1
|
Wejnerowski Ł, Dulić T, Akter S, Font-Nájera A, Rybak M, Kamiński O, Czerepska A, Dziuba MK, Jurczak T, Meriluoto J, Mankiewicz-Boczek J, Kokociński M. Community Structure and Toxicity Potential of Cyanobacteria during Summer and Winter in a Temperate-Zone Lake Susceptible to Phytoplankton Blooms. Toxins (Basel) 2024; 16:357. [PMID: 39195767 PMCID: PMC11359657 DOI: 10.3390/toxins16080357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Cyanobacterial blooms are increasingly common during winters, especially when they are mild. The goal of this study was to determine the summer and winter phytoplankton community structure, cyanotoxin presence, and toxigenicity in a eutrophic lake susceptible to cyanobacterial blooms throughout the year, using classical microscopy, an analysis of toxic cyanometabolites, and an analysis of genes involved in biosynthesis of cyanotoxins. We also assessed whether cyanobacterial diversity in the studied lake has changed compared to what was reported in previous reports conducted several years ago. Moreover, the bloom-forming cyanobacterial strains were isolated from the lake and screened for cyanotoxin presence and toxigenicity. Cyanobacteria were the main component of the phytoplankton community in both sampling times, and, in particular, Oscillatoriales were predominant in both summer (Planktothrix/Limnothrix) and winter (Limnothrix) sampling. Compared to the winter community, the summer community was denser; richer in species; and contained alien and invasive Nostocales, including Sphaerospermopsis aphanizomenoides, Raphidiopsis raciborskii, and Raphidiopsis mediterranea. In both sampling times, the blooms contained toxigenic species with genetic determinants for the production of cylindrospermopsin and microcystins. Toxicological screening revealed the presence of microcystins in the lake in summer but no cyanotoxins in the winter period of sampling. However, several cyanobacterial strains isolated from the lake during winter and summer produced anabaenopeptins and microcystins. This study indicates that summer and winter blooms of cyanobacteria in the temperate zone can differ in biomass, structure, and toxicity, and that the toxic hazards associated with cyanobacterial blooms may potentially exist during winter.
Collapse
Affiliation(s)
- Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| | - Tamara Dulić
- Biochemistry and Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland;
| | - Sultana Akter
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, 20520 Turku, Finland;
| | - Arnoldo Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Łódź, Poland;
| | - Michał Rybak
- Department of Water Protection, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Oskar Kamiński
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| | - Anna Czerepska
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| | - Marcin Krzysztof Dziuba
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Tomasz Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (T.J.); (J.M.-B.)
| | - Jussi Meriluoto
- Biochemistry and Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland;
| | - Joanna Mankiewicz-Boczek
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (T.J.); (J.M.-B.)
| | - Mikołaj Kokociński
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.K.); (A.C.); (M.K.)
| |
Collapse
|
2
|
Belkinova D, Stoianova D, Beshkova M, Kazakov S, Stoyanov P, Mladenov R. Current status and prognosis of Raphidiopsis raciborskii distribution in Bulgaria as part of the southeastern region of Europe. HARMFUL ALGAE 2024; 132:102578. [PMID: 38331543 DOI: 10.1016/j.hal.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
The cyanobacterial species Raphidiopsis raciborskii (Wołoszyńska) Aguilera et al. has a high invasiveness potential, which in less than a century leads to its cosmopolitan spread. In the temperate climate of Europe, R. raciborskii has been reported in many countries, but there is still a lack of detailed information about the current status of its distribution in lakes of Bulgaria, as a part of the southeastern range of its spread in Europe. We investigated the distribution of the species using data on the phytoplankton of 122 lakes surveyed during 13-years period (2009-2022). The species was found in 33 lakes (up to 324 m asl), and 14 new localities were registered during the studied period. The results reveal that the number of lakes with the presence of R. raciborskii (27 % of all research lakes) and its contribution to the total phytoplankton biomass, has increased significantly over the last decade. The species has successfully adapted and dominated the phytoplankton in 9 lakes, forming a bloom in 8 of them. The dominant position of R. raciborskii causes loss of species and functional diversity of phytoplankton and displaces the native bloom-forming cyanobacteria. Lakes with and without the species were compared based on the available data on bioclimatic and local environmental variables. Statistically significant differences were established with respect to water transparency, conductivity, maximum depth and maximum air temperature in the warmest month. Species distribution models (SDMs) were used to identify lakes in high risk of future invasion by R. raciborskii. The results of the SDMs implementation confirmed the high maximum air temperature and low water transparency to be important predictors of the occurrence of R. raciborskii in freshwater lakes in Bulgaria. In the areas with high summer temperatures the most suitable for R. raciborskii development were found to be shallow polymictic or medium deep lakes with small surface area and low water transparency. In areas with a suitable climate, the large, deep reservoirs with high transparency as well as macrophyte dominated lakes have a low probability of occurrence of R. raciborskii. Future colonization of lakes above 500 m asl (but most likely below 700 m asl) is also possible, especially in the conditions of global warming. SDMs account for climatic and biogeographic differences of lakes and could help in elucidating the underlying factors that control the occurrence and adaptation of R. raciborskii in a given area.
