1
|
Li L, Niu X, Zhang D, Ye X, Zhang Z, Liu Q, Ding L, Chen K, Chen Y, Chen K, Shi Z, Lin Z. A systematic review on percarbonate-based advanced oxidation processes in wastewater remediation: From theoretical understandings to practical applications. WATER RESEARCH 2024; 259:121842. [PMID: 38820735 DOI: 10.1016/j.watres.2024.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Percarbonate encompasses sodium percarbonate (SPC) and composite in-situ generated peroxymonocarbonate (PMC). SPC emerges as a promising alternative to hydrogen peroxide (H2O2), hailed for its superior transportation safety, stability, cost-effectiveness, and eco-friendliness, thereby becoming a staple in advanced oxidation processes for mitigating water pollution. Yet, scholarly literature scarcely explores the deployment of percarbonate-AOPs in eradicating organic contaminants from aquatic systems. Consequently, this review endeavors to demystify the formation mechanisms and challenges associated with reactive oxygen species (ROS) in percarbonate-AOPs, alongside highlighting directions for future inquiry and development. The genesis of ROS encompasses the in situ chemical oxidation of activated SPC (including iron-based activation, discharge plasma, ozone activation, photon activation, and metal-free materials activation) and composite in situ chemical oxidation via PMC (namely, H2O2/NaHCO3/Na2CO3, peroxymonosulfate/NaHCO3/Na2CO3 systems). Moreover, the ROS generated by percarbonate-AOPs, such as •OH, O2•-, CO3•-, HO2•-, 1O2, and HCO4-, can work individually or synergistically to disintegrate target pollutants. Concurrently, this review systematically addresses conceivable obstacles posing percarbonate-AOPs in real-world application from the angle of environmental conditions (pH, temperature, coexisting substances), and potential ecological toxicity. Considering the outlined challenges and advantages, we posit future research directions to amplify the applicability and efficacy of percarbonate-AOPs in tangible settings. It is anticipated that the insights provided in this review will catalyze the progression of percarbonate-AOPs in water purification endeavors and bridge the existing knowledge void.
Collapse
Affiliation(s)
- Ling Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xinyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhilin Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Kun Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Yang Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Kunyang Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Zhaocai Shi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Li J, Chen A, Meng Q, Xue H, Yuan B. A Novel Spectrophotometric Method for Determination of Percarbonate by Using N, N-Diethyl-P-Phenylenediamine as an Indicator and Its Application in Activated Percarbonate Degradation of Ibuprofen. Molecules 2023; 28:7732. [PMID: 38067463 PMCID: PMC10708432 DOI: 10.3390/molecules28237732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Sodium percarbonate (SPC) concentration can be determined spectrophotometrically by using N, N-diethyl-p-phenylenediamine (DPD) as an indicator for the first time. The ultraviolet-visible spectrophotometry absorbance of DPD•+ measured at 551 nm was used to indicate SPC concentration. The method had good linearity (R2 = 0.9995) under the optimized experimental conditions (pH value = 3.50, DPD = 4 mM, Fe2+ = 0.5 mM, and t = 4 min) when the concentration of SPC was in the range of 0-50 μM. The blank spiked recovery of SPC was 95-105%. The detection limit and quantitative limit were 0.7-1.0 μM and 2.5-3.3 μM, respectively. The absorbance values of DPD•+ remained stable within 4-20 min. The method was tolerant to natural water matrix and low concentration of hydroxylamine (<0.8 mM). The reaction stoichiometric efficiency of SPC-based advanced oxidation processes in the degradation of ibuprofen was assessed by the utilization rate of SPC. The DPD and the wastewater from the reaction were non-toxic to Escherichia coli. Therefore, the novel Fe2+/SPC-DPD spectrophotometry proposed in this work can be used for accurate and safe measurement of SPC in water.
Collapse
Affiliation(s)
| | | | | | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (J.L.); (A.C.); (Q.M.); (B.Y.)
| | | |
Collapse
|
3
|
Huo M, Zou D, Lin Y, Lou Y, Liu G, Li S, Chen L, Yuan B, Zhang Q, Hou A. Enhanced degradation of emerging contaminants by percarbonate/Fe(II)-ZVI process: case study with nizatidine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53309-53322. [PMID: 36854942 DOI: 10.1007/s11356-023-25876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceuticals have recently emerged as a significant environmental concern due to the growth of population, expansion of industry, and the shift in modern lifestyles. Herein, we present a Fe(II)/percarbonate (SPC) process with dramatically enhanced efficiency by the introduction of zerovalent iron (ZVI). After the addition of ZVI, the removal rate of nizatidine (NZTD) went up from 71.7 to 84.2%. The removal rate of NZTD decreases with rising pH and speeds up with increasing temperature. It was found that under the condition of pH = 7 and T = 25 °C, the molar ratio of the optimal concentration of NZTD degradation in the system was [NZTD]0:[SPC]0:[Fe(II)]0:[ZVI]0 = 1:8:24:16, with a degradation rate of 99.8%. At the same time, target pollutants can also be successfully eliminated from actual water bodies. Moreover, we test for toxicity using luminescent bacteria, and the results demonstrate that the system is capable of effectively decreasing the toxicity of NZTD. The research findings can contribute to the clarification of the migration and transformation law of NZTD in the oxidation process, thereby providing a scientific basis and technical support for the removal of NZTD in the tertiary water treatment for a water source.
