1
|
Kumar JA, Krithiga T, Narendrakumar G, Prakash P, Balasankar K, Sathish S, Prabu D, Pushkala DP, Marraiki N, Ramu AG, Choi D. Effect of Ca 2+ ions on naphthalene adsorption/desorption onto calcium oxide nanoparticle: Adsorption isotherm, kinetics and regeneration studies. ENVIRONMENTAL RESEARCH 2022; 204:112070. [PMID: 34555407 DOI: 10.1016/j.envres.2021.112070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The adsorptive nature of calcium oxide nanoparticles in aqueous sample of naphthalene in presence of Ca2+ ions was estimated. Enhanced efficiency of calcium oxide regeneration (90%) with the aid of calcium chloride in the solution concentration of 0.002-0.1 M was depicted. The less degree of toxic naphthalene desorption merged with SEM, FTIR and XRD characterization data portrays the importance of naphthalene adsorption onto calcium oxide using calcium chloride for regeneration. Batch adsorption studies were performed to evaluate the operating parameters such as pH, naphthalene concentration, contact time and impact of Ca2+ on naphthalene study. The adsorption isotherm of naphthalene on calcium oxide nanoparticle was described by Langmuir, Freundlich, Temkin and Dubinin Radushkevich and theoretical maximum monolayer adsorption capacity was found to be 63.81 mg/g at 303 K. The adsorption kinetic best fitted with pseudo second order kinetic model. The positive influence of making the addition of Ca2+ ions into naphthalene solution for its rapid adsorption was elucidated which is leaded by a probable increase in sorption capacity for naphthalene molecules at lower concentrations. The stable nature of crystallinity of calcium oxide and a less degree of naphthalene molecules leaching during consecutive cycles of adsorptive process and nanoparticle regeneration was also scrutinized.
Collapse
Affiliation(s)
- J Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India.
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - G Narendrakumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - P Prakash
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - K Balasankar
- Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - D Purna Pushkala
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O 2455, Riyadh, 11451, Saudi Arabia
| | - A G Ramu
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong-ro, Jochiwon-eup, Sejong city, 30016, Republic of Korea
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong-ro, Jochiwon-eup, Sejong city, 30016, Republic of Korea
| |
Collapse
|
2
|
Barnie S, Zhang J, Obeng PA, Duncan AE, Adenutsi CD, Xu L, Chen H. Mechanism and multi-step kinetic modelling of Cr(VI) adsorption, reduction and complexation by humic acid, humin and kerogen from different sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38985-39000. [PMID: 33743157 DOI: 10.1007/s11356-021-13519-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Humin (HM) and kerogen (KG) are widespread in soils and sediments, which have strong retention effects on the migration and transformation of Cr(VI) in subsurface environment. Previous studies mainly focused on the interaction between Cr(VI) and soluble organic matter, such as humic acid (HA); however, the adsorption and reduction mechanism for Cr(VI) by insoluble HM and KG are still unclear, the processes of which might be quite different from HA due to their different sources and humification degrees. Consequently, in this study, HA, HM and KG extracted from different sources were used to explore the adsorption, reduction and complexation mechanisms of Cr(VI) in soils and sediments, based on which a multi-step kinetic model of Cr(VI) was carried out. According to the results, the retention of Cr(VI) by humus was found to obey a coupling mechanism of "adsorption-reduction-complexation", where Cr(VI) adsorption was by complexation with carboxylic groups by ligand exchange. The phenolic and hydroxylic groups were determined to be the main electron donor for Cr(VI) reduction. Notably, the Cr(III) produced was found to be adsorbed on the surface of humus by complexation on phenolic and hydroxylic groups, and the excesses were released into the liquid phase after the saturation of complexation sites. Based on the revealed mechanism, a multi-step kinetic model for simultaneously describing Cr(VI) adsorption and reduction and behaviour of Cr(III) was proposed producing a better fitting performance (R2 ≥ 0.984) than the first-order and second-order kinetic models (R2 ≤ 0.84 and 0.87, respectively) and hence could provide more factual understanding of Cr(VI) transformation in soils and sediments enriched in various types of humus.
Collapse
Affiliation(s)
- Samuel Barnie
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China
- Department of Water and Sanitation, University of Cape Coast, Cape Coast, Ghana
| | - Jia Zhang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China.
