1
|
Zhang W, Bei K, Jin Z, Zhao M, Wu S, Jiang S, Jin H, Zheng X. Subtle magnesium liberation of self-fabricated functional filler actuates highly efficient phosphorus removal from source-separated urine by SBBR. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24360-24374. [PMID: 38443536 DOI: 10.1007/s11356-024-32727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Domestic wastewater source-separated treatment has attracted wide attention due to the efficiency improvement of sewage treatment systems, energy saving, resource reuse, and the construction and operation cost saving of pipeline networks. Nonetheless, the excess source-separated urine still demands further harmless treatment. Sequencing batch biofilm reactor (SBBR), a new type of composite biofilm reactor developed by filling different fillers into the sequential batch reactor (SBR) reactor, has higher pollutant removal performance and simpler operation and maintenance. However, the phosphorus removal ability of the SBBR filling with conventional fillers is still limited and needs further improvement. In this study, we developed two new fillers, the self-fabricated filler A and B (SFA/SFB), and compared their source-separated urine treatment performance. Long-term treatment experimental results demonstrated that the SBBR systems with different fillers had good removal performance on the COD and TN in the influent, and the removal rate increased with the increasing HRT. However, only the SBBR system with the SFA showed excellent PO43--P and TP removal performance, with the removal rates being 83.7 ± 11.9% and 77.3 ± 13.7% when the HRT was 1 d. Microbial community analysis results indicated that no special bacteria with strong phosphorus removal ability were present on the surface of the SFA. Adsorption experimental results suggested that the SFA had better adsorption performance for phosphorus than the SFB, but it could not always have stronger phosphorus adsorption and removal performance during long-term operation due to the adsorption saturation. Through a series of characterizations such as SEM, XRD, and BET, it was found that the SFA had a looser structure due to the use of different binder and production processes, and the magnesium in the SFA gradually released and reacted with PO43- and NH4+ in the source-separated urine to form dittmarite and struvite, thus achieving efficient phosphorus removal. This study provides a feasible manner for the efficient treatment of source-separated urine using the SBBR system with self-fabricated fillers.
Collapse
Affiliation(s)
- Weinan Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Zhan Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Suqing Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Shunfeng Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Huachang Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Liang H, Guo P, Yang Y, Wang W, Sun Z. Environmental application of engineering magnesite slag for phosphate adsorption from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59502-59512. [PMID: 35381926 DOI: 10.1007/s11356-022-20029-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Herein, magnesite slags (MS), which remain after sulfuric acid extraction from light burnt magnesite in the magnesite industry, were used as phosphate adsorbents in wastewater. The MS were calcined under 700 °C to enhance phosphate adsorption. The calcined magnesite slags (CMS) were characterized by nitrogen adsorption-desorption isotherm, X-ray diffraction, and scanning electron microscopy. A series of batch adsorption experiments were carried out to test the phosphate adsorption capacity of CMS. The results showed that the calcific treatment promoted the conversion from Mg, Ca, Fe, etc. compound to metal oxide of the MS. The generated metal oxide particles resulted in 237.4 mg/g increase in the phosphate adsorption capacity. The phosphate adsorption isotherm of CMS fitted the Langmuir model better, and the maximum adsorption capacity of CMS was 526 mg/g. The adsorption kinetics of phosphate on CMS can be described by the pseudo-second-order model. The phosphate removal efficiency was greater than 98% in 300 mg/L phosphate solution. Mechanism investigation results indicated that phosphate was adsorbed by CMS through MgO protonation, electrostatic attraction, Mg-P complexation, and ligand exchange. The results obtained in this work demonstrate that the CMS is a potential effective adsorbent for removal and reutilization phosphate from P-contaminated water, due to it can be employed as a fertilizer after phosphate adsorption.
Collapse
Affiliation(s)
- Hai Liang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, 46 Bowen Road, Yingkou, 115014, China.
- College of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Panliang Guo
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, 46 Bowen Road, Yingkou, 115014, China
| | - Yunhong Yang
- Yingkou Magnesite Chemical Ind Group Co., Ltd., Yingkou, 115100, China
| | - Wanting Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, 46 Bowen Road, Yingkou, 115014, China
| | - Zhaonan Sun
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, 46 Bowen Road, Yingkou, 115014, China
| |
Collapse
|
3
|
Shen S, Li X, Cheng F, Zha X, Lu X. Review: recent developments of substrates for nitrogen and phosphorus removal in CWs treating municipal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29837-29855. [PMID: 32472508 DOI: 10.1007/s11356-020-08808-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Substrates are the main factor influencing the performance of constructed wetlands (CWs), and especially play an important role in enhancing the removal of nitrogen and phosphorus from CWs. In the recent 10 years, based on the investigation of emerged substrates used in CWs, this paper summarizes the removal efficiency and mechanism of nitrogen and phosphorus by a single substrate in detail. The simultaneous removal efficiency of nitrogen and phosphorus by different combined substrates is emphatically analyzed. Among them, the reuse of industrial and agricultural wastes as water treatment substrates is recommended due to the efficient pollutant removal efficiency and the principle of waste minimization, also more studies on the environmental impact and risk assessment of the application, and the subsequent disposal of saturated substrates are needed. This work serves as a basis for future screening and development of substrates utilized in CWs, which is helpful to enhance the synchronous removal of nitrogen and phosphorus, as well as improve the sustainability of substrates and CWs. Moreover, further studies on the interaction between different types of substrates in the wetland system are desperately needed.