Collapse
Affiliation(s)
- Mingxin Huo
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Deqiang Zou
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| | - Yi Lou
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Gen Liu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, 130117, Jilin, China
| | - Siwen Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, 130117, Jilin, China
| | - Lei Chen
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - BaoLing Yuan
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Qingyu Zhang
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Ao Hou
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
4
|
Li Y, Dong H, Xiao J, Li L, Chu D, Hou X, Xiang S, Dong Q, Zhang H. Advanced oxidation processes for water purification using percarbonate: Insights into oxidation mechanisms, challenges, and enhancing strategies. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130014. [PMID: 36152542 DOI: 10.1016/j.jhazmat.2022.130014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Percarbonate (SPC) has drawn considerable attention due to its merits in the safety of handling and transport, stability, and price as well as environmental friendliness, which has been extensively applied in advanced oxidation processes (AOPs) for water decontamination. Nevertheless, comprehensive information on the application of SPC-AOPs for the treatment of organic compounds in aquatic media is scarce. Hence, the focus of this review is to shed light on the mechanisms of reactive oxygen species (ROS) evolution in typical SPC-AOPs (i.e., Fenton-like oxidation, photo-assisted oxidation, and discharge plasma-involved oxidation processes). These SPC-AOPs enable the formation of multiple reactive species like hydroxyl radical (•OH), superoxide radical (O2•-), singlet oxygen (1O2), carbonate radicals (CO3•-), and peroxymonocarbonate (HCO4-), which together or solely contribute to the degradation of target pollutants. Simultaneously, the potential challenges in practical applications of SPC-AOPs are systematically discussed, which include the influence of water quality parameters, cost-effectiveness, available active sites, feasible activation approaches, and ecotoxicity. Subsequently, enhancing strategies to improve the feasibility of SPC-AOPs in the practical implementation are tentatively proposed, which can be achieved by introducing reducing and chelating agents, developing novel activation approaches, designing multiple integrated oxidation processes, as well as alleviating the toxicity after SPC-AOPs treatment. Accordingly, future perspectives and research gaps in SPC-AOPs are elucidated. This review will hopefully offer valuable viewpoints and promote the future development of SPC-AOPs for actual water purification.
Collapse
Affiliation(s)
- Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoxuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Wang W, Xu Y, Zhong D, Zhong N. Rapid Treatment and Reaction Mechanism of Complexation Plating Effluents by Molybdenum Disulfide/Copper Sulfide+Peroxosulfate Process. ChemistrySelect 2021. [DOI: 10.1002/slct.202102627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenyan Wang
- School of Chemical Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yunlan Xu
- School of Chemical Engineering Chongqing University of Technology Chongqing 400054 China
| | - Dengjie Zhong
- School of Chemical Engineering Chongqing University of Technology Chongqing 400054 China
| | - Nianbing Zhong
- School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing 400054 China
| |
Collapse
|
6
|
Liu X, He S, Yang Y, Yao B, Tang Y, Luo L, Zhi D, Wan Z, Wang L, Zhou Y. A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water. ENVIRONMENTAL RESEARCH 2021; 200:111371. [PMID: 34081973 DOI: 10.1016/j.envres.2021.111371] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Sodium percarbonate (SPC) is considered a potential alternative to liquid hydrogen peroxide (H2O2) in organic compounds contaminated water/soil remediation due to its regularly, transportable, economical, and eco-friendly features. The solid state of SPC makes it more suitable to remediate actual soil and water with a milder H2O2 release rate. Apart from its good oxidative capacity, alkaline SPC can simultaneously remediate acidized solution and soil to the neutral condition. Conventionally, percarbonate-based advanced oxidation process (P-AOPs) system proceed through the catalysis under ultraviolet ray, transition metal ions (i.e., Fe2+, Fe3+, and V4+), and nanoscale zero-valent metals (iron, zinc, copper, and nickel). The hydroxyl radical (•OH), superoxide radical (•O2-), and carbonate radical anion (•CO3-) generated from sodium percarbonate could attack the organic pollutant structure. In this review, we present the advances of P-AOPs in heterogeneous and homogeneous catalytic processes through a wide range of activation methods. This review aims to give an overview of the catalysis and application of P-AOPs for emerging contaminants degradation and act as a guideline of the field advances. Various activation methods of percarbonate are summarized, and the influence factors in the solution matrix such as pH, anions, and cations are thoroughly discussed. Moreover, this review helps to clarify the advantages and shortcomings of P-AOPs in current scientific progress and guide the future practical direction of P-AOPs in sustainable carbon catalysis and green chemistry.
