1
|
Liao M, Qiu Y, Tian Y, Li Z, liu T, Feng X, Liu G, Feng Y. Ecological filter walls for efficient pollutant removal from urban surface water. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100418. [PMID: 38638606 PMCID: PMC11024571 DOI: 10.1016/j.ese.2024.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Urban surface water pollution poses significant threats to aquatic ecosystems and human health. Conventional nitrogen removal technologies used in urban surface water exhibit drawbacks such as high consumption of carbon sources, high sludge production, and focus on dissolved oxygen (DO) concentration while neglecting the impact of DO gradients. Here, we show an ecological filter walls (EFW) that removes pollutants from urban surface water. We utilized a polymer-based three-dimensional matrix to enhance water permeability, and emergent plants were integrated into the EFW to facilitate biofilm formation. We observed that varying aeration intensities within the EFW's aerobic zone resulted in distinct DO gradients, with an optimal DO control at 3.19 ± 0.2 mg L-1 achieving superior nitrogen removal efficiencies. Specifically, the removal efficiencies of total organic carbon, total nitrogen, ammonia, and nitrate were 79.4%, 81.3%, 99.6%, and 79.1%, respectively. Microbial community analysis under a 3 mg L-1 DO condition revealed a shift in microbial composition and abundance, with genera such as Dechloromonas, Acinetobacter, unclassified_f__Comamonadaceae, SM1A02 and Pseudomonas playing pivotal roles in carbon and nitrogen elimination. Notably, the EFW facilitated shortcut nitrification-denitrification processes, predominantly contributing to nitrogen removal. Considering low manufacturing cost, flexible application, small artificial trace, and good pollutant removal ability, EFW has promising potential as an innovative approach to urban surface water treatment.
Collapse
Affiliation(s)
- Menglong Liao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ye Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yan Tian
- Heilongjiang Academy of Chemical Engineering, No 3, Nanhu Street, Century District, High-Tech Zone, Harbin, 150028, China
| | - Zeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tongtong liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinlei Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Ali M, Aslam A, Qadeer A, Javied S, Nisar N, Hassan N, Hussain A, Ali B, Iqbal R, Chaudhary T, Alwahibi MS, Elshikh MS. Domestic wastewater treatment by Pistia stratiotes in constructed wetland. Sci Rep 2024; 14:7553. [PMID: 38555358 PMCID: PMC10981706 DOI: 10.1038/s41598-024-57329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The objective of the study was to evaluate the performance of Pistia stratiotes for treatment of domestic wastewater in a free surface water flow constructed wetland. The objective of the study was to evaluate contaminants removal efficiency of the constructed wetland vegetated with P. stratiotes in treatment of domestic wastewater against Hydraulic retention time (HRT) of 10, 20 and 30 days was investigated. This asks for newer and efficient low-cost nature-based water treatment system which along with cost takes into consideration the sustainability of the ecosystem. Five constructed wetland setups improved the wastewater quality and purify it significantly by reducing the TDS by 83%, TSS by 82%, BOD by 82%, COD by 81%, Chloride by 80%, Sulfate by 77%, NH3 by 84% and Total Oil and Grease by 74%. There was an increase in pH of about 11.9%. Color and odor of wastewater was also improved significantly and effectively. It was observed that 30 days' HRT was optimum for the treatment of domestic wastewater. The final effluent was found to be suitable as per national environmental quality standards and recycled for watering plants and crop irrigation but not for drinking purposes. The treatment in constructed wetland system was found to be economical, as the cost of construction only was involved and operational and maintenance cost very minimal. Even this research was conducted on the sole purpose of commuting the efficiency of pollutant removal in short span time.
