and stability lead to the development of efficient vehicles for formulations containing EOs, such as nanoemulsions. Therefore, this systematic review describes several studies performed with nanoemulsions as carriers of EOs that have larvicidal, insecticidal, repellent, acaricidal and antiparasitic activities, and thus can be considered as alternatives in the vector control of infectious and parasitic diseases, as well as in the combat against etiological agents of parasitic origin.
Collapse
|
23
|
Ma J, Ugya YA, Isiyaku A, Hua X, Imam TS. Evaluation of Pistia stratiotes fractions as effective larvicide against Anopheles mosquitoes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:945-950. [PMID: 30855191 DOI: 10.1080/21691401.2019.1582538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mosquito are well-known vectors that cause diseases particularly malaria and filariasis which are detrimental to human health. These vectors occur mainly in tropical countries where more than 2 billion people live in endemic regions with about one million deaths been claimed yearly from malaria and filariasis. The study is aimed at evaluating the larvicidal activity of Pistia stratiotes fractions on Anopheles mosquitoes (Diptera: Culicidae). The ethyl acetate extract of P. stratiotes was obtained through percolation process and was chromatographed to yield nine fractions. The larvicidal activity of each of the nine fractions was tested in triplicates by exposing the larvae to 500, 250, 125, 62.5 and 31.3 µg/ml, respectively. Phytochemical screening of the nine fractions revealed the presence of alkaloids, flavonoids, glycosides and phlobatannins in varying quantities. The result obtained shows that fraction E has the highest lethal effect on the Anopheles larvae at LC50 =14.81 µg/ml and was weakly effective at 602.03 µg/ml on brine shrimp larvae. The gas chromatography mass spectrometry analysis of fraction E revealed the presence of 35 pre-cursor compounds. Hence, ethyl acetate fractions of P. stratiotes could be an effective larvicide against Anopheles mosquito larvae as it has been found to be harmless to other aquatic organisms. Further work should be done on other aquatic weeds that have larvicidal potential to isolate the bioactive compounds.
Collapse
Affiliation(s)
- Jincai Ma
- a College of New Energy and Environment , Jilin University , Changchun , China
| | - Yunusa Adamu Ugya
- a College of New Energy and Environment , Jilin University , Changchun , China.,b Department of Environmental Management , Kaduna State University , Kaduna , Nigeria
| | - Asma'u Isiyaku
- c Department of Biological Sciences , Bayero University , Kano , Nigeria
| | - Xiuyi Hua
- a College of New Energy and Environment , Jilin University , Changchun , China
| | - Tijjani Sabiu Imam
- c Department of Biological Sciences , Bayero University , Kano , Nigeria
| |
Collapse
|
24
|
Piplani M, Bhagwat DP, Singhvi G, Sankaranarayanan M, Balana-Fouce R, Vats T, Chander S. Plant-based larvicidal agents: An overview from 2000 to 2018. Exp Parasitol 2019; 199:92-103. [PMID: 30836055 DOI: 10.1016/j.exppara.2019.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
Current review aims to systematically segregate, analyze and arrange the key findings of the scientific reports published on larvicidal plants including larvicidal formulations. The investigation was carried out by analyzing the published literature in various scientific databases, subsequently, the key findings of the selective scientific reports having larvicidal potency (LC50) of extract or isolated oil<100 μg/mL were tabulated to provide the concise and crucial information. Special emphasis was given on reports in which LC50 of extract or isolated oil was reported to be < 10 μg/mL, genus or species documented in multiple independent studies, advancement in larvicidal formulations and activity of isolated phytoconstituents. Extensive analysis of published literature revealed that the larvicidal potency of herbal resources varied from sub-microgram/ml to practically insignificant. Overall, this unprecedented summarized and arranged information can be utilized for design, development and optimization of herbal based formulation having potential larvicidal activity.
Collapse
Affiliation(s)
- Mona Piplani
- School of Pharmacy, Maharaja Agrasen University, Atal Shiksha Kunj, Village Kalujhanda, Solan, Himachal Pradesh, 174103, India
| | - Deepak P Bhagwat
- School of Pharmacy, Maharaja Agrasen University, Atal Shiksha Kunj, Village Kalujhanda, Solan, Himachal Pradesh, 174103, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Rafael Balana-Fouce
- Departmento de Ciencias Biomedicas, Facultad de Veterinaria, Universidad de Leon, Leon, 24071, Spain
| | - Tarini Vats
- School of Pharmacy, Maharaja Agrasen University, Atal Shiksha Kunj, Village Kalujhanda, Solan, Himachal Pradesh, 174103, India
| | - Subhash Chander
- School of Pharmacy, Maharaja Agrasen University, Atal Shiksha Kunj, Village Kalujhanda, Solan, Himachal Pradesh, 174103, India.
| |
Collapse
|
25
|
Osanloo M, Assadpour S, Mehravaran A, Abastabar M, Akhtari J. Niosome-loaded antifungal drugs as an effective nanocarrier system: A mini review. Curr Med Mycol 2019; 4:31-36. [PMID: 30815615 PMCID: PMC6386503 DOI: 10.18502/cmm.4.4.384] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Skin is an important organ of the body due to offering an accessible and convenient site for drug administration. One of the disadvantages of transdermal drug delivery is the low penetration rate of drugs through the skin. Over the past decades, nanoparticles have been used as drug delivery systems to increase therapeutic effects or reduce toxicity. Encapsulation of drugs in nanoparticulate vesicles simplifies the transports of drugs into and across the skin. Niosome nanoparticles are among these drug delivery systems, which have numerous applications in drug delivery and targeting. Niosomes are frequently used for loading drugs serving different purposes (e.g., anticancer, antiviral, and antibacterial agents). In recent years, there has been much research on the use of niosomal systems for the delivery of fungal drugs. A review of the literature investigating the advantages of niosomes in antifungal drug delivery can elucidate the efficiency and superiority of this nanocarrier over other nanocarriers.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sara Assadpour
- Student Research Committee, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Mehravaran
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdi Abastabar
- Department of Medical Mycology and Parasitology, Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- The Health of Plant and Livestock Products Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|