1
|
Qian G, Song C, Chen J, Fang Y, Chen G, Wang L, Pan W, Zou B, Xu Y. Extraction of phosphorus from sewage sludge ash by electrodialysis combined with wet-chemical extraction. ENVIRONMENTAL TECHNOLOGY 2025; 46:668-676. [PMID: 38920111 DOI: 10.1080/09593330.2024.2367721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Phosphorus (P) recovery from sewage sludge ash (SSA) is considered to be an effective method for P recovery. In this work, P extraction and the removal of heavy metals were realized by electrodialysis. Low-cost, easily available, and environmentally friendly plant extracts were applied as suspension to reduce the inevitable secondary pollution. And the feasibility of using plant extracts was analysed by comparing with using deionized water (DI) and oxalic acid (OA) solution. When SSA was suspended in different solutions (DI, OA, and three plant extracts - Hovenia acerba (HA), Saponin (SA) and Portulaca oleracea (PO)), the effects of reaction time and plant extract concentration on P extraction and heavy metal separation of SSA under ED treatment were compared. After the process of electrodialysis, compared to other experimental groups, electrodialysis with plant extracts obtained more P released from SSA, but less P migrated to the anode chamber. However, when SSA was suspended in PO at a concentration of 80 g/L, the proportion of P transferred from SSA to the anode chamber can still reached 37.86%. In addition, the use of plant extracts as suspension had a positive effect on the removal of heavy metals, but its effect was lower than that of the oxalic acid-treated experimental group. The results indicated that the use of plant extracts for wet-chemical extraction combined with electrodialysis promoted the removal of heavy metals and the extraction of P from SSA, which is a feasible option.
Collapse
Affiliation(s)
- Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Chen Song
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Jingyan Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Yangfan Fang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Guang Chen
- Shanghai Chengtou Sewage Treatment Co., Ltd., Shanghai, People's Republic of China
| | - Lihua Wang
- Shanghai Chengtou Sewage Treatment Co., Ltd., Shanghai, People's Republic of China
| | - Wei Pan
- Shanghai Chengtou Sewage Treatment Co., Ltd., Shanghai, People's Republic of China
| | - Boyuan Zou
- Shanghai Chengtou Sewage Treatment Co., Ltd., Shanghai, People's Republic of China
| | - Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Ni S, Rahman S, Yoshioka S, Imaizumi M, Wong KH, Mashio AS, Ohta A, Hasegawa H. Enhancing lead extraction efficiency from contaminated soil: A synergistic approach combining biodegradable chelators and surfactants. CHEMOSPHERE 2024; 366:143528. [PMID: 39396680 DOI: 10.1016/j.chemosphere.2024.143528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Lead (Pb), a persistent and bio-accumulative contaminant, poses threats to the environment and human health. The effective removal of Pb from contaminated soil proves challenging due to its tendency to form stable complexes with soil components. Chelators have been extensively studied for their ability to extract metal contaminants, including Pb, from soil environment. However, the prolonged environmental persistence of traditional chelators and the high cost of biodegradable alternatives have hindered their practical application in remediation efforts. This study investigated a novel synergistic approach that combined a biodegradable chelator, [S,S]-ethylenediamine succinic acid (EDDS), with cationic and anionic surfactants to enhance Pb extraction efficiency. The study revealed that cationic surfactants, such as cetylpyridinium chloride (CPC) and cetyltrimethylammonium bromide (CTAB), significantly enhanced Pb extraction efficiency when combined with EDDS, whereas anionic surfactants, like sodium N-dodecanoyl-taurinate (SDT) and sodium dodecyl sulfate (SDS), inhibited the extraction process. Specifically, blending 5 mmol L-1 EDDS with 20 mmol L-1 CPC resulted in a 72.6% enhancement in Pb extraction efficiency. The proposed synergistic strategy offers a promising avenue for soil remediation, mitigating Pb contamination while preserving essential soil minerals. By addressing chelator limitations and improving efficiency, this approach presents a viable solution for enhancing soil remediation practices.
