1
|
Huang Y, Hu T, Lin B, Ke Y, Li J, Ma J. Microplastics-biofilm interactions in biofilm-based wastewater treatment processes: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124836. [PMID: 39216664 DOI: 10.1016/j.envpol.2024.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics, pervasive contaminants from plastic, present significant challenges to wastewater treatment processes. This review critically examines the interactions between microplastics and biofilm-based treatment technologies, specifically focusing on the concepts of "biofilm on microplastics" and "microplastics in biofilm". It discusses the implications of these interactions in contaminant removal and process performance. Advanced characterization techniques, including morphological characterization, chemical composition analysis, and bio-information analysis, are assessed to elucidate the complex interplay between microplastics and biofilms within biofilters, biological aerated filters (BAFs), rotating biological contactors (RBCs), and moving bed biofilm reactors (MBBRs). This review synthesizes current research findings, highlighting that microplastics can either hinder or enhance the treatment processes, contingent on their concentration, physicochemical properties, and the specific biofilm technology employed. The insights gained from this review are essential for developing strategies to mitigate the adverse effects of microplastics and for optimizing the design and operation of wastewater treatment.
Collapse
Affiliation(s)
- Yaning Huang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tanqiu Hu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bincheng Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Youqing Ke
- China Construction Eighth Engineering Division. Corp. Ltd., Guangzhou, 510663, China
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Hu Z, Sun Y, Zhou J, Sun W, Shah KJ. Microplastics in wastewater plants: A review of sources, characteristics, distribution and removal technologies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104448. [PMID: 39454549 DOI: 10.1016/j.jconhyd.2024.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/29/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Microplastics (MPs) are widespread in everyday life, and since wastewater treatment plants (WWTPs) serve as an important route for MPs to enter natural water bodies, a thorough understanding of the distribution and removal of MPs in wastewater treatment plants is of great importance. This article provides a comprehensive overview of the measured distribution of MPs and the current status of their removal in wastewater treatment plants. The main sources of MPs in wastewater treatment plants are personal care products in domestic wastewater, textile clothing and industrial wastewater made from plastics, textile factories and the friction of road tires. The MPs that entered the sewage treatment plant were predominantly in the form of fibers, fragments, granular MPs and other types of MPs. The size of MPs is divided into three categories: <0.5 mm, 0.5-1 mm and 1-5 mm. At all treatment stages in wastewater plants, 56.8-88.4 % of MPs are removed in primary treatment, but the primary sedimentation and degreasing stages remove most MPs. The efficiency of the activated sludge process for secondary treatment is inconsistent and is generally between 42.1 and 99.2 %. The coagulation, filtration and disinfection stages of tertiary treatment all have some MPs removal capacity. In addition, novel removal technologies are also described, such as modified filtration technology, membrane separation technology, electroflocculation, sol-gel and photocatalysis. These novel removal technologies can further limit the entry of microplastics into natural water bodies through sewage treatment plants and improved sewage treatment processes help reduce the risk of MPs entering the natural environment through sewage treatment plants. This article will provide reference for the distribution and removal of microplastics in various levels of WWTPs.
Collapse
Affiliation(s)
- Zhihao Hu
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Jun Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Wenquan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Kinjal J Shah
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Al-Tarshi M, Dobretsov S, Al-Belushi M. Bacterial Communities across Multiple Ecological Niches (Water, Sediment, Plastic, and Snail Gut) in Mangrove Habitats. Microorganisms 2024; 12:1561. [PMID: 39203403 PMCID: PMC11356523 DOI: 10.3390/microorganisms12081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial composition across substrates in mangroves, particularly in the Middle East, remains unclear. This study characterized bacterial communities in sediment, water, Terebralia palustris snail guts, and plastic associated with Avicennia marina mangrove forests in two coastal lagoons in the Sea of Oman using 16S rDNA gene MiSeq sequencing. The genus Vibrio dominated all substrates except water. In the gut of snails, Vibrio is composed of 80-99% of all bacterial genera. The water samples showed a different pattern, with the genus Sunxiuqinia being dominant in both Sawadi (50.80%) and Qurum (49.29%) lagoons. There were significant differences in bacterial communities on different substrata, in particular plastic. Snail guts harbored the highest number of unique Operational Taxonomic Units (OTUs) in both lagoons, accounting for 30.97% OTUs in Sawadi and 28.91% OTUs in Qurum, compared to other substrates. Plastic in the polluted Sawadi lagoon with low salinity harbored distinct genera such as Vibrio, Aestuariibacter, Zunongwangia, and Jeotgalibacillus, which were absent in the Qurum lagoon with higher salinity and lower pollution. Sawadi lagoon exhibited higher species diversity in sediment and plastic substrates, while Qurum lagoon demonstrated lower species diversity. The principal component analysis (PCA) indicates that environmental factors such as salinity, pH, and nutrient levels significantly influence bacterial community composition across substrates. Variations in organic matter and potential anthropogenic influences, particularly from plastics, further shape bacterial communities. This study highlights the complex microbial communities in mangrove ecosystems, emphasizing the importance of considering multiple substrates in mangrove microbial ecology studies. The understanding of microbial dynamics and anthropogenic impacts is crucial for shaping effective conservation and management strategies in mangrove ecosystems, particularly in the face of environmental changes.
