1
|
Ahmad R, Ansari K. Fabrication of alginate@silver nanoparticles (Alg@AgNPs) bionanocomposite for the sequestration of crystal violet dye from aqueous solution. Int J Biol Macromol 2022; 218:157-167. [PMID: 35850272 DOI: 10.1016/j.ijbiomac.2022.07.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 01/13/2023]
Abstract
In the present study, alginate@silver nanoparticles (Alg@AgNPs) bionanocomposite has been fabricated successfully and further explored for the removal of crystal violet (CV) dye from the aqueous solution. The surface morphology of the (Alg@AgNPs) bionanocomposite was characterized by various modern analytical techniques such as SEM-EDX, TEM, FTIR and XRD. The maximum adsorption was observed at optimum condition of (pH 7, adsorbent dose 0.01 g, equilibrium time 240 min and initial concentration 20 mg L-1). The maximum monolayer adsorption capacity was found to be 186.93 mg g-1 at 30 °C. The experimental data were further validated by various isotherm models and on the basis of highest correlation coefficient (R2, 0.99), Langmuir model was found to be best fitted model. Pseudo-second order kinetic model obeyed best for the experimental data with a highest correlation coefficient (R2, 0.99) at all studied temperature. In thermodynamic studies, the positive value of enthalpy change (∆H0) and entropy change (∆S0) confirmed the process to be endothermic and spontaneous in nature. Desorption studies shows that 83 % of the adsorbed CV can be desorbed in first cycle and can be regenerated up to 4th cycle effectively with 0.1 M HCl. Therefore, (Alg@AgNPs) bionanocomposite could be harnessed as a potential adsorbent for the removal of hazardous CV dye from the waste water.
Collapse
Affiliation(s)
- Rais Ahmad
- Environmental & Bio-inspired Research Laboratory, Department of Applied Chemistry, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India.
| | - Khalid Ansari
- Environmental & Bio-inspired Research Laboratory, Department of Applied Chemistry, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
2
|
Kocaoba S. Determination of some heavy metals from aqueous solutions using modified Amberlite XAD-4 resin by selective solid-phase extraction. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00324-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe adsorption efficiency of Pb(II) and Cd(II) from aqueous solutions on m-phenylenediamine-modified Amberlite XAD-4 resin was investigated. The effects of pH, adsorbent amount, initial metal concentration, eluent type and volume and flow rate on the retention of the metal ions have been studied on column studies. The optimum parameters were determined as pH 5, concentration 10 mg/L, stirring time 30 min and 0.2 g adsorbent amount and flow rate 2.5 mL/min for a quantitative adsorption. Sorption data were interpreted in terms of Langmuir and Freundlich equations, and both models were found to be fully appropriate. Each column can be used up to 10 sequential analyses without considerable change. The results indicate high metal adsorption capacity and satisfactory recovery of Pb(II) and Cd(II).
Collapse
|
3
|
Amaku JF, Ogundare SA, Akpomie KG, Conradie J. Enhanced sequestration of Cr(VI) onto plant extract anchored on carbon-coated aluminium oxide composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57723-57738. [PMID: 34091835 DOI: 10.1007/s11356-021-14694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Aluminium oxide (ALU) and carbon-coated aluminium oxide modified with Kigelia africana leaf extract (KECA) were employed for the removal of toxic hexavalent chromium (Cr(VI)) from the aqueous phase. The adsorbents (ALU and KECA) were characterized by TGA, BET, FESEM, FTIR, Raman and XRD spectroscopic techniques. The potential of KECA and ALU to remove Cr(VI) from simulated wastewater was optimum at pH 2, sorbent dose of 0.025 g and a contact time of 200 min. Meanwhile, the uptake capacity of KECA and ALU was enhanced with an increase in sorbent dose, contact time and initial Cr(VI) concentration. The uptake of Cr(VI) onto the adsorbents ALU and KECA was kinetically best described by the pseudo-second-order and Elovich models, respectively. Besides, the equilibrium data acquired for ALU and KECA obeyed Freundlich and Langmuir isotherm models, respectively. ALU and KECA were observed to have optimum adsorption capacity of 56.45 mg g-1 and 258.2 mg g-1, respectively. The adsorption of Cr(VI) onto the adsorbents was thermodynamically feasible, endothermic in nature and entropy-driven. A decrease in efficiency was observed on regeneration of the absorbents, thus limiting their reusability. However, the presence of functional groups with reducing property in the extract of Kigelia africana leaves was noticed to enhance the capacity of the adsorbent to abstract Cr(VI) from the solution. Hence, this study demonstrates the potential of KECA to sequestrate Cr(VI) from an aqueous solution and provides a reference for its application to the treatment of Cr(VI)-laden industrial wastewater.