Collapse
Affiliation(s)
- Shengbin Ni
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Shafiqur Rahman
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Shoji Yoshioka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Minami Imaizumi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Akio Ohta
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Zhang S, Zhou L, Tang K, Ren D, Zhang X. Study on the enhancement of citric acid chemical leaching of contaminated soil by modified nano zero-valent iron. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:224. [PMID: 38849581 DOI: 10.1007/s10653-024-02005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024]
Abstract
This study aimed to evaluate the effect of modified nanoscale zero-valent iron (SAS-nZVI) on chemical leaching of lead and cadmium composite contaminated soil by citric acid (CA). The synthesized SAS-nZVI was used as a leaching aid to improve the removal rate of soil heavy metals (HMs) by CA chemical leaching. The effects of various factors such as SAS-nZVI dosage, elution temperature and elution time were studied. At the same time, the effect of chemical leaching on the basic physical and chemical properties of soil and the morphology of HMs was evaluated. The results show that when the SAS-nZVI dosage is 2.0 g/L, the leaching temperature is 25 °C, and the leaching time is 720 min, the maximum removal rates of Pb and Cd in the soil are 77.64% and 97.15% respectively. The experimental results were evaluated using elution and desorption kinetic models (Elovich model, double constant model, diffusion model). The elution and desorption process of Pb and Cd in soil by SAS-nZVI-CA fitted well with the double-constant model, indicating that the desorption kinetic process of Pb and Cd is a heterogeneous diffusion process, and the elution process is controlled by diffusion factors. After leaching with SAS-nZVI-CA, the physical and chemical properties of the soil changed little, the mobility and toxicity of HMs in the soil were reduced, and the HMs content in the leaching waste liquid was reduced. It can be concluded that SAS-nZVI enhances the efficiency of CA in extracting Pb and Cd from soil, minimizes soil damage resulting from chemical leaching technology, and alleviates the challenges associated with treating leaching waste liquid.
Collapse
Affiliation(s)
- Shuqin Zhang
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China.
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Linyuan Zhou
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Kan Tang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Dajun Ren
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiaoqing Zhang
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
4
|
Subsanguan T, Jungcharoen P, Khondee N, Buachan P, Abeyrathne BP, Nuengchamnong N, Pranudta A, Wannapaiboon S, Luepromchai E. Copper and chromium removal from industrial sludge by a biosurfactant-based washing agent and subsequent recovery by iron oxide nanoparticles. Sci Rep 2023; 13:18603. [PMID: 37903874 PMCID: PMC10616064 DOI: 10.1038/s41598-023-45729-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Industrial wastewater treatment generates sludge with high concentrations of metals and coagulants, which can cause environmental problems. This study developed a sequential sludge washing and metal recovery process for industrial sludge containing > 4500 mg/kg Cu and > 5000 mg/kg Cr. The washing agent was formulated by mixing glycolipid, lipopeptide, and phospholipid biosurfactants from Weissella cibaria PN3 and Brevibacterium casei NK8 with a chelating agent, ethylenediaminetetraacetic acid (EDTA). These biosurfactants contained various functional groups for capturing metals. The optimized formulation by the central composite design had low surface tension and contained relatively small micelles. Comparable Cu and Cr removal efficiencies of 37.8% and 38.4%, respectively, were obtained after washing the sludge by shaking with a sonication process at a 1:4 solid-to-liquid ratio. The zeta potential analysis indicated the bonding of metal ions on the surface of biosurfactant micelles. When 100 g/L iron oxide nanoparticles were applied to the washing agent without pH adjustment, 83% Cu and 100% Cr were recovered. In addition, X-ray diffraction and X-ray absorption spectroscopy of the nanoparticles showed the oxidation of nanoparticles, the reduction of Cr(V) to the less toxic Cr(III), and the absorption of Cu. The recovered metals could be further recycled, which will be beneficial for the circular economy.