Collapse
Affiliation(s)
- Majid Ali
- Environmental Sciences Department, The University of Lahore, Lahore, 54000, Pakistan
| | - Ambreen Aslam
- Environmental Sciences Department, The University of Lahore, Lahore, 54000, Pakistan.
| | - Abdul Qadeer
- Mehran University of Engineering and Technology, Jamshoro, 76060, Pakistan
| | - Sabiha Javied
- Environmental Sciences Department, The University of Lahore, Lahore, 54000, Pakistan
| | - Numrah Nisar
- Lahore College for Women University, Lahore, 54000, Pakistan
| | - Nayyer Hassan
- English Department, University of Lahore, Lahore, 54000, Pakistan
| | - Afzal Hussain
- Environmental Sciences Department, The University of Lahore, Lahore, 54000, Pakistan.
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Talha Chaudhary
- Faculty of Agricultural and Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary.
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zhang SY, Liu X, Hao B, Liang Y, Ma Y, Wang N, Zhang Z, He B. Nitrogen removal performance and mechanisms of three aquatic plants for farmland tail water purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170524. [PMID: 38296062 DOI: 10.1016/j.scitotenv.2024.170524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Constructed wetlands (CWs) are commonly used to control excessive nitrogen from farmlands; however, the interactions between vegetation and microorganisms, nitrogen removal performance, and the mechanisms involved remain unclear in subtropical areas. This study aimed to investigate the nitrogen removal performance and mechanism of CWs containing Canna indica, Acorus calamus, and Thalia dealbata. The results show that CWs with plants had significantly higher nitrogen removal efficiencies than those without, with those planted with T. dealbata having the highest efficiency. T. dealbata performed better than the other two plants due to its high biomass and excellent nitrogen uptake capacity; more importantly, CWs with it had the highest abundance of nitrogen functional genes. Microbial nitrification-denitrification, the primary process of nitrogen removal in CWs, contributed to 88 %, 91 %, and 84 % of the TN removal in the CWs with C. indica, A. calamus, and T. dealbata, respectively, 29 %-158 % higher than that in CWs without plants. Microorganisms played a crucial role in nitrogen removal in the CWs, while plants significantly stimulated microbial activity by enhancing microbial abundance and creating a suitable environment for growth and metabolism. These results can help in understanding the contribution of plants in cleaning farmland tailwater and further optimization of plant configuration and management strategies in wetland ecosystems to improve nitrogen removal efficiency.
Collapse
Affiliation(s)
- Si-Yi Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xuejian Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Beibei Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying Liang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yu Ma
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Nan Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhihua Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bin He
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Chen J, Chen Y, Wang F, Li T, Liu Q, He M. Ecological ditch technology and development prospect based on nature-based solutions: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3376-3393. [PMID: 38114702 DOI: 10.1007/s11356-023-31508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
The core of the concept of nature-based solutions (NBS) is ecological protection, which is the same direction as China's double-carbon goal and has attracted much attention in China. Ecological ditch sewage treatment technology has been widely used in controlling agricultural non-point source pollution because of its advantages of high pollutant removal efficiency and low energy consumption. Suppose the NBS concept of sustainable management, restoration, and ecological protection is integrated into the research and development and application of ecological ditch technology. In that case, it can not only improve the effective removal of pollutants, achieve the purpose of recycling water resources and nutrient elements, but also realize economic, environmental, and social benefits. This paper describes the ecosystem service functions provided by ecological ditches in detail, evaluates their economic values through literatures review, so as to raise people's awareness of natural resource conservation and realize the sustainable management of ecological ditches.