Collapse
Affiliation(s)
- Detelina Belkinova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Botany and Biological education, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Bulgaria
| | - Desislava Stoianova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Mihaela Beshkova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefan Kazakov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Plamen Stoyanov
- Department of Botany and Biological education, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Bulgaria; Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Bulgaria
| | - Rumen Mladenov
- Department of Botany and Biological education, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Bulgaria; Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Bulgaria
| |
Collapse
|
3
|
Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel) 2023; 15:582. [PMID: 37756009 PMCID: PMC10535532 DOI: 10.3390/toxins15090582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
| | - Donia Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Rafik Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| |
Collapse
|
4
|
Falfushynska H, Kasianchuk N, Siemens E, Henao E, Rzymski P. A Review of Common Cyanotoxins and Their Effects on Fish. TOXICS 2023; 11:toxics11020118. [PMID: 36850993 PMCID: PMC9961407 DOI: 10.3390/toxics11020118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 05/31/2023]
Abstract
Global warming and human-induced eutrophication drive the occurrence of various cyanotoxins in aquatic environments. These metabolites reveal diversified mechanisms of action, encompassing cyto-, neuro-, hepato-, nephro-, and neurotoxicity, and pose a threat to aquatic biota and human health. In the present paper, we review data on the occurrence of the most studied cyanotoxins, microcystins, nodularins, cylindrospermopsin, anatoxins, and saxitoxins, in the aquatic environment, as well as their potential bioaccumulation and toxicity in fish. Microcystins are the most studied among all known cyanotoxins, although other toxic cyanobacterial metabolites are also commonly identified in aquatic environments and can reveal high toxicity in fish. Except for primary toxicity signs, cyanotoxins adversely affect the antioxidant system and anti-/pro-oxidant balance. Cyanotoxins also negatively impact the mitochondrial and endoplasmic reticulum by increasing intracellular reactive oxygen species. Furthermore, fish exposed to microcystins and cylindrospermopsin exhibit various immunomodulatory, inflammatory, and endocrine responses. Even though cyanotoxins exert a complex pressure on fish, numerous aspects are yet to be the subject of in-depth investigation. Metabolites other than microcystins should be studied more thoroughly to understand the long-term effects in fish and provide a robust background for monitoring and management actions.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznan, Poland
| | - Eduard Siemens
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Eliana Henao
- Research Group Integrated Management of Ecosystems and Biodiversity XIUÂ, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61701 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 61701 Poznań, Poland
| |
Collapse
|
5
|
Wejnerowski Ł, Aykut TO, Pełechata A, Rybak M, Dulić T, Meriluoto J, Dziuba MK. Plankton hitch-hikers on naturalists’ instruments as silent intruders of aquatic ecosystems: current risks and possible prevention. NEOBIOTA 2022. [DOI: 10.3897/neobiota.73.82636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Organism dispersal is nowadays highly driven by human vectors. This also refers to the aquatic organisms that can often silently spread in and invade new waters, especially when human vectors of dispersal act without brakes. Thus, it is mandatory to continuously identify human-mediated mechanisms of organism dispersal and implement proper biosecurity treatments. In this study, we demonstrate how the plankton net – one of the basic instruments