Collapse
Affiliation(s)
- Tipsuda Subsanguan
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Nichakorn Khondee
- Department of Natural Resources and Environment, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | - Pantita Buachan
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Buddhika Prabath Abeyrathne
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Antika Pranudta
- Synchrotron Light Research Institute, Nakhon Ratchasima, Thailand
| | | | - Ekawan Luepromchai
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Cao C, Xu X, Wang G, Yang Z, Cheng Z, Zhang S, Li T, Pu Y, Lv G, Xu C, Cai J, Zhou W, Li F, Pu Z, Li X. Characterization of ionic liquids removing heavy metals from electroplating sludge: Influencing factors, optimisation strategies and reaction mechanisms. CHEMOSPHERE 2023; 324:138309. [PMID: 36889480 DOI: 10.1016/j.chemosphere.2023.138309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The disposal of electroplating sludge (ES) is a common concern of researchers. Currently, it is difficult to achieve effective fixation of heavy metals (HMs) using traditional ES treatment. As green and effective HMs removal agents, ionic liquids can be used for the disposal of ES. In this study, 1-butyl-3-methyl-imidazole hydrogen sulphate ([Bmim]HSO4) and 1-propyl sulphonic acid-3-methyl imidazole hydrogen sulphate ([PrSO3Hmim]HSO4) were used as washing solvents for the removal of Cr, Ni, and Cu from ES. In reaction with increased agent concentration, solid-liquid ratio, and duration, the amount of HMs eliminated from ES rises, whereas opposite patterns were shown in response to rising pH. The quadratic orthogonal regression optimisation analysis also revealed that the ideal washing specifications for [Bmim]HSO4 were 60 g L-1, 1:40, and 60 min, respectively, for agent concentration, solid-liquid ratio, and washing time, while those for [PrSO3Hmim]HSO4 were 60 g L-1, 1:35, and 60 min, respectively. Under the optimal experimental conditions, the Cr, Ni, and Cu removal efficiencies for [Bmim]HSO4 were 84.3, 78.6, and 89.7%, respectively, and those values for [PrSO3Hmim]HSO4 were 99.8, 90.1, and 91.3%, respectively. This was mainly attributed to that ionic liquids enhance metal desorption through acid solubilisation, chelation, and electrostatic attraction. Overall, ionic liquids are reliable washing reagents for ES contaminated by HMs.
Collapse
Affiliation(s)
- Chenchen Cao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China.
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guochun Lv
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changlian Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feng Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaofan Li
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| |
Collapse
|
6
|
Wang Y, Li Y, Yang S, Wang QH, Si SC, Mei HY, Liu GM, Pan XL, Luo YM. Removal of Cd from contaminated farmland soil by washing with residues of traditional Chinese herbal medicine extracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31461-31470. [PMID: 36449237 DOI: 10.1007/s11356-022-24409-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Soil washing is one of the effective methods for permanent removal of heavy metals from farmland soil, and selection of washing agents determines heavy metal removal efficiency. However, there is still a lack of cost-efficient and eco-friendly washing agents. In this study, three residues of traditional Chinese herbal medicine (RTCHM) extracts: residues of Prunus mume (Sieb.) Sieb. et Zucc. (RPM), residues of Schisandra chinensis (Turcz.) Baill. (RSC), and residues of Crataegus pinnatifida Bunge (RCP), were tested for their potential of Cd removal. The variations in amounts and compositions of dissolved organic carbon (DOC) and citric acid were responsible for the difference in Cd removal efficiencies of RTCHM extracts. Fourier-transform infrared spectrophotometer (FTIR) analysis showed that hydroxyl, carboxyl, and amine were the main functional groups of RTCHM extracts to chelate with heavy metals. The optimum conditions for RTCHM extracts were 100 g L-1 concentration, solid-liquid ratio 1:10, pH 2.50, and contact time of 1 h, and the highest Cd removal efficiencies of RPM, RSC, and RCP extracts reached 35%, 11%, and 15%, respectively. The ecological risk of Cd decreased significantly due to the decrease of exchangeable and reducible Cd fractions. RTCHM extracts washing alleviated soil alkalinity and had little effect on soil cation exchange capacity. Meanwhile, the concentrations of soil organic matter and nitrogen were enhanced significantly by RPM extracts and the activities of soil catalase and urease were also improved. Overall, among the tested extracts, RPM extracts was a much more feasible and environment-friendly washing agent for the remediation of Cd-contaminated farmland soil.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing, 210008, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences (CAS), Shandong Key Laboratory, of Coastal Environment Process, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Yantai, 264003, China
| | - Shuai Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing, 210008, China
| | - Qi-Hao Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing, 210008, China
| | - Shao-Cheng Si
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences (CAS), Shandong Key Laboratory, of Coastal Environment Process, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Yantai, 264003, China
| | - Han-Yi Mei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guo-Ming Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing, 210008, China
| | - Xiang-Liang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yong-Ming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing, 210008, China.