Collapse
Affiliation(s)
- Muna Al-Tarshi
- Marine Conservation Department, DG of Nature Conservation, Environment Authority, P.O. Box 323, Muscat 100, Oman
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman;
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman;
- UNESCO Chair in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 P.O. Box 50, Muscat 123, Oman
| | - Mohammed Al-Belushi
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman;
- Central Laboratory for Food Safety, Food Safety and Quality Center, Ministry of Agricultural, Fisheries Wealth & Water Resources, P.O. Box 3094, Airport Central Post, Muscat 111, Oman
| |
Collapse
|
4
|
Peng Y, Lu J, Fan L, Dong W, Jiang M. Simulated gastrointestinal digestion of two different sources of biodegradable microplastics and the influence on gut microbiota. Food Chem Toxicol 2024; 185:114474. [PMID: 38301992 DOI: 10.1016/j.fct.2024.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Biodegradable plastics, were considered environmentally friendly, may produce more microplastic particles (MPs) within the same period and exert more pronounced adverse effects on human health than traditional non-biodegradable plastics. Thus, this study investigated the changes of two kinds of biodegradable MPs from different sources in the digestive tract by using simulated digestion and fermentation models in vitro, with particle size, scanning electron microscopy (SEM) and gel permeation chromatography (GPC) analysis, and their implications on the gut microbiota were detected by full-length bacterial 16S rRNA gene amplicon sequencing. Poly(ε-caprolactone) (PCL) MPs exhibited stability in the upper gastrointestinal tract, while poly(lactic acid) (PLA) MPs were degraded beginning in the small intestine digestion phase. Both PCL and PLA MPs were degraded and oligomerized during colonic fermentation. Furthermore, this study highlighted the disturbance of the gut microbiota induced by MPs and their oligomers. PCL and PLA MPs significantly changed the composition and reduced the α-diversity of the gut microbiota. PCL and PLA MPs exhibited the same inhibitory effects on key probiotics such as Bifidobacterium, Lactobacillus, Faecalibacterium, Limosilactobacillus, Blautia, Romboutsia, and Ruminococcus, which highlighted the potential hazards of these materials for human health. In conclusion, this study illuminated the potential biodegradation of MPs through gastrointestinal digestion and the complex interplay between MPs and the gut microbiota. The degradable characteristic of biodegradable plastics may cause more MPs and greater harm to human health.
Collapse
Affiliation(s)
- Yujia Peng
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Jianqi Lu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Lingling Fan
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Min Jiang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
5
|
Zhao Z, Wang X, Jiang J, Dong Y, Pan Y, Guan X, Wang B, Gao S, Chen Z, Zhou Z. Adverse effects of polystyrene nanoplastics on sea cucumber Apostichopus japonicus and their association with gut microbiota dysbiosis. CHEMOSPHERE 2023; 330:138568. [PMID: 37019397 DOI: 10.1016/j.chemosphere.2023.138568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
The mariculture environment is a sink of microplastics (MPs) due to its enclosed nature and mass use of plastics. Nanoplastics (NPs) are MPs with a diameter <1 μm that have a more toxic effect on aquatic organisms than other MPs. However, little is known about the underlying mechanisms of NP toxicity on mariculture species. Here, we performed a multi-omics investigation to explore gut microbiota dysbiosis and associated health problems induced by NPs in juvenile sea cucumber Apostichopus japonicus, a commercially and ecologically important marine invertebrate. We observed significant differences in gut microbiota composition after 21 days of NP exposure. Ingestion of NPs significantly increased core gut microbes, especially Rhodobacteraceae and Flavobacteriaceae families. Additionally, gut gene expression profiles were altered by NPs, especially those related to neurological diseases and movement disorders. Correlation and network analyses indicated close relationships between transcriptome changes and gut microbiota variation. Furthermore, NPs induced oxidative stress in sea cucumber intestines, which may be associated with intraspecies variation in Rhodobacteraceae in the gut microbiota. The results suggested that NPs were harmful to the health of sea cucumbers, and they highlighted the importance of the gut microbiota in the responses to NP toxicity in marine invertebrates.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
6
|
Sethulekshmi S, Kalbar P, Shriwastav A. A unified modelling framework for type I (discrete) settling and rising of microplastics in primary sedimentation tanks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117444. [PMID: 36773453 DOI: 10.1016/j.jenvman.2023.117444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Sewage treatment plants (STPs) are considered as a significant source of microplastic pollution into the terrestrial and aquatic environment. Existing observations suggest that primary treatment accounts for major microplastics removal in STPs, though with high variability due to the complex nature of the polymer compositions, abundance, and sizes in the incoming sewage. Here, we develop a unified modelling framework to simulate the Type I (or discrete) settling or rising behaviour of microplastics to predict their eventual fate in Primary Sedimentation Tank (PST). The model was developed as per the conventional design protocol for PST involving Stokes equation and modifications as per flow regime for settling of nylon and polystyrene microplastics. It was subsequently validated with independent column experiments for both settling (nylon and polystyrene) and rising (low-density polyethylene and polypropylene) microplastics in different size ranges. The validated model was then applied for multiple realistic scenarios of polymer compositions, relative abundance, and size distributions in the incoming sewage. The model predicts removals ranging from 12% to 94% for a mixture of microplastics in the size fraction 0-500 μm. Model simulations also suggest better microplastics removal with the integration of skimming in PST, and optimization of surface overflow velocity.