| | - Peter Appiah Obeng
- Department of Water and Sanitation, University of Cape Coast, Cape Coast, Ghana
| | - Albert Ebo Duncan
- Department of Water and Sanitation, University of Cape Coast, Cape Coast, Ghana
| | - Caspar Daniel Adenutsi
- Department of Petroleum Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lin Xu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
3
|
Aravind Kumar J, Krithiga T, Vijai Anand K, Sathish S, Karthick Raja Namasivayam S, Renita A, Hosseini-Bandegharaei A, Praveenkumar T, Rajasimman M, Bhat N, Dutta S. Kinetics and regression analysis of phenanthrene adsorption on the nanocomposite of CaO and activated carbon: Characterization, regeneration, and mechanistic approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Li Y, Hu B, Gao S, Tong X, Jiang L, Chen X, An S, Zhang F. Comparison of 17β-estradiol adsorption on soil organic components and soil remediation agent-biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114572. [PMID: 32315821 DOI: 10.1016/j.envpol.2020.114572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/14/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Steroid estrogen residues (SEs) in the soil have attracted growing attention because of their potential for endocrine disruption. Soil organic matter (SOM) and soil remediation agent-biochar, both have important influences on the fate of SEs in the soil environment. This study compared the adsorption of 17β-estradiol (E2) on wheat straw biochar (W-BC) and cow manure biochar (C-BC) with main SOM components including biomacromolecules (cellulose, collagen and lignin) and humic acids (HA). The impact of pyrolysis temperature (350 °C, 550 °C, and 700 °C) on the adsorption capacity of biochar and different concentrations NaClO oxidation on the adsorption capacity of HA were also investigated. The experimental results showed that the adsorption of E2 by biomolecules conformed to the linear isotherm (R2 > 0.88), and the adsorption of E2 on biochars and HA were well described by the Langmuir and Freundlich isotherm (R2 > 0.94). Meanwhile, the order of the E2 adsorption capacity of sorbents was W-BC > C-BC > HA > lignin > collagen > cellulose. The adsorption capacity of biochar and SOM for E2 increased with the enhancement of aromaticity and hydrophobicity and the reduction of polarity. In addition, the increase of pyrolysis temperature of biochars also promoted the adsorption capacity of E2, while oxidation treatment with NaClO reduced the adsorption capacity of HA to E2. These results deepened the understanding of the adsorption behaviour of E2 on SOM and biochar, and expanded the understanding of the behaviour of SEs in the soil environment.
Collapse
Affiliation(s)
- Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China.
| | - Baiyang Hu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Shiying Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Xin Tong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing, 102206, China
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Siyu An
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Fengsong Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| |
Collapse
|
5
|
García-Delgado C, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS. Organic carbon nature determines the capacity of organic amendments to adsorb pesticides in soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122162. [PMID: 32004763 DOI: 10.1016/j.jhazmat.2020.122162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The spread of organic pollutants from soil to other environments is one important source of environmental pollution. The addition of organic amendments to soil is an interesting strategy to control pollutants leaching. However, the contribution of different carbon types of organic amendments to organic pollutants adsorption is not clear. Hence, the objective of this work was to determine the role of carbon types of organic amendments into the adsorption of four herbicides. To this extent, organic amendments were characterized by elemental analysis and 13C-NMR and adsorption-desorption isotherms of herbicides by the organic amendments and two soils amended with them were obtained. Adsorption coefficients were correlated with the organic carbon content of the organic amendments and the adsorption process was enhanced by the hydrophobicity of herbicides and the aliphatic and aromatic carbon of amendments. Organic amendments increased the adsorption of herbicides by soils but it is not possible to extrapolate results from one soil to another because organo-mineral interactions between soils and organic amendments can modify this process. Desorption isotherms of herbicides from organic amendments and/or amended soils presented hysteresis indicating the irreversible adsorption of herbicides. Desorption results indicated, the abundance of O-alkyl and N-alkyl groups in organic amendments enhanced the hysteresis in amended soils.
Collapse
Affiliation(s)
- Carlos García-Delgado
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008, Salamanca, Spain; Department of Geology and Geochemistry, Autonomous University of Madrid. 28049, Madrid, Spain
| | - Jesús M Marín-Benito
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008, Salamanca, Spain
| | - María J Sánchez-Martín
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008, Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008, Salamanca, Spain.
| |
Collapse
|
6
|
Wang L, Hua X, Zhang L, Song N, Dong D, Guo Z. Influence of organic carbon fractions of freshwater biofilms on the sorption for phenanthrene and ofloxacin: The important role of aliphatic carbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:818-826. [PMID: 31238285 DOI: 10.1016/j.scitotenv.2019.06.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Sorption to biofilms is thought to be a crucial process controlling the fate of trace organic contaminants in aquatic systems. The organic composition of biofilms is regarded as the determining factor in the sorption mechanism of biofilm organic carbon fractions; however, its role is not well known. Here, the sorption of phenanthrene and ofloxacin was modeled with classic and emerging organic contaminants, respectively, by comparatively investigating nine type of freshwater biofilms cultured in a river, lake, and reservoir in spring, summer, and autumn. The chemical features of the nine biofilms were analyzed using elemental analysis, infrared spectroscopy, X-ray photoelectron spectroscopy, and carbon-13 nuclear magnetic resonance. Results showed that the freshwater biofilms were aliphatic-rich natural amorphous solid substances with O-containing functional groups, and their surface polarity was significantly lower than their bulk polarity. All the isotherms of phenanthrene and ofloxacin sorption by the biofilms were linear. The organic carbon-normalized partition coefficient values for phenanthrene and ofloxacin on the nine biofilms ranged from 91.9 to 364.2 L g-1 and 3.2 to 43.2 L g-1, respectively. The van der Waals interaction between a majority of aliphatic carbon (73.4%-83.9%) in biofilms and the two sorbates was much stronger than π-π interactions between a minority of aromatic carbon (12.7%-21.7%) and sorbates. The surface polarity of the biofilms regulated polar interactions including the hydrogen bonding and electron donor-acceptor interactions. Both the aliphatic carbon and surface polarity in the biofilms enhanced the sorption of phenanthrene and ofloxacin. The sorption characteristics and mechanisms of polycyclic aromatic hydrocarbons and antibiotics on biofilms shown in our present and previous studies are different from those of other ubiquitous natural solid materials such as soils and sediments. This study provides insight into the importance of aliphatic carbon fractions of freshwater biofilms for the sorption of classic and emerging organic contaminants.
Collapse
Affiliation(s)
- Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Song
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|