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences (CAS), Shandong Key Laboratory, of Coastal Environment Process, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Yantai, 264003, China.
| |
Collapse
|
7
|
Sun J, Luo J, Ma R, Lin J, Fang L. Effects of microwave and plastic content on the sulfur migration during co-pyrolysis of biomass and plastic. CHEMOSPHERE 2023; 305:135457. [PMID: 36584830 DOI: 10.1016/j.chemosphere.2022.135457] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 05/25/2023]
Abstract
In order to reduce the risks of sulfur-containing contaminants present in biofuels, the effects of microwave and content of hydrogen donor on the cracking of C-S bonds and the migration of sulfur were studied by co-pyrolysis of biomass and plastic. The synergistic mechanism of microwave and hydrogen donor was explored from the perspective of deducing the evolution of sulfur-containing compounds based on microwave thermogravimetric analysis. By combining temperature-weight curves, it was found that microwaves and hydrogen radicals promoted the cracking of sulfur-containing compounds and increased the mass loss of biomass during pyrolysis. The mixing ratio of hydrogen donor (plastic) was the key parameter resulting in the removal of sulfur from oil. By adjusting the mixing ratio, the yield of co-pyrolyzed oil was three times higher than that of cow dung pyrolysis alone and the relative removal rate of sulfur reached 73.67%. The relative content of sulfur in the oil was reduced by 73.77% due to the escape of sulfur-containing gases (H2S, COS and C2H5SH) and the formation of sulfate crystals in the char. Microwave selectively heated sulfur-containing organics and hydrogen radicals stimulated the breaking of C-S bonds, which improved the cracking efficiency of the oil. This breaking will provide a theoretical and technological reference for the environmentally friendly treatment of biomass and biofuels.
Collapse
Affiliation(s)
- Jiaman Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lin Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
8
|
Yuan XQ, Guo ZL, Duan CQ, Yang J, Tang H, Li LY, Li T, Liu CE. Alleviation of heavy metal stress and enhanced plant complex functional restoration in abandoned Pb–Zn mining areas by the nurse plant Coriaria nepalensis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1006468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heavy metal pollution caused by mining has been a topic of concern globally because it threatens ecological functions and human health. Nearly all current remediation strategies take into account only such short-term issues as how to reduce or stabilize the content of heavy metals in soil, how to reduce the toxicity of heavy metals, and how to preserve water, soil and nutrients. However, little attention is paid to such long-term issues as whether plants can survive, whether communities can be stabilized, and whether ecosystem functions can be restored. Therefore, improving plant diversity and community stability are key aspects of improved mine restoration. To explore the possibility of reconstructing plant complexes in mining areas, the local nurse plant Coriaria nepalensis was selected as the research object for a study in the Huize Pb–Zn mining area of southwest China. C. nepalensis could increase the contents of nutrient elements (C, N, and P), reduce the contents of heavy metals (Mn, Cu, Zn, Cd, and Pb), and strengthen the plant complex functions (diversity, functional traits, and complex biomass) in its root zone. In general, C. nepalensis can form fertility islands (survival islands) in mining areas, which facilitate the colonization and success of additional less stress-resistant species. We propose C. nepalensis as a key species for use in restoration based on its ability to restore ecosystem functions under extremely stressful conditions. We encourage combination of C. nepalensis with other nurse plants to reinforce the rehabilitation of ecosystem functions.