Collapse
Affiliation(s)
- S Sethulekshmi
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Pradip Kalbar
- Centre for Urban Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Amritanshu Shriwastav
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400 076, India.
| |
Collapse
|
7
|
Deng Y, Wu J, Chen J, Kang K. Overview of microplastic pollution and its influence on the health of organisms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:412-422. [PMID: 36942439 DOI: 10.1080/10934529.2023.2190715] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution has gradually become a major global concern, due to the widespread use of plastics. Microplastics enter the environment and are degradated, while also being ingested by organisms, affecting various physiological functions and adversely affecting the health of organisms. Microplastic pollution is currently a wide concern, but data on the impact on organisms is still not sufficient. Therefore, this review summarizes the research on microplastic pollution in marine, soil and fresh water, and its impact on organisms, focusing on the effects of microplastics on organisms' feeding behavior and oxidative stress responses, intestinal microbes and reproductive function, and the combined effects of microplastic pollutants on organisms. We also summarized the various possible ways of microplastics entering into the human body, and posing a potential threat to human health, which still needs further research.
Collapse
Affiliation(s)
- Yingling Deng
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Jiang Wu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Jinjun Chen
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Kai Kang
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang, People's Republic of China
| |
Collapse
|
8
|
Parsaeimehr A, Miller CM, Ozbay G. Microplastics and their interactions with microbiota. Heliyon 2023; 9:e15104. [PMID: 37089279 PMCID: PMC10113872 DOI: 10.1016/j.heliyon.2023.e15104] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
As a new pollutant, Microplastics (MPs) are globally known for their negative impacts on different ecosystems and living organisms. MPs are easily taken up by the ecosystem in a variety of organisms due to their small size, and cause immunological, neurological, and respiratory diseases in the impacted organism. Moreover, in the impacted environments, MPs can release toxic additives and act as a vector and scaffold for colonization and transportation of specific microbes and lead to imbalances in microbiota and the biogeochemical and nutrients dynamic. To address the concerns on controlling the MPs pollution on the microbiota and ecosystem, the microbial biodegradation of MPs can be potentially considered as an effective environment friendly approach. The objectives of the presented paper are to provide information on the toxicological effects of MPs on microbiota, to discuss the negative impacts of microbial colonization of MPs, and to introduce the microbes with biodegradation ability of MPs.
Collapse
|
9
|
Lasdin KS, Arnold M, Agrawal A, Fennie HW, Grorud-Colvert K, Sponaugle S, Aylesworth L, Heppell S, Brander SM. Presence of microplastics and microparticles in Oregon Black Rockfish sampled near marine reserve areas. PeerJ 2023; 11:e14564. [PMID: 36815986 PMCID: PMC9936869 DOI: 10.7717/peerj.14564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/22/2022] [Indexed: 02/16/2023] Open
Abstract
Measuring the spatial distribution of microparticles which include synthetic, semi-synthetic, and anthropogenic particles is critical to understanding their potential negative impacts on species. This is particularly important in the context of microplastics, which are a form of microparticle that are prevalent in the marine environment. To facilitate a better understanding of microparticle occurrence, including microplastics, we sampled subadult and young juvenile Black Rockfish (Sebastes melanops) at multiple Oregon coast sites, and their gastrointestinal tracts were analyzed to identify ingested microparticles. Of the subadult rockfish, one or more microparticles were found in the GI tract of 93.1% of the fish and were present in fish from Newport, and near four of five marine reserves. In the juveniles, 92% of the fish had ingested one or more microparticles from the area of Cape Foulweather, a comparison area, and Otter Rock, a marine reserve. The subadults had an average of 7.31 (average background = 5) microparticles detected, while the juveniles had 4.21 (average background = 1.8). In both the subadult and juvenile fish, approximately 12% of the microparticles were identified as synthetic using micro-Fourier Infrared Spectroscopy (micro-FTIR). Fibers were the most prevalent morphology identified, and verified microparticle contamination was a complex mixture of synthetic (∼12% for subadults and juveniles), anthropogenic (∼87% for subadults and 85.5% for juveniles), and natural (e.g., fur) materials (∼0.7% for subadults and ∼2.4% for juveniles). Similarities in exposure types (particle morphology, particle number) across life stages, coupled with statistical differences in exposure levels at several locations for subadult fish, suggest the potential influence of nearshore oceanographic patterns on microparticle distribution. A deeper understanding of the impact microplastics have on an important fishery such as those for S. melanops, will contribute to our ability to accurately assess risk to both wildlife and humans.
