1
|
Mondal T, Choudhury M, Kundu D, Dutta D, Samanta P. Landfill: An eclectic review on structure, reactions and remediation approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:127-142. [PMID: 37054538 DOI: 10.1016/j.wasman.2023.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Since the enactment of the Clean Water Act (1972), which was supplemented by increased accountability under Resource Conservation and Recovery Act (RCRA) Subtitle D (1991) and the Clean Air Act Amendments (1996), landfills have indeed been widely used all around the world for treating various wastes. The landfill's biological and biogeochemical processes are believed to be originated about 2 to 4 decades ago. Scopus and web of Science based bibliometric study reveals that there are few papers available in scientific domain. Further, till today not a single paper demonstrated the detailed landfills heterogenicity, chemistry and microbiological processes and their associated dynamics in a combined approach. Accordingly, the paper addresses the recent applications of cutting-edge biogeochemical and biological methods adopted by different countries to sketch an emerging perspective of landfill biological and biogeochemical reactions and dynamics. Additionally, the significance of several regulatory factors controlling the landfill's biogeochemical and biological processes is highlighted. Finally, this article emphasizes the future opportunities for integrating advanced techniques to explain landfill chemistry explicitly. In conclusion, this paper will provide a comprehensive vision of the diverse dimensions of landfill biological and biogeochemical reactions and dynamics to the scientific world and policymakers.
Collapse
Affiliation(s)
- Tridib Mondal
- Department of Chemistry, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India
| | - Moharana Choudhury
- Environmental Research and Management Division, Voice of Environment (VoE), Guwahati - 781034, Assam, India.
| | - Debajyoti Kundu
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, SRM University-AP, Amaravati, Andhra Pradesh 522 240, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India.
| |
Collapse
|
2
|
Blanco-Orta MF, García-de la Cruz RF, Paz-Maldonado LMT, Pedraza-González DA, Morales-Avila MM, Balderas-Hernández VE, González-Ortega O, Pérez-Martínez AS. Assessing three industrially produced fungi for the bioremediation of diclofenac. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023:1-10. [PMID: 37128145 DOI: 10.1080/10934529.2023.2206353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diclofenac is an emerging pollutant: toxic, persistent, and bioaccumulative, present in several environmental niches in a concentration of parts per million. This pharmaceutical's biological removal was reported with various fungal species, showing promissory results. This work aimed at diclofenac removal by individually challenging the fungal species Pleurotus ostreatus, Aspergillus niger, and Penicillium roquefortii but triying to lower the biosorption nature of cell walls by NaCl addition. P. ostreatus removed 100% of the initial diclofenac concentration, whereas A. niger and P. roqueforti removed 74% and 32%, respectively. In all three cases, biosorption by polar interactions was negligible. We demonstrated that stressful environments, such as mineral media, force the fungus to take advantage of its metabolic tools to survive, hence showing higher removal capacity when limiting growth conditions. Bioremediation is an excellent alternative to give residual fungal biomass a secondary use.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
3
|
Mendoza-Burguete Y, de la Luz Pérez-Rea M, Ledesma-García J, Campos-Guillén J, Ramos-López MA, Guzmán C, Rodríguez-Morales JA. Global Situation of Bioremediation of Leachate-Contaminated Soils by Treatment with Microorganisms: A Systematic Review. Microorganisms 2023; 11:microorganisms11040857. [PMID: 37110280 PMCID: PMC10145224 DOI: 10.3390/microorganisms11040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This systematic review presents the current state of research in the last five years on contaminants in soils, especially in leachates from solid waste landfills, with emphasis on biological remediation. In this work, the pollutants that can be treated by microorganisms and the results obtained worldwide were studied. All the data obtained were compiled, integrated, and analyzed by soil type, pollutant type, bacterial type, and the countries where these studies were carried out. This review provides reliable data on the contamination of soils worldwide, especially soils contaminated by leachate from municipal landfills. The extent of contamination, treatment objectives, site characteristics, cost, type of microorganisms to be used, and time must be considered when selecting a viable remediation strategy. The results of this study can help develop innovative and applicable methods for evaluating the overall contamination of soil with different contaminants and soil types. These findings can help develop innovative, applicable, and economically feasible methods for the sustainable management of contaminated soils, whether from landfill leachate or other soil types, to reduce or eliminate risk to the environment and human health, and to achieve greater greenery and functionality on the planet.