Collapse
|
9
|
Yang S, Li Y, Liu GM, Si SC, Zhu X, Tu C, Li LZ, Luo YM. Sequential washing and eluent regeneration with agricultural waste extracts and residues for facile remediation of meta-contaminated agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155548. [PMID: 35489479 DOI: 10.1016/j.scitotenv.2022.155548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Washing with organic acids and dissolved organic carbon (DOC) is a promising technique for effective removal of potentially toxic metals from agricultural soils and the two key factors are the screening of inexpensive, high-efficiency, and environmentally friendly washing agents and the safe treatment of waste eluent. We used extracts from agro-forestry wastes (pineapple peel, lemon peel, grapefruit peel and gardening crabapple fruit) to develop a facile two-stage sequential washing method (extracts and/or citric acid (CA) and coupled with extracts) and regenerated waste eluent. The washing efficiencies of Cd and Cu were significantly increased by pineapple peel (PP) using two-stage sequential washing with the sequence of PP + CA-PP > CA-PP > PP-PP. The potential pollution risk from soil Cd was lowered by 33.0% from moderate to low risk, and soil nutrient contents increased. 80.9% of Cd and 81.3% of Cu in waste eluent were efficiently removed by the PP residues. The removal mechanisms of metals in soils and eluents by PP washing agents and residues can be attributed to acid activation, cation exchange and complexation between metal ions and carboxyl groups. Therefore, the PP extracts and residues are potentially suitable for the removal of Cd and Cu from polluted agricultural soils and washing waste eluents.
Collapse
Affiliation(s)
- Shuai Yang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
| | - Guo-Ming Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Shao-Cheng Si
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Chen Tu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
| | - Lian-Zhen Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
| | - Yong-Ming Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Xu L, Dai H, Skuza L, Xu J, Shi J, Wei S. Co-high-efficiency washing agents for simultaneous removal of Cd, Pb and As from smelting soil with risk assessment. CHEMOSPHERE 2022; 300:134581. [PMID: 35436460 DOI: 10.1016/j.chemosphere.2022.134581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Soil washing is considered a highly efficient technology due to its higher removal rate of multiple heavy metals from contaminated soil. However, previous studies on Cd, Pb and As washing agents for soils with complex contaminations did not consider the differences in As and Cd/Pb properties, resulting in the lack of effective washing compounds and washing conditions for soils with complex contaminations. Moreover, most traditional washing agents can cause secondary pollution. In this study, HEDTA and lactic acid (LA) treatments resulted in a higher Cd and Pb removal, while 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) was more effective in As removal. Most importantly, a new washing strategy was proposed with a new combined high-efficiency washing agents consisting of HEDP + LA + FeCl3 with a ratio of 6:3:1. Considering washing efficiency and consumption under optimal washing conditions, i.e. the soil/liquid (S/L) ratio of 1:20 and washing time of 48 h, the rates of Cd, Pb and As removal were 79.93%, 69.84% and 61.55%, respectively. In addition, washing process could influence the speciation of heavy metals, especially oxidizable and residual Cd and Pb fractions, as well as reducible As fraction. The washing process using the new washing agent can significantly reduce the pollution level and health risk of Cd, Pb and As contamination. The results of this study can provide an efficient washing agent for the remediation of heavy metal-contaminated soils at smelting sites, which will help protect human health.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
11
|
Flushing of Soils Highly Contaminated with Cd Using Various Washing Agents Derived from Sewage Sludge. ENERGIES 2022. [DOI: 10.3390/en15010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suitability of sewage-sludge derived washing agents (SS_WAs) (dissolved organic matter DOM; humic-like substances HLS; soluble humic substances SHS), was assessed for removing Cd from highly contaminated (300 mg/kg) sandy clay loam and clay. The soils were remediated via column flushing at two flow rates, 0.5 and 1.0 mL/min. The stability of the flow velocity (FV) depended on the type of SS_WA and decreased in the following order: DOM > HLS > SHS. Cd was most effectively removed during the first hours of flushing, and the process proceeded with a first-order kinetics. The overall process efficiency was higher at flow rate of 1.0 mL/min than at 0.5 mL/min and ranged from 65.7 (SHS) to 75.5% (DOM) for the sandy clay loam and from 64.7% (SHS) to 67.8% (DOM) for the clay. However, all SS_WAs at both flow rates removed the most mobile Cd fraction (F1) with an efficiency above 90%. Flushing improved soil characteristics in terms of the content of organic matter, humic substances and nutrients. Among all SS_WAs, DOM was the most suitable for remediation of highly Cd-contaminated soils due to high efficiency of Cd removal, the high stability of its FV during flushing and the simple manner of DOM recovery from sewage sludge.