Collapse
Affiliation(s)
- Jinxiu Chen
- School of Energy and Environmental Engineering, The University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuefang Chen
- School of Energy and Environmental Engineering, The University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Tong Li
- School of Energy and Environmental Engineering, The University of Science and Technology Beijing, Beijing, 100083, China
| | - Qian Liu
- School of Energy and Environmental Engineering, The University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengxue He
- School of Energy and Environmental Engineering, The University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Kumwimba MN, Huang J, Dzakpasu M, Ajibade FO, Li X, Sanganyado E, Guadie A, Şenel E, Muyembe DK. Enhanced nutrient removal in agro-industrial wastes-amended hybrid floating treatment wetlands treating real sewage: Laboratory microcosms to field-scale studies. CHEMOSPHERE 2023; 330:138703. [PMID: 37100253 DOI: 10.1016/j.chemosphere.2023.138703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
The use of natural agro-industrial materials as suspended fillers (SFs) in floating treatment wetlands (FTWs) to enhance nutrient removal performance has recently been gaining significant attention. However, the knowledge concerning the nutrient removal performance enhancement by different SFs (alone and in mixtures) and the major removal pathways is so far inadequate. The current research, for the first time, carried out a critical analysis using five different natural agro-industrial materials (biochar, zeolite, alum sludge, woodchip, flexible solid packing) as SFs in various FTWs of 20 L microcosm tanks, 450 L outdoor mesocosms, and a field-scale urban pond treating real wastewater over 180 d. The findings demonstrated that the incorporation of SFs in FTWs enhanced the removal performance of total nitrogen (TN) by 20-57% and total phosphorus (TP) by 23-63%. SFs further enhanced macrophyte growth and biomass production, leading to considerable increases in nutrient standing stocks. Although all the hybrid FTWs showed acceptable treatment performances, FTWs set up with mixtures of all five SFs significantly enhanced biofilm formation and enriched the abundances of the microbial community related to nitrification and denitrification processes, supporting the detected excellent N retention. N mass balance assessment demonstrated that nitrification-denitrification was the major N removal pathway in reinforced FTWs, and the high removal efficiency of TP was attributable to the incorporation of SFs into the FTWs. Nutrient removal efficiencies ranked in the following order among the various trials: microcosm scale (TN: 99.3% and TP: 98.4%) > mesocosm scale (TN: 84.0% and TP: 95.0%) > field scale (TN: -15.0-73.7% and TP: -31.5-77.1%). These findings demonstrate that hybrid FTWs could be easily scaled up for the removal of pollutants from eutrophic freshwater systems over the medium term in an environmentally-friendly way in regions with similar environmental conditions. Moreover, it demonstrates hybrid FTW as a novel way of disposing of significant quantities of wastes, showing a win-win means with a huge potential for large-scale application.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Faculty of Agronomy, University of Lubumbashi, Democratic Republic of Congo
| | - Jinlou Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fidelis Odedishemi Ajibade
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Civil and Environmental Engineering, Federal University of Technology, Akure, PMB 704, Nigeria
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - Awoke Guadie
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch, 21, Ethiopia
| | - Engin Şenel
- Hitit University Faculty of Medicine, Department of Dermatology, Çorum, Turkey
| | - Diana Kavidia Muyembe
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
6
|
Kumwimba MN, Li X, Huang J, Muyembe DK, Dzakpasu M, Sanganyado E. Performance of various fillers in ecological floating beds planted with Myriophyllum aquaticum treating municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156827. [PMID: 35750173 DOI: 10.1016/j.scitotenv.2022.156827] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The performance of different suspended fillers (zeolite, drinking water treatment residual, biochar, woodchip and stereo-elastic packing) and their combinations in treating municipal wastewater in ecological floating beds (Eco-FBs) planted with Myriophyllum aquaticum was assessed. Six sets of enhanced Eco-FBs were developed to assess the individual and synergistic effects of combinations of the