Collapse
Affiliation(s)
- Katherine S. Lasdin
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States,Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Madison Arnold
- Department of Environmental Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Anika Agrawal
- Natural Resources and the Environment, University of Connecticut, Storrs, CT, United States
| | - H. William Fennie
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States,Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric and Administration, La Jolla, CA, USA,Hatfield Marine Science Center, Newport, OR, USA
| | - Kirsten Grorud-Colvert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Su Sponaugle
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States,Hatfield Marine Science Center, Newport, OR, USA
| | | | - Scott Heppell
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Susanne M. Brander
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, United States
| |
Collapse
|
10
|
Dong R, Zhou C, Wang S, Yan Y, Jiang Q. Probiotics ameliorate polyethylene microplastics-induced liver injury by inhibition of oxidative stress in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 130:261-272. [PMID: 36122639 DOI: 10.1016/j.fsi.2022.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic particles (MPs) are environmental pollutants that can cause varying levels of aquatic toxicity. Probiotics have been shown to reduce the negative effects of toxic substances. However, the protective effect of probiotics against the adverse effects of MPs has yet to be reported. The current study sought to determine the effects of the commercial probiotic AquaStar® Growout on polystyrene (PS)-MPs-mediated hepatic oxidative stress in Nile tilapia (Oreochromis niloticus). Fishes were assigned into four groups: the first group was the control, the second group was exposed to 1 mg/L of 0.5 μm PS-MPs, and the third and fourth groups were exposed to 1 mg/L of 0.5 μm PS-MPs and pre-fed with probiotics at levels of 3 g/kg and 6 g/kg diet, respectively. At the end of the experiment, probiotics administration reversed liver damage caused by the PS-MPs, reducing serum levels of malondialdehyde, aspartate aminotransferase, and alanine aminotransferase, and increasing the total antioxidant capacity. Furthermore, probiotics alleviated PS-MPs-induced oxidative stress by restoring antioxidant enzyme activities (superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase) and reducing oxidized glutathione and enhancing the redox state. Besides, probiotics supplementation decreased the transcriptional level of C-reactive protein and tumor necrosis factor-α following PS-MPs exposure. Furthermore, probiotics counteracted PS-MPs-associated reactive oxygen species production and mitogen-activated protein kinases (MAPKs) phosphorylation status. These findings suggested that probiotics could decrease liver damage caused by PS-MPs through their antioxidant properties and modulation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Changlei Zhou
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Shuyue Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yisha Yan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
11
|
Pedà C, Romeo T, Panti C, Caliani I, Casini S, Marsili L, Campani T, Baini M, Limonta G, de Rysky E, Caccamo L, Perdichizzi A, Gai F, Maricchiolo G, Consoli P, Fossi MC. Integrated biomarker responses in European seabass Dicentrarchus labrax (Linnaeus, 1758) chronically exposed to PVC microplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129488. [PMID: 35999717 DOI: 10.1016/j.jhazmat.2022.129488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Few studies evaluated long-term effects of polyvinyl chloride (PVC) microplastics (MPs) ingestion in fish. The present study aimed to investigate the integrated biomarker responses in the liver and blood of 162 European seabass, Dicentrarchus labrax, exposed for 90 days to control, virgin and marine incubated PVC enriched diets (0.1 % w/w) under controlled laboratory condition. Enzymatic and tissue alterations, oxidative stress, gene expression alterations and genotoxicity were examined. Additives and environmental contaminants levels in PVC-MPs, control feed matrices and in seabass muscles were also detected. The results showed that the chronic exposure at environmentally realistic PVC-MPs concentrations in seabass, cause early warning signs of toxicological harm in liver by induction of oxidative stress, the histopathological alterations and also by the modulation of the Peroxisome proliferator-activated receptors (PPARs) and Estrogen receptor alpha (ER-α) genes expression. A trend of increase of DNA alterations and the observation of some neoformations attributable to lipomas suggest also genotoxic and cancerogenic effects of PVC. This investigation provides important data to understand the regulatory biological processes affected by PVC-MPs ingestion in marine organisms and may also support the interpretation of results provided by studies on wild species.
Collapse
Affiliation(s)
- Cristina Pedà
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Ecology and Marine Biotechnology, Sicily Marine Centre, Integrative Marine Ecology Department (EMI), Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| | - Teresa Romeo
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Ecology and Marine Biotechnology, Sicily Marine Centre, Integrative Marine Ecology Department (EMI), Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy; Institute for Environmental Protection and Research, ISPRA, Via dei Mille 56, 98057 Milazzo, ME, Italy.
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Letizia Marsili
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Giacomo Limonta
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Erica de Rysky
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| | - Letteria Caccamo
- Institute of Biological Resources and Marine Biotechnology National Research Council (IRBIM, CNR), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Anna Perdichizzi
- Institute of Biological Resources and Marine Biotechnology National Research Council (IRBIM, CNR), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Francesco Gai
- Institute of Sciences of Food Production, National Research Council, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Giulia Maricchiolo
- Institute of Biological Resources and Marine Biotechnology National Research Council (IRBIM, CNR), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Pierpaolo Consoli
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Ecology and Marine Biotechnology, Sicily Marine Centre, Integrative Marine Ecology Department (EMI), Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena 53100, Italy
| |
Collapse
|
12
|
Hayati A, Pramudya M, Soepriandono H, Astri AR, Kusuma MR, Maulidah S, Adriansyah W, Dewi FRP. Assessing the recovery of steroid levels and gonadal histopathology of tilapia exposed to polystyrene particle pollution by supplementary feed. Vet World 2022; 15:517-523. [PMID: 35400943 PMCID: PMC8980369 DOI: 10.14202/vetworld.2022.517-523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Water pollution caused by industrial waste and human activities has disrupted the reproductive health of aquatic organisms. This study aimed to analyze the effects of water pollution caused by polystyrene particles (PP) on the steroid (estradiol and testosterone) levels and histopathology of male tilapia gonads. In addition, we also analyzed the potential of supplementary feeding to remove and neutralize oxidants. Materials and Methods: Thirty-six tilapia fishes were taken for the study and were divided into 12 groups (n=3), including a control group (fed with commercial pellets only) and groups fed with a mixture of commercial-probiotic pellets (200 mL/kg, 1×108 colony-forming unit [CFU]/mL) and commercial vitamin C pellets (100 mg/kg), respectively. The PP concentrations used for this study were 0, 0.1, 1, and 10 mg/L, and the treatment time was 2 weeks. The testosterone and estradiol concentrations were analyzed by enzyme-linked immunosorbent assay and histopathological analysis of the gonads. Results: Laboratory analysis performed using tilapia fishes showed that exposure to a PP concentration of <74 μm, mixed with feed for 14 days, could decrease estradiol and testosterone levels. Exposure to plastic particles could change the structure, shape, and size of male gonads. It can also affect the spermatogenic cell number and alter the diameter inside the cysts. Originally, plastic particles were believed to reduce the permeability of the cyst membrane, and this damages the membrane or ruptures the cyst. Supplementary feed containing probiotics (200 mL/kg, 1×108 CFU/mL) and vitamin C (100 mg/kg) can ameliorate the impact of PP exposure on steroid levels. The steroid levels increase with a concurrent improvement in cysts and seminiferous tubule structures. Conclusion: Overall, this study indicates that PP concentrations in the aquatic environment negatively affect tilapia reproduction, and this may pose a potential threat to the fish population in freshwater. Provision of supplementary feed containing probiotics and vitamin C may serve as an alternative way to counter the negative impact caused by plastic particles.