Collapse
|
12
|
Zhong Q, Zhang S, Pan X, Wang G, Xu X, Li T, Zhou W, He Y, Luo L, Liu Y, Long L. Efficiency and comprehensive risk assessment of soil Pb and Cd by washing technique with three biodegradable eluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61811-61824. [PMID: 34184233 DOI: 10.1007/s11356-021-15037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Soil washing with environmentally friendly eluents is a rapid remediation technique for farmland polluted by heavy metals. In this study, polyepoxysuccinic acid (PESA), ethylenediamine tetra (methylene phosphonic acid) sodium (EDTMPS), and phosphonyl carboxylic acid copolymer (POCA) were applied to remedy paddy and arid soils polluted by Pb and Cd. At the same time, ethylenediaminetetraacetic acid (EDTA) was used as a control eluent. PESA showed comparable removal of soil Pb and Cd (over 80.0%) with EDTA, and EDTMPS and POCA removed two heavy metals by 35.2-50.3%. For labile fractions, PESA significantly removed Pb by 93.5-96.7% and Cd by 84.9-90.3% in two soils. EDTMPS and POCA removed Pb by 75.5-85.8% in two soils, while they only removed Cd by 11.7-42.2% in paddy soil, and 76.3-81.7% in arid soil. The risks of total heavy metal concentrations were reduced from the high risk to low risk in paddy soil, and to considerable risk in arid soil, while only dropped to considerable or even had no change by EDTMPS and POCA leaching. The risks of the two soils reduced from high to low or considerable level after PESA washing based on labile fraction change, and to considerable or high level after EDTMPS and POCA leaching, respectively. Therefore, PESA is an ecological benefit eluent for remediating the farmland polluted by heavy metals, and the risk assessment based on labile fraction more easily identifies the dynamic change of heavy metal during the washing process.
Collapse
Affiliation(s)
- Qinmei Zhong
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaomei Pan
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
13
|
Shi J, Pang J, Liu Q, Luo Y, Ye J, Xu Q, Long B, Ye B, Yuan X. Simultaneous removal of multiple heavy metals from soil by washing with citric acid and ferric chloride. RSC Adv 2020; 10:7432-7442. [PMID: 35492199 PMCID: PMC9049904 DOI: 10.1039/c9ra09999a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Citric acid and ferric chloride exhibited synergistic effect on the removal of multiple heavy metals from soil.
Collapse
Affiliation(s)
- Jiyan Shi
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jingli Pang
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qinglin Liu
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Yating Luo
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jien Ye
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qiao Xu
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Bibo Long
- Guangzhou Sugarcane Industry Research Institute
- Guangdong Bioengineering Institute
- Guangzhou
- China
| | - Binhui Ye
- Chengbang Eco-Environment Co., Ltd
- Hangzhou
- China
| | - Xiaofeng Yuan
- College of Life Science
- Zhejiang Chinese Medical University
- Hangzhou
- China
| |
Collapse
|
14
|
Chandra Joshi N, Singh A, Rajput H. Utilization of Waste Leaves Biomass of Myrica Esculenta for the Removal of Pb (II), Cd (II) and Zn (II) Ions from Waste Waters. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/ojc/340542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we have used the waste leaves of Myrica esculenta for the removal of Pb2+, Cd2+ and Zn2+ ions from the synthetically prepared waste water. The adsorption based removal process has been carried out under the batch system. The batch system was included pH, contact time, dosage, concentration and temperature. The maximum removal efficiency was achieved at optimized conditions i.e. higher contact time, higher pH, lower metal ion concentrations and moderate temperatures. The presence of various organic binding groups was characterized by FTIR spectroscopy. The percentage adsorption of Pb2+, Cd2+ and Zn2+ ions was found 97.02%, 92.52% and 81.99% at pH 6 after contact time 25 minutes. The data of adsorption were tested with Langmuir, Freundlich and Temkin isotherm models. The adsorption capacity of Pb2+, Cd2+ and Zn2+ ions was evaluated as 8.264, 5.617 and 7.751mgg-1 by Langmuir isotherm model.