various fillers and microorganisms on nutrient elimination. The results demonstrated mean TN, NH4-N, TP and COD purification efficiencies of 99.2 ± 11.2 %, 99.82 ± 16.4 %, 98.3 ± 14.3 %, and 96.1 ± 12.3 %, respectively in the Eco-FBs strengthened with all five fillers. The corresponding purification rates were 0.89 ± 0.14, 0.75 ± 0.12, 0.08 ± 0.016, and 7.05 ± 1.09 g m-2 d-1, which were 2-3 times higher than those of the conventional Eco-FB system. High-throughput sequencing showed that some genera related to nutrient transformation, including Proteobacteria (24.13-51.95 %), followed by Chloroflexi (5.64-25.01 %), Planctomycetes (8.48-14.43 %) and Acidobacteria (2.29-11.65 %), were abundantly enriched in the strengthened Eco-FBs. Enhancement of the Eco-FBs with various fillers significantly increased microbial species richness and diversity as demonstrated by Chao1, Shannon and Simpson's indexes, particularly when all the five fillers were combined. Therefore, introducing suspended fillers into Eco-FBs is an appropriate approach for improving nutrient elimination from municipal wastewater.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Agronomy, University of Lubumbashi, Democratic Republic of Congo
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlou Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Diana Kavidia Muyembe
- Institute of Food Science & Technology, Chinese Academy of Agricultural Sciences, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
7
|
Patyal V, Jaspal D, Khare K. Materials in constructed wetlands for wastewater remediation: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2853-2872. [PMID: 34595802 DOI: 10.1002/wer.1648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The wastewater treatment industry is constantly evolving to abate emerging contaminants and to meet stringent legislative requirements. The existing technologies need to be modified, or new innovative treatment techniques need to be developed to ensure environmental protection and secure sustainability in the future. Emphasis is mainly on nutrient recovery, energy-efficient systems, zero waste generation, and environmentally friendly techniques. Constructed wetlands (CWs) have evolved as natural, eco-friendly, economical, and low-maintenance alternatives for wastewater remediation. These wetlands employ several materials as adsorbents for the treatment, commonly known as media/substrate. This review paper presents an assessment of various materials that can be used as substrates in CWs for the efficient removal of organic and non-biodegradable pollutants in different types of wastewaters. The effect of pH, mineral composition, specific surface area, and porosity of various natural materials and agricultural and industrial wastes used as media in CWs for wastewater remediation was discussed. The study showed that different substrates like alum sludge, limestone, coal slags, rice husk, and sand had removal efficiency for chemical oxygen demand (COD): 71.8%-82%, total phosphorous (TP): 77%-80%, and total nitrogen (TN): 52%-82% for different types of wastewaters. It also highlights the challenges related to the long-term sustainability of these materials. PRACTITIONER POINTS: Physicochemical characteristics influence the removal efficiency of the materials Life of media is also important along with removal efficiency and cost The sustainability of materials is very crucial for the overall performance of the system.
Collapse
Affiliation(s)
- Vandana Patyal
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Dipika Jaspal
- Department of Applied Science, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Kanchan Khare
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| |
Collapse
|
8
|
Nsenga Kumwimba M, Zhu B, Wang T, Dzakpasu M, Li X. Nutrient dynamics and retention in a vegetated drainage ditch receiving nutrient-rich sewage at low temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140268. [PMID: 32563129 DOI: 10.1016/j.scitotenv.2020.140268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Vegetated agricultural drainage ditches (VDs) are a relatively new best management practice for pesticide and nutrient mitigation that is receiving increasing global interest. However, VDs are seldom used during winter due to considerable deterioration of pollutants reduction efficiencies driven by low-temperature effects. Limited knowledge on the internal loading of nutrient in VDs due to vegetation decomposition calls for further evaluation. Here, we assessed plants growth characteristics and nutrient dynamics in a field-scale VD receiving nutrient-rich sewage and planted with the