Collapse
Affiliation(s)
- Alfiah Hayati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Manikya Pramudya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Hari Soepriandono
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Aisyah Rizkyning Astri
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Michael Ronaldi Kusuma
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Sasanaqia Maulidah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Wahyu Adriansyah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| |
Collapse
|
13
|
Li W, Chen X, Li M, Cai Z, Gong H, Yan M. Microplastics as an aquatic pollutant affect gut microbiota within aquatic animals. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127094. [PMID: 34530278 DOI: 10.1016/j.jhazmat.2021.127094] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
The adverse impact of microplastics (MPs) on gut microbiota within aquatic animals depends on the overall effect of chemicals and biofilm of MPs. Thus, it is ideal to fully understand the influences that arise from each or even all of these characteristics, which should give us a whole picture of consequences that are brought by MPs. Harmful effects of MPs on gut microbiota within aquatic organisms start from the ingestion of MPs by aquatic organisms. According to this, the present review will discuss the ingestion of MPs and its following results on gut microbial communities within aquatic animals, in which chemical components, such as plastic polymers, heavy metals and POPs, and the biofilm of MPs would be involved. This review firstly analyzed the impacts of MPs on aquatic organisms in detail about its chemical components and biofilm based on previous relevant studies. At last, the significance of field studies, functional studies and complex dynamics of gut microbial ecology in the future research of MPs affecting gut microbiota is discussed.
Collapse
Affiliation(s)
- Weixin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaofeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
14
|
Montero D, Rimoldi S, Torrecillas S, Rapp J, Moroni F, Herrera A, Gómez M, Fernández-Montero Á, Terova G. Impact of polypropylene microplastics and chemical pollutants on European sea bass (Dicentrarchus labrax) gut microbiota and health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150402. [PMID: 34818804 DOI: 10.1016/j.scitotenv.2021.150402] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 05/23/2023]
Abstract
Plastic pollution has become a global problem for marine ecosystems. Microplastics (MPs) are consumed by several marine organisms, including benthic and pelagic fish species that confuse them with food sources, thus contributing to bioaccumulation along the food chain. In addition to structural intestinal damage, ingestion of MPs represents a pathway for fish exposure to potentially hazardous chemicals, too. Most of them are endocrine disrupters, genotoxic or induce immune depression in fish. Accordingly, we assessed the combined toxicological effects of microplastics (MPs) and adsorbed pollutants by adding them to marine fish diet. European sea bass (Dicentrarchus labrax) juveniles were fed for 60 days with feeds containing polypropylene MPs, either virgin or contaminated with chemical pollutants (a blend of dichlorodiphenyldichloroethylene, chlorpyrifos, and benzophenone-3). The data demonstrated a synergic action of MPs and chemical pollutants to induce an inflammatory-like response in distal intestine of sea bass as shown by the up regulation of cytokine il-6 and tnf-α expression. Morphological analysis detected the presence of a focus of lymphocytes in anterior and posterior intestinal segments of fish fed with contaminants in the diet. With regard to microbiota, significant changes in bacterial species richness, beta diversity, and composition of gut microbiota were observed as a consequence of both pollutants and polluted MPs ingestion. These perturbations in gut microbial communities, including the reduction of beneficial lactic acid bacteria and the increase in potential pathogenic microorganism (Proteobacteria and Vibrionales), were undeniable signs of intestinal dysbiosis, which in turn confirmed the signs of inflammation caused by pollutants, especially when combined with MPs. The results obtained in this study provide, therefore, new insights into the potential risks of ingesting MPs as pollutant carriers in marine fish.