Collapse
Affiliation(s)
- James Friday Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria.
| | - Segun A Ogundare
- Chemical Sciences Department, Olabisi Onabanjo University, Ago-Iwoye, P. M. B. 2002, Nigeria
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
4
|
Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
5
|
Wang J, Liang Q, Cui L, Wu X, Li J, Zeng W, Shen L. Adsorption characteristics of Cr(VI) on microalgae immobilized by different carriers. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:704-720. [PMID: 34461783 DOI: 10.1080/15226514.2021.1970100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To solve the problem of harvesting microalgae during heavy metal adsorption, six different carriers were selected in this study to compare the adsorption behavior of microalgae after immobilization. The results of the scanning electron microscope (SEM) and adsorption showed chitosan as a carrier showed the best immobilization effect and adsorption advantages after immobilizing microalgae. The optimal immobilized carrier-chitosan was obtained under the following conditions of chitosan: acetic acid (2:40), microalgae concentration (108 cells mL-1), and immobilization time (18 h). The optimal adsorption conditions were as follows: temperature: 30 °C, pH: 7.0, adsorption dose: 1.5 g L-1, initial ion concentration: 40 mg L-1. The adsorption capacity of metal ions can reach 37.1 mg g-1 Cr(VI), 25.98 mg g-1 Cu(II), 25.06 mg g-1 Pb(II), and 24.62 mg g-1 Cd(II), respectively. The desorption efficiency in 0.5 mol L-1 NaOH desorption solution reached 90.01%. After five adsorption-desorption cycles, excluding chitosan (∼70%), the adsorption efficiency of other adsorbents decreased with an increase in the recycling times. Chitosan was a suitable carrier for the immobilization of Synechocystis sp. PCC6803. Fourier transform infrared spectroscopy and Raman spectra analysis showed that groups belonging to the microalgae were detected after the microalgae in different carriers, indicating that the microalgae were immobilized with the carriers. At the same time, the energy spectrum changed before and after adsorption indicated the specific functional groups of microalgae played an important role in the adsorption process. The kinetic and isothermal model data showed that the adsorption process was mainly chemical adsorption and homogeneous monolayer adsorption. Moreover, X-ray diffraction showed the interlayer peak strength decreased significantly, indicating that the interlayer structure was stretched after Cr(VI) ion exchange. X-ray photoelectron spectroscopy analysis showed that the Cr adsorption process involves the reduction of Cr(VI) to Cr(III).
Collapse
Affiliation(s)
- Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Qiu Liang
- South China State Key Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Linlin Cui
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
6
|
Amaku JF, Ogundare SA, Akpomie KG, Conradie J. Pentaclethra macrophylla stem bark extract anchored on functionalized MWCNT-spent molecular sieve nanocomposite for the biosorption of hexavalent chromium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:301-310. [PMID: 34154475 DOI: 10.1080/15226514.2021.1937930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
nsufficient innovative research on the sequestration of Cr(VI) from the aquatic ecosystem has made Cr(VI) a recalcitrant water contaminant that often affects water sources. In this work, a novel plant anchor-nanocomposite was fabricated from the spent molecular sieve, multi-walled carbon nanotubes, and the extract from the stem bark of Pentaclethra macrophylla. It was envisaged that due to the phytochemical constituent of the modifier, this nanocomposite could also act as potent adsorbents for the treatment of Cr(VI) polluted water. To the best of our knowledge, the application of Pentaclethra macrophylla stem bark extract as a modifier for the green fabrication of nanocomposite has not been reported. The resulting composites showed good uptake capacity for Cr(VI) as well as efficient reusability.