overwintering plants: Acorus gramineus, Myriophyllum aquaticum and Iris sibirica. Water purification performance showed average TN, NH4-N, NO3-N, TP and PO4-P reduction efficiencies of 44, 46, 43, 52 and 46%, respectively, over the winter period. Maximum reduction rates of TN and TP were 5.31 and 0.34 g-2 d-1, respectively. Of the total nutrient removal by plants of 5.37 × 103 kg N y-1 and 0.65 × 103 kg P y-1 from the VD system, A. gramineus contributed 65.7% and 72.1%, respectively. Nonetheless, substantial amounts of N and P retained within the aboveground biomass were released into the water column as ditch plant shoots decayed to deteriorate the water quality. All three species, A. gramineus, M. aquaticum and I. sibirica demonstrated considerable nutrient accumulation during winter and facilitated nutrient retention in the VD system. Consequently, they can be considered effective overwintering species of choice in VDs for purifying nutrient-rich water and potentially appropriate for vulgarizing elsewhere, particularly throughout the winter season.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo; Key Lab of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Bo Zhu
- Key Lab of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Tao Wang
- Key Lab of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Dynamic Interception Effect of Internal and External Nitrogen and Phosphorus Migration of Ecological Ditches. WATER 2020. [DOI: 10.3390/w12092553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The “ecological ditch” (eco-ditch) is an effective measure used to alleviate agricultural non-point-source pollution. However, information is lacking about the continuous transport characteristics of internal and external nitrogen and phosphorus in the interstitial water of the bottom mud of these ditches and overlying water under dynamic continuous inflow conditions. Understanding of the effect of matrix dams and microbial communities inside eco-ditches on the continuous transport characteristics of the N and P therein needs to be improved. To determine the interception effects of eco-ditches on the transfer of endogenous and exogenous N and P, an eco-ditch combining plants and a matrix dam was built to explore the transport distribution characteristics of N and P in the intermittent water and overlying water in the bottom of the eco-ditch and in the bottom of the soil ditch. We compared and analyzed the composition characteristics of the microbiological communities along the ecological and soil ditches. The research results showed that: (1) The concentration gradient between the interstitial water and the overlying water in the soil ditch is the main reason for the transport and diffusion of pollutants. However, in eco-ditches, the absorption function of plant roots and the differences between the structures of the microbial communities destroy the correlation of this concentration gradient diffusion, especially the effect on ammonium N; (2) a large number of mycelia adhere to the surface of the matrix dam in an eco-ditch, and are conducive to the adsorption and purification of pollutants in the water; (3) Proteobacteria, Chloroflexi, Actinomycetes, and Acidobacteria were the main bacterial groups in the ditches. The aquatic plants in the eco-ditch changed the microenvironment of the sediment, and both the microbial diversity and abundance along the eco-ditch were higher than in the soil ditch.
Collapse
|
10
|
Zhang S, Liu F, Huang Z, Xiao R, Zhu H, Wu J. Are vegetated drainage ditches effective for nitrogen removal under cold temperatures? BIORESOURCE TECHNOLOGY 2020; 301:122744. [PMID: 31972400 DOI: 10.1016/j.biortech.2020.122744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Vegetated ditches are widely used to treat agricultural wastewater, but effective nitrogen removal at low temperatures remains a challenge because plants wilt in the winter. In this study, three simulated drainage ditches vegetated with Myriophyllum aquaticum were operated with low, medium, and high water levels to study ammonium nitrogen (NH4+-N) removal under cold temperatures. The M. aquaticum ditches had a mean NH4+-N removal efficiency of 75.8-86.8% throughout cold period. Based on nitrogen mass balance, plant uptake, sediment adsorption, and microbial removal accounted for 12.4-21.5%, 0.0-8.1%, and 38.9-54.6% of the influent total nitrogen loading, respectively. The accumulation of nitrate confirmed that intense microbial nitrification occurred in M. aquaticum ditches even at low temperature. These results suggest that M. aquaticum is appropriate as a cold-tolerant plant for NH4+-N removal in drainage ditches.