in the equipment of every plankton sampling person is a good vector for plankton dispersal and invasions. We also demonstrate whether keeping the net in an ethanol solution after sampling is a proper biosecurity treatment, and what kind of treatments are implemented by people worldwide. The first simulation shows that bloom-forming cyanobacteria can easily infiltrate into the new environment thanks to the nets, and can prosper there. However, ethanol-based biosecurity treatment efficiently prevented their spread and proliferation in the new environment. The second simulation, based on wild plankton from an eutrophic lake, indicates that a plethora of phyto- and zooplankton taxa can infiltrate into the new waterbody through the net and sustain themselves there if the net is only flushed in the waterbody and left to dry after sampling (an approach that is commonly used by naturalists). Here, we also show that native plankton residents strongly shape the fate of hitch-hikers, but some of them like cyanobacteria can successfully compete with residents. Survey data alert us to the fact that the vast majority of biologists use either ineffective or questionable biosecurity treatments and only less than a tenth of samplers implement treatments based on disinfectant liquids. Our results emphasize that the lack of proper biosecurity methods implemented by the biologists facilitates the spread and invasions of plankton including also invasive species of a great nuisance to native ecosystems. Considering that naturalists usually use different instruments that might also be good vectors of plankton dispersal, it is necessary to develop proper uniform biosecurity treatments. No longer facilitating the plankton spread through hydrobiological instruments is the milestone that we, plankton samplers worldwide, should achieve together in the nearest future if we want to continue our desire to explore, understand, protect and save nature.
Collapse
|
6
|
Dos Santos Machado L, Dörr F, Dörr FA, Frascareli D, Melo DS, Gontijo ESJ, Friese K, Pinto E, Rosa AH, Pompêo MM, Moschini-Carlos V. Permanent occurrence of Raphidiopsis raciborskii and cyanotoxins in a subtropical reservoir polluted by domestic effluents (Itupararanga reservoir, São Paulo, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18653-18664. [PMID: 34697712 DOI: 10.1007/s11356-021-16994-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Toxic cyanobacteria blooms are a frequent problem in subtropical reservoirs and freshwater systems. The purpose of this study was to investigate the occurrence of potentially toxic cyanobacteria and the environmental conditions associated with the presence of cyanotoxins in a Brazilian subtropical reservoir. Five collections were carried out at seven sampling locations in the reservoir, during the rainy and dry seasons, between the years 2016 and 2017. There was permanent occurrence of Raphidiopsis raciborskii (Woloszynska) Aguilera, Berrendero Gómez, Kastovsky, Echenique & Salerno (Phycologia 57(2):130-146, 2018), ranging between dominant and abundant, with an average biomass of 38.8 ± 29.9 mg L-1. Also abundant were Dolichospermum solitarium, D. planctonicum, Planktothrix isothrix, and Aphanizomenon gracile. Saxitoxin (STX) was detected in all the collected samples (0.11 ± 0.05 µg L-1). Microcystin (MC) was also detected, but at lower concentrations (0.01 ± 0.0 µg L-1). Low availability of NO3- and phosphorus limitation had significant effects on the R. raciborskii biomass and the levels of STX and MC. It was observed that R. raciborskii was sensitive to thermal stratification, at the same time that STX levels were higher. This suggested that STX was produced under conditions that restricted the growth of R. raciborskii. These are important findings, because they add information about the permanent occurrence of STX and R. raciborskii in an aquatic ecosystem limited by phosphorus, vulnerable to climatic variations, and polluted by domestic effluents.