Collapse
Affiliation(s)
| | - Ajay Singh
- Department of Chemistry, Uttaranchal University, Dehradun India
| | - Himanshu Rajput
- Department of Chemistry, Uttaranchal University, Dehradun India
| |
Collapse
|
15
|
Zhang H, Wang Z, Gao Y. Compound washing remediation and response surface analysis of lead-contaminated soil in mining area by fermentation broth and saponin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6899-6908. [PMID: 29273981 DOI: 10.1007/s11356-017-0971-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
The development of eluent is the key to soil washing remediation, and a compound eluent was constructed using the prepared citric acid fermentation broth and saponin in this study. It displayed a good washing performance for Pb, Cu, Cr, and Cd in red soil, and the removal rates, especially Pb, gained an improvement compared with a single eluent. Based on this, the compound eluent was applied to remediation of Pb-contaminated soil in mining area; the desorption of Pb is a heterogeneous diffusion process, and Pb in large particle size soil is relatively easy to remove. An available response surface analysis model was established; its P < 0.0001 is very significant, and the P of the missing item is 0.1152. The degree of influence of three significant factors on removal of Pb is liquid-to-solid ratio > washing time > saponin concentration, and liquid-to-solid ratio and washing time show interaction. Moreover, the Pb removal rate can reach 56.20% under the optimized conditions: 0.25% saponin concentration, 20 mL/g liquid-to-solid ratio, and 320-min washing time, which is close to the predicted value of 56.20% with a difference of 1.41%. In addition, most of the active Pb was removed and environmental risks were lowered after washing.
Collapse
Affiliation(s)
- Hongjiao Zhang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, People's Republic of China
- Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Zhengwei Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, People's Republic of China
- Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Yuntao Gao
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, People's Republic of China.
- Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
16
|
Cao Y, Zhang S, Wang G, Li T, Xu X, Deng O, Zhang Y, Pu Y. Enhancing the soil heavy metals removal efficiency by adding HPMA and PBTCA along with plant washing agents. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:33-42. [PMID: 28609727 DOI: 10.1016/j.jhazmat.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/27/2017] [Accepted: 06/04/2017] [Indexed: 06/07/2023]
Abstract
Plant washing agents-water-extracted from Coriaria nepalensis (CN), Clematis brevicaudata (CB), Pistacia weinmannifolia (PW) and Ricinus communis (RC)-are feasible and eco-friendly for soil heavy metal removal, but their single application has limited removal efficiency. To improve their metal removal efficiencies, two biodegradable assistant agents, hydrolytic polymaleic anhydride (HPMA) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), were investigated in combination with plant washing agents through batch soil washing experiments. Results showed that the addition of HPMA or PBTCA with plant agents greatly enhanced the removal efficiencies of soil heavy metals (p<0.05). Under acidic conditions, the maximum improvements in soil heavy metal removal reached 18.69% and 18.00% for soil Cd and Zn by PW+HPMA, respectively, and 12.89% for soil Pb by CN+HPMA. Under neutral or alkaline conditions, the largest improvements in soil Cd, Pb and Zn were 24.18%, 54.38% and 25.47% by PW+PBTCA, respectively. When compared with EDTA, the loss rates of soil nitrogen, phosphorus and potassium significantly decreased (p<0.05) and the soil organic carbon significantly increased (p<0.05) after washing with the combinations. Hence, the addition of HPMA or PBTCA with the plant agents could improve the removal of soil heavy metals.
Collapse
Affiliation(s)
- Yaru Cao
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ting Li
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yanzong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, China
| |
Collapse
|