Collapse
Affiliation(s)
- Shunan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China.
| | - Zhenrong Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| | - Runlin Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| | - Huixiang Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| |
Collapse
|
11
|
Gupta S, Srivastava P, Yadav AK. Simultaneous removal of organic matters and nutrients from high-strength wastewater in constructed wetlands followed by entrapped algal systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1112-1117. [PMID: 31820236 DOI: 10.1007/s11356-019-06896-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The present work designs a low-cost biological treatment strategy consisting of constructed wetlands (CWs) followed by entrapped algae (EA) for removing nutrients (PO43-, NO3-, and NH4+) and organic matters from high-strength wastewater. The CWs are efficient means for organic pollutant removal but face challenges in nutrient removal. Algae have a high growth rate and nutrient uptake capabilities from wastewater. The severe challenge that limits the use of algae for nutrient removal from wastewater is its post-treatment separation from wastewater. This work presents a strategy to address the described problems of CWs and algae-based system. It also assesses the performance of the system using synthetic wastewater. A combined system of CW followed by EA (CW-EA) was able to treat 86.0% of phosphate, 95.0% of nitrate, 74.0% of ammonium, and 87.0% of chemical oxygen demand (COD) from high-strength wastewater.
Collapse
Affiliation(s)
- Supriya Gupta
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Pratiksha Srivastava
- Australian Maritime College, College of Science and Engineering, University of Tasmania, Launceston, Tasmania, 7248, Australia
| | - Asheesh Kumar Yadav
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India.
| |
Collapse
|
12
|
Kumar S, Dutta V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11662-11673. [PMID: 30879235 DOI: 10.1007/s11356-019-04816-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Constructed wetland microcosms (CWMs) are artificially designed ecosystem which utilizes both complex and ordinary interactions between supporting media, macrophytes, and microorganisms to treat almost all types of wastewater. CWMs are considered as green and sustainable techniques which require lower energy input, less operational and maintenance cost and provide critical ecological benefits such as wildlife habitat, aquaculture, groundwater recharge, flood control, recreational uses, and add aesthetic value. They are good alternatives to conventional treatment systems particularly for smaller communities as well as distant and decentralized locations. The pH, dissolved oxygen (DO), and temperature are the key controlling factors while several other parameters such as hydraulic loading rates (HLR), hydraulic retention time (HRT), diversity of macrophytes, supporting media, and water depth are critical to achieving better performance. From the literature survey, it is evaluated that the removal performance of CWMs can be improved significantly through recirculation of effluent and artificial aeration (intermittent). This review paper presents an assessment of CWMs as a sustainable option for treatment of wastewater nutrients, organics, and heavy metals from domestic wastewater. Initially, a concise note on the CWMs and their components are presented, followed by a description of treatment mechanisms, major constituents involved in the treatment process, and overall efficiency. Finally, the effects of ecological factors and challenges for their long-term operations are highlighted.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Environmental Science (DES), School of Environmental Science (SES), Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, UP, 226025, India
| | - Venkatesh Dutta
- Department of Environmental Science (DES), School of Environmental Science (SES), Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, UP, 226025, India.
| |
Collapse
|
13
|
Zhou L, Chen G, Cui N, Pan Q, Song X, Zou G. Allelopathic Effects on Microcystis aeruginosa and Allelochemical Identification in the Cuture Solutions of Typical Artificial Floating-Bed Plants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:115-121. [PMID: 30483838 DOI: 10.1007/s00128-018-2486-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Cyperus alternifolius (C. alternifolius) and Canna generalis (C. generalis) are widely used as artificial floating-bed (AFB) plants for water pollution control. This study evaluated the release of anti-cyanobacterial allelochemicals from both plants in AFB systems. A series of cyanobacterial assays using pure culture solutions and extracts of culture solutions of C. alternifolius and C. generalis demonstrated allelopathic growth inhibition of a cyanobacterium M. aeruginosa. After 45 days of incubation by the culture solutions, both final inhibitory rates of M. aeruginosa were more than 99.6% compared with that of the control groups. GC/MS analyses indicated the presence of a total of 15 kinds of compounds, including fatty acids and phenolic compounds, in both plants' culture solutions, which are are anti-cyanobacterial. These findings provide a basis to apply artificial floating-bed plants for cyanobacterial inhibition using allelopathic effects.