Collapse
Affiliation(s)
- Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Jorge Rapp
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Federico Moroni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Alicia Herrera
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - May Gómez
- Grupo de Ecofisiología de Organismos Marinos (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Álvaro Fernández-Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, Telde, Las Palmas, Canary Islands, Spain
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy.
| |
Collapse
|
15
|
de Souza-Silva TG, Oliveira IA, da Silva GG, Giusti FCV, Novaes RD, de Almeida Paula HA. Impact of microplastics on the intestinal microbiota: A systematic review of preclinical evidence. Life Sci 2022; 294:120366. [DOI: 10.1016/j.lfs.2022.120366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
|
16
|
Wang Y, Ji XM, Jin RC. How anammox responds to the emerging contaminants: Status and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112906. [PMID: 34087646 DOI: 10.1016/j.jenvman.2021.112906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Numerous researches have been carried out to study the effects of emerging contaminants in wastewater, such as antibiotics, nanomaterials, heavy metals, and microplastics, on the anammox process. However, they are fragmented and difficult to provide a comprehensive understanding of their effects on reactor performance and the metabolic mechanisms in anammox bacteria. Therefore, this paper overviews the effects on anammox processes by the introduced emerging contaminants in the past years to fulfill such knowledge gaps that affect our perception of the inhibitory mechanisms and limit the optimization of the anammox process. In detail, their effects on anammox processes from the aspects of reactor performance, microbial community, antibiotic resistance genes (ARGs), and functional genes related to anammox and nitrogen transformation in anammox consortia are summarized. Furthermore, the metabolic mechanisms causing the cell death of anammox bacteria, such as induction of reactive oxygen species, limitation of substrates diffusion, and membrane binding are proposed. By offering this review, the remaining research gaps are identified, and the potential metabolic mechanisms in anammox consortia are highlighted.
Collapse
Affiliation(s)
- Ye Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiao-Ming Ji
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
17
|
Cappello S, Caruso G, Bergami E, Macrì A, Venuti V, Majolino D, Corsi I. New insights into the structure and function of the prokaryotic communities colonizing plastic debris collected in King George Island (Antarctica): Preliminary observations from two plastic fragments. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125586. [PMID: 34030422 DOI: 10.1016/j.jhazmat.2021.125586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In Antarctic regions, the composition and metabolic activity of microbial assemblages associated with plastic debris ("plastisphere") are almost unknown. A macroplastic item from land (MaL, 30 cm) and a mesoplastic from the sea (MeS, 4 mm) were collected in Maxwell Bay (King George Island, South Shetland) and analyzed by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR), which confirmed a polystyrene foam and a composite high-density polyethylene composition for MaL and MeS, respectively. The structure and function of the two plastic-associated prokaryotic communities were studied by complementary 16S ribosomal RNA gene clone libraries, total bacterioplankton and culturable heterotrophic bacterial counts, enzymatic activities of the whole community and enzymatic profiles of bacterial isolates. Results showed that Gamma- and Betaproteobacteria (31% and 28%, respectively) dominated in MeS, while Beta- and Alphaproteobacteria (21% and 13%, respectively) in MaL. Sequences related to oil degrading bacteria (Alcanivorax,Marinobacter) confirmed the known anthropogenic pressure in King George Island. This investigation on plastic-associated prokaryotic structure and function represents the first attempt to characterize the ecological role of plastisphere in this Antarctic region and provides the necessary background for future research on the significance of polymer type, surface characteristics and environmental conditions in shaping the plastisphere.
Collapse
Affiliation(s)
- Simone Cappello
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy.
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy
| | - Angela Macrì
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Domenico Majolino
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy
| |
Collapse
|
18
|
Adamovsky O, Bisesi JH, Martyniuk CJ. Plastics in our water: Fish microbiomes at risk? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100834. [PMID: 33930774 DOI: 10.1016/j.cbd.2021.100834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Water contaminated with plastic debris and leached plasticizers can be ingested or taken up by aquatic invertebrates and vertebrates alike, exerting adverse effects on multiple tissues including the gastrointestinal tract. As such, gut microbiomes of aquatic animals are susceptible targets for toxicity. Recent studies conducted in teleost fishes report that microplastics and plasticizers (e.g., phthalates, bisphenol A) induce gastrointestinal dysbiosis and alter microbial diversity in the gastrointestinal system. Here we synthesize the current state of the science regarding plastics, plasticizers, and their effects on microbiomes of fish. Literature suggests that microplastics and plasticizers increase the abundance of opportunistic pathogenic microorganisms (e.g. Actinobacillus, Mycoplasma and Stenotrophomonas) in fish and reveal that gamma-proteobacteria are sensitive to microplastics. Recommendations moving forward for the research field include (1) environmentally relevant exposures to improve understanding of the long-term impacts of microplastic and plasticizer contamination on the fish gastrointestinal microbiome; (2) investigation into the potential impacts of understudied polymers such as polypropylene, polyamide and polyester, and (3) studies with elastomers such as rubbers that are components of tire materials, as these chemicals often dominate plastic debris. Focus on both microplastics and the gut microbiota is intensifying in environmental toxicology, and herein lies an opportunity to improve evaluation of global ecological impacts associated with plastic contamination. This is important as the microbiota is intimately tied to an individual's health and fragmentation of microbial community networks and gut dysbiosis can result in disease susceptibility and early mortality events.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
19
|
Sehnal L, Brammer-Robbins E, Wormington AM, Blaha L, Bisesi J, Larkin I, Martyniuk CJ, Simonin M, Adamovsky O. Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. Front Microbiol 2021; 12:567408. [PMID: 33776947 PMCID: PMC7995652 DOI: 10.3389/fmicb.2021.567408] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/05/2021] [Indexed: 01/03/2023] Open
Abstract
Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.