Collapse
Affiliation(s)
| | - Fabiane Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Felipe Augusto Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Daniele Frascareli
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Darllene S Melo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Erik S J Gontijo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Kurt Friese
- Lake Research Department, UFZ-Helmholtz Centre for Environmental Research, Brueckstr 3a, 39114, Magdeburg, Germany
| | - Ernani Pinto
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - André Henrique Rosa
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Marcelo M Pompêo
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Tavakoli Y, Mohammadipanah F, Te SH, You L, Gin KYH. Biodiversity, phylogeny and toxin production profile of cyanobacterial strains isolated from lake Latyan in Iran. HARMFUL ALGAE 2021; 106:102054. [PMID: 34154781 DOI: 10.1016/j.hal.2021.102054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Monitoring toxigenic cyanobacteria in freshwaters is of great importance due to the adverse health impacts on humans and aquatic organisms. Here we studied cyanobacterial occurrence and biodiversity in a drinking water reservoir in Tehran province, Iran. In total, nine different species representing three orders of Synechococcales, Oscillatoriales and Nostocales were isolated and classified into six families and seven genera ranging from 92.3% to 99.0% similarities in their partial 16S rDNA with GenBank sequences. The cultures were analyzed for cyanotoxins production by the Artemia salina bioassay, ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and also screened for the presence of marker genes involved in toxins production. Ethyl acetate extracts of three strains showed more than 50% mortality on A. salina larvae after 24 h at a concentration of 500 µg/ml. Production of at least one of the cyanotoxins, microcystin (MC), cylindrospermopsin (CYN) and anatoxin-a (ATX-a), was detected in 6 of the strains. Seven MC variants with a total concentration of 130.6 ng/mg of biomass dry weight were detected for the strain Phormidium sp. UTMC6001 and molecular screening of the mcyE gene also confirmed the presence of this biomarker in its genome. Our study also revealed the production of CYN in a novel picocyanobacterial strain Cyanobium sp. UTMC6007 at 1.0 ng/mg of biomass dry weight. Considering the limited information on freshwater toxic cyanobacteria taxonomy in the Middle East, these findings will expand our knowledge and consequently aid in development of new water management policies in future.
Collapse
Affiliation(s)
- Yasaman Tavakoli
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1417864411, Iran; Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1417864411, Iran.
| | - Shu Harn Te
- Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore
| | - Luhua You
- Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore
| | - Karina Yew-Hoong Gin
- Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering 2, Singapore 117576, Singapore.
| |
Collapse
|
8
|
Falfushynska H, Horyn O, Osypenko I, Rzymski P, Wejnerowski Ł, Dziuba MK, Sokolova IM. Multibiomarker-based assessment of toxicity of central European strains of filamentous cyanobacteria Aphanizomenon gracile and Raphidiopsis raciborskii to zebrafish Danio rerio. WATER RESEARCH 2021; 194:116923. [PMID: 33631698 DOI: 10.1016/j.watres.2021.116923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The global increase in cyanobacterial blooms poses environmental and health threats. Selected cyanobacterial strains reveal toxicities despite a lack of synthesis of known toxic metabolites, and the mechanisms of these toxicities are not well understood. Here we investigated the toxicity of non-cylindrospermopsin and non-microcystin producing Aphanizomenon gracile and Raphidiopsis raciborskii of Central European origin to zebrafish exposed for 14 days to their extracts. Toxicological screening revealed the presence of anabaenopeptins and a lack of anatoxin-a, ß-methylamino-L-alanine or saxitoxins in examined extracts. The responses were compared to 20 μg L-1 of common cyanobacterial toxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR). The expression of the marker genes involved in apoptosis (caspase 3a and 3b, Bcl-2, BAX, p53, MAPK, Nrf2), DNA damage detection and repair (GADD45, RAD51, JUN, XPC), detoxification (CYP1A, CYP26, EPHX1), lipid metabolism (PPARa, FABP1, PLA2), phosphorylation/dephosphorylation (PPP6C, PPM1) and cytoskeleton (actin, tubulin) were examined using targeted transcriptomics. Cellular stress and toxicity biomarkers (oxidative injury, antioxidant enzymes, thiol pool status, and lactate dehydrogenase activity) were measured in the liver, and acetylcholinesterase activity was determined as an index of neurotoxicity in the brain. The extracts of three