Collapse
Affiliation(s)
- James Friday Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Segun A Ogundare
- Chemical Sciences Department, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
7
|
Kocaoba S, Parlak MD, Arisoy M. The use of Phanerochaete chrysosporium for modification of bentonite for preconcentration and determination of heavy metals. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00277-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractIn this study, a solid phase extraction method was successfully applied in the preconcentration and determination of trace levels of Cu(II) and Cd(II) ions and Phanerochaete chrysosporium (white rot fungus) modified bentonite was used as adsorbent. After the biosorption of Cu(II) and Cd(II) ions, metal concentrations in the samples were determined by atomic absorption spectrophotometry. pH, adsorbent amount, eluent type, sample volume, and flow rate, which are effective in the adsorption of metal ions, have been studied. 1 M HCl was used for desorption of these metal ions retained (recovery 95–100%). In addition, the effect of interfered ions has also been investigated. Sorption data were examined according to Langmuir and Freundlich adsorption equations. The results obtained show that the applied method has a high metal biosorption capacity, and Cu(II) and Cd(II) ions are successfully recovered. It was also successful in applying the proposed enrichment method to real water samples.Recovery values between 92.3% and 97.3% were obtained for the studied metal ions. According to the results, the proposed method can be successfully applied to water analysis at 95% confidence interval.
Collapse
|
8
|
Amaku JF, Ngwu CM, Ogundare SA, Akpomie KG, Edozie OI, Conradie J. Thermodynamics, kinetics and isothermal studies of chromium (VI) biosorption onto Detarium senegalense stem bark extract coated shale and the regeneration potentials. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1486-1496. [PMID: 33969765 DOI: 10.1080/15226514.2021.1913991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A low-cost adsorbent (Detarium senegalense stem bark extract coated shale (DSMS)) comprising pristine shale (PSH) coated with D. senegalense stem bark extract was prepared and utilized for the adsorption of Cr(VI). The DSMS and PSH were characterized by the SEM, XRD, FTIR, EDX, TGA, and BET. The batch adsorption experiment results showed that DSMS exhibited an excellent ability to adsorb chromium with a maximum removal occurring at pH 2, dosage of 0.05 g and 180 min contact time. The adsorption process was best described by the pseudo-second-order for DSMS and Elovich model for PSH which depicts chemisorption as the major mechanism responsible for the uptake of Cr(VI) onto the adsorbents. Langmuir model provided the best fit to the isotherm analysis on both materials. The maximum adsorption capacity of DSMS and PSH were 64.98 mg g-1 and 29.97 mg g-1 respectively. The thermodynamics revealed that the adsorption of Cr(VI) was feasible, endothermic and entropy driven. Furthermore, after five cycles of reuse, both DSMS and PSH demonstrated effective regeneration and reusability for Cr(VI) uptake. The structural properties, reusability, and high adsorption capabilities of DSMS indicate that they could be used as low-cost adsorbents in large-scale Cr(VI) wastewater treatment. Novelty statement Plant extracts are packed with a variety of polyphenolic compounds, such as aldehydes, alcohols, carboxylics, ethers, ketones, and phenols which contains several functionalities useful in the adsorption of toxic metals. Despite this, research on the use of plant extracts in the modification of adsorbent materials for enhanced adsorption is rare. This study reports for the first time the use of Detarium senegalense stem bark extract coated shale adsorbent for the efficient uptake of Cr(VI) ion.