Collapse
|
4
|
Nair AT. Bioaerosols in the landfill environment: an overview of microbial diversity and potential health hazards. AEROBIOLOGIA 2021; 37:185-203. [PMID: 33558785 PMCID: PMC7860158 DOI: 10.1007/s10453-021-09693-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
Landfilling is one of the indispensable parts of solid waste management in various countries. Solid waste disposed of in landfill sites provides nutrients for the proliferation of pathogenic microbes which are aerosolized into the atmosphere due to the local meteorology and various waste disposal activities. Bioaerosols released from landfill sites can create health issues for employees and adjoining public. The present study offers an overview of the microbial diversity reported in the air samples collected from various landfill sites worldwide. This paper also discusses other aspects, including effect of meteorological conditions on the bioaerosol concentrations, sampling techniques, bioaerosol exposure and potential health impacts. Analysis of literature concluded that landfill air is dominated by microbial dust or various pathogenic microbes like Enterobacteriaceae, Staphylococcus aureus, Clostridium perfringens, Acinetobacter calcoaceticus and Aspergillus fumigatus. The bioaerosols present in the landfill environment are of respirable sizes and can penetrate deep into lower respiratory systems and trigger respiratory symptoms and chronic pulmonary diseases. Most studies reported higher bioaerosol concentrations in spring and summer as higher temperature and relative humidity provide a favourable environment for survival and multiplication of microbes. Landfill workers involved in solid waste disposal activities are at the highest risk of exposure to these bioaerosols due to their proximity to solid waste and as they practise minimum personal safety and hygiene measures during working hours. Workers are recommended to use personal protective equipment and practise hygiene to reduce the impact of occupational exposure to bioaerosols.
Collapse
Affiliation(s)
- Abhilash T. Nair
- Department of Applied Sciences and Humanities, National Institute of Foundry and Forge Technology (NIFFT), Hatia, Ranchi, Jharkhand 834003 India
| |
Collapse
|
5
|
Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-Contaminated Agricultural Soils: Potential of Two Autochthonous Saprotrophic Fungal Strains. Appl Environ Microbiol 2019; 85:AEM.01720-19. [PMID: 31444208 DOI: 10.1128/aem.01720-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
DDT (dichlorodiphenyltrichloroethane) was used worldwide as an organochlorine insecticide to control agricultural pests and vectors of several insect-borne human diseases. It was banned in most industrialized countries; however, due to its persistence in the environment, DDT residues remain in environmental compartments, becoming long-term sources of exposure. To identify and select fungal species suitable for bioremediation of DDT-contaminated sites, soil samples were collected from DDT-contaminated agricultural soils in Poland, and 38 fungal taxa among 18 genera were isolated. Two of them, Trichoderma hamatum FBL 587 and Rhizopus arrhizus FBL 578, were tested for tolerance in the presence of 1-mg liter-1 DDT concentration by using two indices based on fungal growth rate and biomass production (the tolerance indices Rt:Rc and TI), showing a clear tolerance to DDT. The two selected strains were studied to evaluate catabolic versatility on 95 carbon sources with or without DDT by using the Phenotype MicroArray system and to investigate the induced oxidative stress responses. The two strains were able to use most of the substrates provided, resulting in both high metabolic versatility and ecological functionality in the use of carbon sources, despite the presence of DDT. The activation of specific metabolic responses with species-dependent antioxidant enzymes to cope with the induced chemical stress has been hypothesized, since the presence of DDT promoted a higher formation of reactive oxygen species in fungal cells than the controls. The tested fungi represent attractive potential candidates for bioremediation of DDT-contaminated soil and are worthy of further investigations.IMPORTANCE The spread and environmental accumulation of DDT over the years represent not only a threat to human health and ecological security but also a major challenge because of the complex chemical processes and technologies required for remediation. Saprotrophic fungi, isolated from contaminated sites, hold promise for their bioremediation potential toward toxic organic compounds, since they might provide an environment-friendly solution to contamination. Once we verified the high tolerance of autochthonous fungal strains to high concentrations of DDT, we showed how fungi from different phyla demonstrate a high metabolic versatility in the presence of DDT. The isolates showed the singular ability to keep their functionality, despite the DDT-induced production of reactive oxygen species.
Collapse
|
6
|
Russo F, Ceci A, Maggi O, Siciliano A, Guida M, Petrangeli Papini M, Černík M, Persiani AM. Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24445-24461. [PMID: 31228071 DOI: 10.1007/s11356-019-05679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The study of the soil microbial community represents an important step in better understanding the environmental context. Therefore, biological characterisation and physicochemical integration are keys when defining contaminated sites. Fungi play a fundamental role in the soil, by providing and supporting ecological services for ecosystems and human wellbeing. In this research, 52 soil fungal taxa were isolated from in situ pilot reactors installed to a contaminated site in Czech Republic with a high concentration of hexachlorocyclohexane (HCH). Among the identified isolates, 12 strains were selected to evaluate their tolerance to different isomers of HCH by using specific indices (Rt:Rc; T.I.) and to test their potential in xenobiotic biotransformation. Most of the selected taxa was not significantly affected by exposure to HCH, underlining the elevated tolerance of all the tested fungal taxa, and different metabolic intermediates of HCH dechlorination were observed. The oxidative stress responses to HCH for two selected species, Penicillium simplicissimum and Trichoderma harzianum, were investigated in order to explore their toxic responses and to evaluate their potential functioning in bioremediation of contaminated environments. This research suggests that the isolated fungal species may provide opportunities for new eco-friendly, integrated and cost-effective solutions for environmental management and remediation, considering their efficient adaptation to stressful conditions.
Collapse
Affiliation(s)
- Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|