cyanobacterial strains that produce no known cyanotoxins caused marked toxicity in D. rerio, and the biomarker profiles indicate different toxic mechanisms between the bioactive compounds extracted from these strains and the purified cyanotoxins. All studied cyanobacterial extracts and purified cyanotoxins induced oxidative stress and neurotoxicity, downregulated Nrf2 and CYP26B1, disrupted phosphorylation/dephosphorylation processes and actin/tubulin cytoskeleton and upregulated apoptotic activity in the liver. The tested strains and purified toxins displayed distinctively different effects on lipid metabolism. Unlike CYN and MC-LR, the Central European strain of A. gracile and R. raciborskii did not reveal a genotoxic potential. These findings help to further understand the ecotoxicological consequences of toxic cyanobacterial blooms in freshwater ecosystems.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Inna Osypenko
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Marcin K Dziuba
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
9
|
Khoma V, Gnatyshyna L, Martinyuk V, Rarok Y, Mudra A, Stoliar O. Biochemical Responses of the Bivalve Mollusk Unio tumidus Inhabiting a Small Power Plant Reservoir on the Dniester River Basin, Ukraine. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:67-75. [PMID: 32409854 DOI: 10.1007/s00128-020-02873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Hydropower plants (HPPs) can affect the hydrological regime. However, biochemical responses of aquatic animals for the evaluation of this disturbing are not applied yet. The specimens of Unio tumidus were sampled in a reservoir (R) of a small HPP as well as downstream from the dam (DS). Biochemical indexes in the digestive gland and alkali labile phosphates (ALP) in the gonads were examined. The R-mollusks showed low cholinesterase, catalase and caspase-3 activities, and metallothionein concentration, but elevated levels of zinc and copper, oxidized glutathione and protein carbonyls. Concentrations of lactate, pyruvate and ALP, activity of superoxide dismutase and glutathione S-transferase, and lipid peroxidation level were similar in both groups. Integrated biomarker response (IBR/n) index (n = 13) was 2.17 and 0.29 in the R- and DS-groups correspondingly. We suggest that using integrative biological response based on the biochemical markers of bivalve mollusks can be a valid early warning step in assessing 'environmental flow' impact.
Collapse
Affiliation(s)
- Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
| | - Yulya Rarok
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
| | - Alla Mudra
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| |
Collapse
|
10
|
Menezes C, Valério E, Botelho MJ, Dias E. Isolation and Characterization of Cylindrospermopsis raciborskii Strains from Finished Drinking Water. Toxins (Basel) 2020; 12:toxins12010040. [PMID: 31936211 PMCID: PMC7020411 DOI: 10.3390/toxins12010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
In the summer of 2015, an intense cyanobacterial bloom producing geosmin/2-methylisoborneol (MIB) occurred in the Roxo freshwater reservoir in Alentejo, Portugal. The drinking water supplied from the Roxo water treatment plant (WTP) exhibited an unpleasant odor/taste and a significant cyanobacteria density was detected in the finished water at the exit of the WTP. Cyanobacteria were not evaluated downstream of the WTP, namely, at the city reservoir. The aim of this work was to isolate and characterize viable cyanobacteria present in finished water (exit of the WTP and city reservoir) that withstand conventional water treatment. Treated water samples collected at both sites were inoculated in Z8 culture medium to provide the conditions for putative cyanobacterial growth. After 30 days, filamentous cyanobacteria were observed in cultures inoculated with samples from the exit point of the WTP. Viable trichomes were isolated and identified as Cylindrospermopsis raciborskii by morphometric and molecular analysis. None of the isolates were cylindrospermopsin/microcystin producers, as confirmed by ELISA and amplification of corresponding genes (PS/PKS and mcyA-cd/mcyAB/mcyB). ELISA results were positive for saxitoxin, but saxitoxin and derivatives were not detected by liquid chromatography with fluorescence detection (LC-FLD), nor were their related genes (sxtA/sxtA4/sxtB/sxtM/sxtPer/sxtI). To our knowledge, this is the first report on the establishment of cultures of C. raciborskii that resisted water treatment processes.
Collapse
Affiliation(s)
- Carina Menezes
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (E.V.)
| | - Elisabete Valério
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (E.V.)
| | - Maria João Botelho
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal;
| | - Elsa Dias
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (E.V.)