Collapse
Affiliation(s)
- Li Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Guifa Chen
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Naxin Cui
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Qi Pan
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xiangfu Song
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Guoyan Zou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China.
| |
Collapse
|
14
|
Nsenga Kumwimba M, Meng F, Iseyemi O, Moore MT, Zhu B, Tao W, Liang TJ, Ilunga L. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:742-759. [PMID: 29803045 DOI: 10.1016/j.scitotenv.2018.05.184] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 05/27/2023]
Abstract
Domestic wastewater and agricultural runoff are increasingly viewed as major threats to both aquatic and terrestrial ecosystems due to the introduction of non-point source inorganic (e.g., nitrogen, phosphorus and metals) and organic (e.g., pesticides and pharmaceutical residues) pollutants. With rapid economic growth and social change in rural regions, it is important to examine the treatment systems in rural and remote areas for high efficiency, low running costs, and minimal maintenance in order to minimize its influence on water bodies and biodiversity. Recently, the use of vegetated drainage ditches (VDDs) has been employed in treatment of domestic sewage and agricultural runoff, but information on the performance of VDDs for treating these pollutants with various new management practices is still not sufficiently summarized. This paper aims to outline and review current knowledge related to the use of VDDs in mitigating these pollutants from domestic sewage and agricultural runoff. Literature analysis has suggested that further research should be carried out to improve ditch characteristics and management strategies inside ditches in order to ensure their effectiveness. Firstly, the reported major ditch characteristics with the most effect on pollutant removal processes (e.g., plant species, weirs, biofilms, and substrates selection) were summarized. The second focus concerns the function of ditch characteristics in VDDs for pollutant removal and identification of possible removal mechanisms involved. Thirdly, we examined factors to consider for establishing appropriate management strategies within ditches and how these could influence the whole ditch design process. The current review promotes areas where future research is needed and highlights clear and sufficient evidence regarding performance and application of this overlooked ditch system to reduce pollutants.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, PR China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Congo; Département de géologie, Faculté des sciences, Lubumbashi, Congo.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Oluwayinka Iseyemi
- Delta Water Management Research Unit, USDA Agricultural Research Service, Jonesboro, USA
| | - Matthew T Moore
- Water Quality and Ecology Research Unit, USDA Agricultural Research Service, National Sedimentation Laboratory, Oxford, MS 38655, USA
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, PR China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, PR China
| | - Wang Tao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, PR China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, PR China
| | - Tang Jia Liang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, PR China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, PR China
| | - Lunda Ilunga
- Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Congo; Département de géologie, Faculté des sciences, Lubumbashi, Congo
| |
Collapse
|
15
|
Zhu Y, Tu X, Chai XS, Wei Q, Guo L. Biological activities and nitrogen and phosphorus removal during the anabaena flos-aquae biofilm growth using different nutrient form. BIORESOURCE TECHNOLOGY 2018; 251:7-12. [PMID: 29253782 DOI: 10.1016/j.biortech.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
This work investigated the biological activities and nitrogen and phosphorus removal during the anabaena flos-aquae biofilm growth on the polyvinyl chloride (PVC) carriers, in different nutrient form mediums. The study showed that the production of dehydrogenase activity (DHA) and extracellular polymeric substances (EPS) can reach 40.4 g/(h·m2) and 115 × 10-2 g/m2 in an 11-day period, respectively, indicating that the anabaena flos-aquae biofilm had high biological activities. The results showed that the nitrogen and phosphorus removal reached 94.9 and 96.8%, respectively, in the ammonium form nitrogen group; while 97.7% of phosphorus were removed in the orthophosphate form phosphorous group. A comparison study was conducted and results showed that the present anabaena flos-aquae based biofilm provided a better removal of nitrogen and phosphorus than the other microalgae biofilms.
Collapse
Affiliation(s)
- Yuxuan Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiaojie Tu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xin-Sheng Chai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Lina Guo
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|