Collapse
Affiliation(s)
- Ludek Sehnal
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Elizabeth Brammer-Robbins
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Alexis M. Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Joe Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Iske Larkin
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | |
Collapse
|
20
|
Feng S, Zeng Y, Cai Z, Wu J, Chan LL, Zhu J, Zhou J. Polystyrene microplastics alter the intestinal microbiota function and the hepatic metabolism status in marine medaka (Oryzias melastigma). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143558. [PMID: 33190902 DOI: 10.1016/j.scitotenv.2020.143558] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
To assess the potential effects of microplastics (MPs) on gut microbiome, a simple investigation of gut microbial structure is not sufficient, and the function and association of gut microbial structure with host health should also be taken into account. Here, the effects of two particle sizes (2 and 200 μm) of polystyrene MPs (PS-MPs) on the gut microbiota of medaka were evaluated following oral administration at 0.3 and 3.0 μg/mg for 28 days. No change in body length and gut histopathology damage were observed. However, the exposure to PS-MPs significantly decreased fish body weight and disrupted the liver anti-oxidative status. The PS-MPs caused a shift in the gut microbial structure of medaka accompanied by changes in community function, including significant environmental stress, increased carbon degradation/fixation activities, and partially modified nitrogen/phosphorus/sulfur metabolic abilities. Furthermore, the PS-MPs exposure disturbed the glycolipid/tyrosine/energy metabolism and the endocrine balance. A potential correlation between the gut microecology and host response to PS-MPs exposure was also observed. These results indicated that the PS-MPs may contribute to gut-liver axis disruption, which could be the underlying toxicological mechanisms of PS-MPs exposure. This work has improved our knowledge about the relationship between gut microbiota dysbiosis and host metabolic disorders following MPs exposure.
Collapse
Affiliation(s)
- Shibo Feng
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yanhua Zeng
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
21
|
Wu M, Tang W, Wu S, Liu H, Yang C. Fate and effects of microplastics in wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143902. [PMID: 33316531 DOI: 10.1016/j.scitotenv.2020.143902] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) have garnered growing attention of researchers, as they are proved to be hazardous to the environment and humans. Wastewater treatment plants (WWTPs) are deemed as an important releasing source of MPs to the environment, and thus it is of significance to study the behavior of MPs in WWTPs. In this review, the fate of MPs in WWTPs and their effects on different wastewater treatment processes have been comprehensively discussed. Studies have shown that the secondary treatment is the most efficient process to remove MPs from wastewaters with a removal rate around 98%. The presence of MPs can increase reagent addition dosage, inhibit nitrogen conversion rate, and cause membrane fouling in wastewater treatment processes. Besides, the influences of MPs on activated sludge mainly exert on nitrification and denitrification processes, sludge digestion, and microbial communities. However, it is worth noting that different methods have been employed to determine the concentrations of MPs in WWTPs. As a result, the removal performance on MPs in WWTPs is difficult to be accurately assessed. Moreover, complicated interaction among MPs and other environmental pollutants may expand the impacts of MPs on wastewater treatment processes, which still remains insufficiently investigated. Therefore, this review has also proposed some knowledge gaps existing in present MP studies in WWTPs, and would provide reference to alleviate the adverse effects of MPs for future research.
Collapse
Affiliation(s)
- Mengjie Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenchang Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shaohua Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Hongyu Liu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Hunan Province Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| |
Collapse
|
22
|
Latchere O, Audroin T, Hétier J, Métais I, Châtel A. The need to investigate continuums of plastic particle diversity, brackish environments and trophic transfer to assess the risk of micro and nanoplastics on aquatic organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116449. [PMID: 33465650 DOI: 10.1016/j.envpol.2021.116449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Plastic particles are ubiquitous in marine and freshwater environments. While many studies have focused on the toxicity of microplastics (MPs) and nanoplastics (NPs) in aquatic environments there is no clear conclusion on their environmental risk, which can be attributed to a lack of standardization of protocols for in situ sampling, laboratory experiments and analyzes. There are also far more studies concerning marine environments than fresh or brackish waters despite their role in the transfer of plastics from continents to oceansWe systematically reviewed the literature for studies: (1) using plastics representative of those found in the environment in laboratory experiments, (2) on the contamination of plastic particles in the continuum between fresh and marine waters, focusing in particular on estuaries and (3) on the continuum of contamination of plastic particles between species through trophic transfer in aquatic environments. We found that the exposure of aquatic organisms in the laboratory to plastic particles collected in the environment are very scarce. Moreover, plastic exposures of estuarine species in the laboratory are generally carried out for a single salinity and a single temperature that do not reflect the fluctuating environmental conditions of estuaries. Finally, the trophic transfer of plastic particles is mainly studied in the laboratory through simple food chains which are not representative of the complexity of the trophic networks observed in the aquatic environment. We pointed out that future studies in the laboratory should include both MPs and NPs sampled in the environment and focus on the precise characterization of the composition and surface of these plastics as well as on their absorbed pollutants, additives or biofilms. Moreover, investigations must be continued concerning the toxicity of plastic particles in brackish water environments such as estuaries and the trophic transfer of plastic particles in complex food chains.