- Centre for the Studies of Animal Science (CECA), Institute of Agrarian and Agri-Food Sciences and Technologies (ICETA), Oporto University, 4051-401 Oporto, Portugal
- Correspondence: ; Tel.: +35-1217519260
| |
Collapse
|
11
|
Falfushynska H, Horyn O, Fedoruk O, Khoma V, Rzymski P. Difference in biochemical markers in the gibel carp (Carassius auratus gibelio) upstream and downstream of the hydropower plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113213. [PMID: 31541825 DOI: 10.1016/j.envpol.2019.113213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
However the physiological stress in aquatic organisms associated with hydropower plants (HPP) ecosystems has been previously investigated, no studies have so far assessed it on biochemical level. Therefore this study evaluated an oxidative stress and toxicity in the gibel carp Carassius auratus gibelio associated with a small-scale HPP in the West Ukraine. A battery of liver, brain and blood markers was evaluated individuals inhabiting upstream and downstream of the dam of the small-scale Kasperivtci HPP (KHPP; an installed capacity of 7.5 MW), and from a reference site. Number of alterations were noted in fish from the KHPP impoundment facility including signs of oxidative stress (a decrease in superoxide dismutase (SOD) activity and an increase in protein carbonyls) and cytotoxicity (an increase in micronucleated erythrocytes and caspase-3 activity). No changes in DNA fragmentation in hepatocytes or brain cholinesterase activity were detected. As demonstrated by the integral stress index, fish associated with downstream of the dam revealed the greatest alterations reflected by the combined oppression of antioxidant system (SOD, catalase) and pro-oxidants (thiobarbituric acid reactive substances and oxyradicals), low concentration of metallothioneins, but high cathepsin D activity (as markers of lysosomal dysfunction and autophagy) and increased vitellogenin concentration in males (indicating an endocrine disruption). The study highlights that fish inhabiting ecosystems associated with HPP, particularly downstream of the dam, may face additional stresses with long-term effects yet to be evaluated.
Collapse
Affiliation(s)
| | - Oksana Horyn
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Olga Fedoruk
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Vira Khoma
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poland
| |
Collapse
|
12
|
Falfushynska H, Horyn O, Brzozowska A, Fedoruk O, Buyak B, Poznansky D, Poniedziałek B, Kokociński M, Rzymski P. Is the presence of Central European strains of Raphidiopsis (Cylindrospermopsis) raciborskii a threat to a freshwater fish? An in vitro toxicological study in common carp cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:105-113. [PMID: 30472479 DOI: 10.1016/j.aquatox.2018.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
As yet European strains of Raphidiopsis raciborskii (previously Cylindrospermopsis raciborskii) have not been found to produce known cyanotoxins although their extracts have caused adverse effects in mammals, as shown using in vitro and in vivo experimental models. The present study investigated whether R. raciborskii isolated from Western Poland and Ukraine can affect fish cells using in vitro exposures of hepatocytes and red blood cells (RBC), and brain homogenates obtained from common carp (Cyprinus carpio) to 1.0% and 0.1% extracts of 7 strains. The studied extracts evoked different responses of catalase activity in hepatocytes with both increase and decrease observed under low and high concentrations. The cellular thiol pool was also altered with most extracts inducing a decrease in the activity of glutathione-S-transferase, and Ukrainian strains leading to an increase in glutathione level and a decrease in metallothionein content. All the studied extracts induced comparable reactive oxygen species formation, lipid peroxidation, protein carbonylation and DNA fragmentation in hepatocytes, and all but one increased the activity of caspase-3. Only one extract caused lysosomal membrane destabilization as measured by neutral red retention in RBC. In contrast to extracts of Ukrainian isolates, exposure of brain homogenates to extracts of Polish strains induced an increase in acetylcholinesterase activity suggesting the neurotoxic action of their exudates. The results indicate that both Polish and Ukrainian strains of R. raciborskii may pose a toxicological risk to freshwater fish, and further, that Polish strains may produce compound(s) evoking neurotoxic effects.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Horyn
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Agnieszka Brzozowska
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Olga Fedoruk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Bogdan Buyak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Dmytro Poznansky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|