Collapse
Affiliation(s)
- James Friday Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Comfort M Ngwu
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Segun A Ogundare
- Chemical Sciences Department, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | | | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
9
|
Yusuff AS, Owolabi JO, Igbomezie CO. Optimization of process parameters for adsorption of heavy metals from aqueous solutions by alumina-onion skin composite. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1680371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Vilela PB, Dalalibera A, Duminelli EC, Becegato VA, Paulino AT. Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28481-28489. [PMID: 30229486 DOI: 10.1007/s11356-018-3208-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/11/2018] [Indexed: 05/02/2023]
Abstract
The aim of this work was to study the adsorption and removal of chromium (VI) ions contained in aqueous solutions using a chitosan-based hydrogel synthesized via chemical crosslinking of radical chitosan, polyacrylic acid, and N,N'-methylenebisacrylamide. Fourier-transform infrared spectroscopy confirmed the hydrogel synthesis and presence of reactive functional groups for the adsorption of chromium (VI) ions. The chromium (VI) adsorption mechanism was evaluated using non-linear Langmuir, Freundlich, Redlich-Peterson, and Sips isotherms, with the best fit found by the non-linear Redlich-Peterson isotherm. The maximum chromium (VI) adsorption capacities of the chitosan-based hydrogel were 73.14 and 93.03 mg metal per g dried hydrogel, according to the non-linear Langmuir and Sips isotherm models, respectively. The best kinetic fit was found with the pseudo-nth order kinetic model. The chromium (VI) removal percentage at pH 4.5 and 100 mg L-1 initial metal concentration was 94.72%. The results obtained in this contribution can be useful for future works involving scale-up of a water and wastewater treatment method from a pilot plant to full-scale plant.
Collapse
Affiliation(s)
- Pâmela Becalli Vilela
- Postgraduate Program in Environmental Science, Santa Catarina State University, Av. Luiz de Camões, 2090, Conta Dinheiro,, Lages, SC, CEP: 88520-000, Brazil
| | - Amanda Dalalibera
- Department of Environmental and Sanitary Engineering, Santa Catarina State University, Av. Luiz de Camões, 2090, Conta Dinheiro,, Lages, SC, CEP: 88520-000, Brazil
| | - Eduardo Costa Duminelli
- Department of Environmental and Sanitary Engineering, Santa Catarina State University, Av. Luiz de Camões, 2090, Conta Dinheiro,, Lages, SC, CEP: 88520-000, Brazil
| | - Valter Antonio Becegato
- Postgraduate Program in Environmental Science, Santa Catarina State University, Av. Luiz de Camões, 2090, Conta Dinheiro,, Lages, SC, CEP: 88520-000, Brazil
- Department of Environmental and Sanitary Engineering, Santa Catarina State University, Av. Luiz de Camões, 2090, Conta Dinheiro,, Lages, SC, CEP: 88520-000, Brazil
| | - Alexandre Tadeu Paulino
- Postgraduate Program in Environmental Science, Santa Catarina State University, Av. Luiz de Camões, 2090, Conta Dinheiro,, Lages, SC, CEP: 88520-000, Brazil.
- Department of Food and Chemical Engineering, Santa Catarina State University, BR 282, km 574,, Pinhalzinho, SC, CEP 89870-000, Brazil.
| |
Collapse
|
11
|
Yusuff AS. Adsorption of hexavalent chromium from aqueous solution byLeucaena leucocephalaseed pod activated carbon: equilibrium, kinetic and thermodynamic studies. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1567656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Adeyinka S. Yusuff
- Department of Chemical and Petroleum Engineering College of Engineering, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
12
|
Yusuff AS. Optimization of adsorption of Cr(VI) from aqueous solution by adsorbent prepared fromLeucaena leucocephalaseed shell using design of experiment. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1547316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Adeyinka S. Yusuff
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
13
|
Markus A, Gbadamosi AO, Yusuff AS, Agi A, Oseh J. Magnetite-sporopollenin/graphene oxide as new preconcentration adsorbent for removal of polar organophosphorus pesticides in vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35130-35142. [PMID: 30328041 DOI: 10.1007/s11356-018-3402-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
Collapse
Affiliation(s)
- Ayuba Markus
- Separation Science and Technology Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Afeez O Gbadamosi
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria.
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Adeyinka S Yusuff
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria
| | - Augustine Agi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Jeffrey Oseh
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|