Collapse
Affiliation(s)
- Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China
| | - Sen He
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, China.
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China
| | - Yifei Tang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China
| | - Zhonghao Wan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410028, China.
| |
Collapse
|
7
|
Zhang BT, Kuang L, Teng Y, Fan M, Ma Y. Application of percarbonate and peroxymonocarbonate in decontamination technologies. J Environ Sci (China) 2021; 105:100-115. [PMID: 34130827 DOI: 10.1016/j.jes.2020.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 05/21/2023]
Abstract
Sodium percarbonate (SPC) and peroxymonocarbonate (PMC) have been widely used in modified Fenton reactions because of their multiple superior features, such as a wide pH range and environmental friendliness. This broad review is intended to provide the fundamental information, status and progress of SPC and PMC based decontamination technologies according to the peer-reviewed papers in the last two decades. Both SPC and PMC can directly decompose various pollutants. The degradation efficiency will be enhanced and the target contaminants will be expanded after the activation of SPC and PMC. The most commonly used catalysts for SPC activation are iron compounds while cobalt compositions are applied to activate PMC in homogenous and heterogeneous catalytical systems. The generation and participation of hydroxyl, superoxide and/or carbonate radicals are involved in the activated SPC and PMC system. The reductive radicals, such as carbon dioxide and hydroxyethyl radicals, can be generated when formic acid or methanol is added in the Fe(II)/SPC system, which can reduce target contaminants. SPC can also be activated by energy, tetraacetylethylenediamine, ozone and buffered alkaline to generate different reactive radicals for pollutant decomposition. The SPC and activated SPC have been assessed for application in-situ chemical oxidation and sludge dewatering treatment. The challenges and prospects of SPC and PMC based decontamination technologies are also addressed in the last section.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lulu Kuang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, United States.
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
8
|
Fayazi M. Preparation and characterization of carbon nanotubes/pyrite nanocomposite for degradation of methylene blue by a heterogeneous Fenton reaction. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Sun X, Gu X, Lyu S. The performance of chlorobenzene degradation in groundwater: comparison of hydrogen peroxide, nanoscale calcium peroxide and sodium percarbonate activated with ferrous iron. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:344-357. [PMID: 33504699 DOI: 10.2166/wst.2020.587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chlorobenzene (CB) degradation performances by various oxidants, including hydrogen peroxide (H2O2), nanoscale calcium peroxide (nCaO2) and sodium percarbonate (SPC), activated with ferrous iron (Fe(II)) were investigated and thoroughly compared. The results showed that all tested systems had strong abilities to degrade CB. The CB removal rate increased with increasing dosages of oxidants or Fe(II) because the generation of reactive oxygen species could be promoted with the chemical dosages' increase. Response surface and contour plots showed that CB could achieve a better removal performance at the same H2O2 and Fe(II) molar content, but the Fe(II) dosage was higher than that of oxidants in the nCaO2 and SPC systems. The optimal molar ratios of H2O2/Fe(II)/CB, nCaO2/Fe(II)/CB and SPC /Fe(II)/CB were 5.2/7.6/1, 8/8/1, and 4.5/8/1, respectively, in which 98.1%, 98%, and 96.4% CB removals could be obtained in 30 min reaction. The optimal pH condition was around 3, while CB removal rates were less than 20% in all three systems when the initial pH was adjusted to 9. The oxidative hydroxyl radicals (HO•) and singlet oxygen (1O2) had been detected by the electron paramagnetic resonance test. Based upon the results of liquid chromatograph-mass spectrometer analysis, the pathways of CB degradation were proposed, in which 1O2 roles were elaborated innovatively in the CB degradation mechanism. The CB degradation performance was significantly affected in actual groundwater, while increasing the molar ratio of oxidant/Fe(II)/CB was an effective way to overcome the adverse effects caused by the complex of actual groundwater matrix.
Collapse
Affiliation(s)
- Xuecheng Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Xiaogang Gu
- Shanghai Urban Construction Design & Research Institute (Group) Co., Ltd, 3447 Dongfang Road, Shanghai 200125, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China E-mail:
| |
Collapse
|