Collapse
Affiliation(s)
- Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Fangkui Cheng
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiao Zha
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
4
|
Ye Y, Jiao J, Kang D, Jiang W, Kang J, Ngo HH, Guo W, Liu Y. The adsorption of phosphate using a magnesia-pullulan composite: kinetics, equilibrium, and column tests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13299-13310. [PMID: 30895548 DOI: 10.1007/s11356-019-04858-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
A magnesia-pullulan (MgOP) composite has been developed to remove phosphate from a synthetic solution. In the present study, the removal of phosphate by MgOP was evaluated in both a batch and dynamic system. The batch experiments investigated the initial pH effect on the phosphate removal efficiency from pH 3 to 12 and the effect of co-existing anions. In addition, the adsorption isotherms, thermodynamics, and kinetics were also investigated. The results from the batch experiments indicate that MgOP has encouraging performance for the adsorption of phosphate, while the initial pH value (3-12) had a negligible influence on the phosphate removal efficiency. Analysis of the adsorption thermodynamics demonstrated that the phosphate removal process was endothermic and spontaneous. Investigations into the dynamics of the phosphate removal process were carried out using a fixed bed of MgOP, and the resulting breakthrough curves were used to describe the column phosphate adsorption process at various bed masses, volumetric flow rates, influent phosphate concentrations, reaction temperatures, and inlet pH values. The results suggest that the adsorption of phosphate on MgOP was improved using an increased bed mass, while the reaction temperature did not significantly affect the performance of the MgOP bed during the phosphate removal process. Furthermore, higher influent phosphate concentrations were beneficial towards increasing the column adsorption capacity for phosphate. Several mathematic models, including the Adams-Bohart, Wolboska, Yoon-Nelson, and Thomas models, were employed to fit the fixed-bed data. In addition, the effluent concentration of magnesium ions was measured and the regeneration of MgOP investigated.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jie Jiao
- Wisdri City Environmental Protection Engineering Co., Ltd., Wuhan, People's Republic of China
| | - Dejun Kang
- Department of Municipal Engineering, College of Civil Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
| | - Jianxiong Kang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
5
|
Tang X, Li R, Wu M, Dong L, Wang Z. Enhanced phosphorus removal using acid-treated magnesium slag particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3860-3871. [PMID: 29178003 DOI: 10.1007/s11356-017-0781-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Magnesium-enriched magnesium slag particles (MSPs) can be used as an adsorption substrate as well as the magnesium source for struvite precipitation. In this study, an HCl treatment was used to enhance MSPs for phosphorus removal. After soaking in 1 mol/L HCl, an 11.27% decrease in median diameter (D50) and a 6.73% increase in specific surface area were observed when compared with the original MSPs. The improvement of the MSP surface properties resulted in 188.96 mg/kg increase in the PO43- adsorption capacity. Irrespective of HCl treatment, the phosphorus adsorption process followed the Dubinin-Radushkevich (D-R) model much more accurately than the Langmuir and Freundlich equations with correlation coefficients higher than 0.94. The adsorption free energy obtained through the D-R model revealed a 9.75% decrease after HCl treatment. Sequential fraction extraction results indicated that 96% of the Mg2+ released from the HCl-treated MSPs came from acid-soluble magnesium (exchangeable and carbonate-bound). Mg2+ obtained from HCl-treated solutions provided a reliable magnesium source for struvite precipitation. The PO43- removal rate can reach 53.63% with the optimal pH value of 10.0 and molar ratio of NH4+ to PO43- of 1:1. Struvite precipitation and adsorption can simultaneously occur in HCl-treated MSP solution. It contributed 63.19% to the overall PO43- removal and is a major contributor compared with adsorption. Thus, HCl treatment greatly enhanced the potential of MSPs for phosphorus removal due to an improved adsorption capacity and is a reliable Mg2+ source for struvite precipitation.
Collapse
Affiliation(s)
- Xianqiang Tang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China.
- Key Laboratory of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China.
- Collaborative Innovation Center for Geo-Hazards and Eco-Environment in Three Gorges Area, Yichang, Hubei Province, 443002, China.
| | - Rui Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
- Key Laboratory of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| | - Min Wu
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
- Key Laboratory of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
- Collaborative Innovation Center for Geo-Hazards and Eco-Environment in Three Gorges Area, Yichang, Hubei Province, 443002, China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
- Key Laboratory of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| | - Zhenhua Wang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
- Key Laboratory of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
- Collaborative Innovation Center for Geo-Hazards and Eco-Environment in Three Gorges Area, Yichang, Hubei Province, 443002, China
| |
Collapse
|