Collapse
Affiliation(s)
- Oïhana Latchere
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France.
| | - Thybaud Audroin
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France
| | - Jean Hétier
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France
| | - Isabelle Métais
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France
| | - Amélie Châtel
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France
| |
Collapse
|
23
|
Li LL, Amara R, Souissi S, Dehaut A, Duflos G, Monchy S. Impacts of microplastics exposure on mussel (Mytilus edulis) gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141018. [PMID: 32758734 DOI: 10.1016/j.scitotenv.2020.141018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs), plastics with particles smaller than 5 mm, have been found almost in every corner of the world, especially in the ocean. Due to the small size, MPs can be ingested by animals and enter the marine trophic chain. MPs can affect animal health by physically causing damage to the digestive tract, leaking plastic chemical components, and carrying environmental pollutants and pathogens into animals. In this study, impacts of MPs ingestion on gut microbiota were investigated. Filter feeding mussels were exposed to "virgin" and "weathered" MPs at relatively realistic concentration 0.2 mg L-1 ("low") and exaggerated concentration 20 mg L-1 ("high") for 6 weeks. Influence in mussel gut microbiota was investigated with 16S rRNA gene high-throughput sequencing. As compared with non-exposed mussels, alteration of gut microbiota was observed after mussels were exposed to MPs for 1 week, 3 weeks, 6 weeks, and even after 8-day post-exposure depuration. Potential human pathogens were found among operational taxonomic units (OTUs) with increased abundance induced by MP-exposure. Faecal pellets containing microorganisms from altered gut microbiota and MPs might further influence microbiota of surrounding environment. Our results have demonstrated impacts of MP-exposure on mussel gut microbiota and suggested possible consequent effects on food quality, food safety, and the well-being of marine food web in the ecosystem for future studies.
Collapse
Affiliation(s)
- Luen-Luen Li
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France; ANSES, Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-mer, France
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Alexandre Dehaut
- ANSES, Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-mer, France
| | - Guillaume Duflos
- ANSES, Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-mer, France
| | - Sébastien Monchy
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France.
| |
Collapse
|
24
|
Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol 2020; 17:57. [PMID: 33183327 PMCID: PMC7661204 DOI: 10.1186/s12989-020-00387-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Together with poor biodegradability and insufficient recycling, the massive production and use of plastics have led to widespread environmental contamination by nano- and microplastics. These particles accumulate across ecosystems - even in the most remote habitats - and are transferred through food chains, leading to inevitable human ingestion, that adds to the highest one due to food processes and packaging. OBJECTIVE The present review aimed at providing a comprehensive overview of current knowledge regarding the effects of nano- and microplastics on intestinal homeostasis. METHODS We conducted a literature search focused on the in vivo effects of nano- and microplastics on gut epithelium and microbiota, as well as on immune response. RESULTS Numerous animal studies have shown that exposure to nano- and microplastics leads to impairments in oxidative and inflammatory intestinal balance, and disruption of the gut's epithelial permeability. Other notable effects of nano- and microplastic exposure include dysbiosis (changes in the gut microbiota) and immune cell toxicity. Moreover, microplastics contain additives, adsorb contaminants, and may promote the growth of bacterial pathogens on their surfaces: they are potential carriers of intestinal toxicants and pathogens that can potentially lead to further adverse effects. CONCLUSION Despite the scarcity of reports directly relevant to human, this review brings together a growing body of evidence showing that nano- and microplastic exposure disturbs the gut microbiota and critical intestinal functions. Such effects may promote the development of chronic immune disorders. Further investigation of this threat to human health is warranted.
Collapse
Affiliation(s)
- Nell Hirt
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France.
| |
Collapse
|
25
|
Caruso G. Microplastics as vectors of contaminants. MARINE POLLUTION BULLETIN 2019; 146:921-924. [PMID: 31426238 DOI: 10.1016/j.marpolbul.2019.07.052] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 05/22/2023]
Abstract
Pollution by microplastics and antibiotics is an emerging environmental, human and animal health threat. In spite of several studies documenting the widespread occurrence of plastic debris in aquatic ecosystems, research focusing on occurrence and concentration of biological and chemical contaminants attached on microplastic surface as well as on possible interactions of these contaminants with microplastics is still at its beginning. The present note addresses the role of microplastics as vectors of contaminants in water bodies, stressing the need for future investigations on this hot topic.
Collapse
Affiliation(s)
- Gabriella Caruso
- National Research Council (CNR), Institute of Polar Sciences (ISP), Spianata San Raineri 86, 98122 Messina, Italy.
| |
Collapse
|
26
|
Wang HT, Ding J, Xiong C, Zhu D, Li G, Jia XY, Zhu YG, Xue XM. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:110-116. [PMID: 31071627 DOI: 10.1016/j.envpol.2019.04.054] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Ubiquitous contamination of microplastics and arsenic in soil ecosystems can induce many health issues to nontarget soil organisms, and will also cause many potential threats to the gut bacterial communities of soil fauna. However, the changes in the gut bacterial communities of soil fauna after exposure to both microplastics and arsenic remain unknown. In this study, the toxicity and effects on the gut microbiota of earthworm Metaphire californica caused by the combined exposure of microplastics and arsenic were examined by using arsenic species analysis and high throughput sequencing of gut microbiota. Results showed that total arsenic and arsenic species in the earthworm gut and body tissues after exposure to combination of microplastics with arsenate (As(V)) were significantly different from that treated with As(V) alone. Microplastics lessened the accumulation of total arsenic and the transformation rate of As(V) to arsenite (As(III)). Microplastics alleviated the effect of arsenic on the gut microbiota possibly via adsorbing/binding As(V) and lowering arsenic bioavailability, thus prevented the reduction of As(V) and accumulation of total arsenic in the gut which resulted in a lower toxicity on the earthworm. The study broadens our understanding of the ecotoxicity of microplastics with other pollutants on the soil animals and on their gut microbiota.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, Graz, 8010, Austria
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiao-Yu Jia
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
27
|
Fackelmann G, Sommer S. Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. MARINE POLLUTION BULLETIN 2019; 143:193-203. [PMID: 31789155 DOI: 10.1016/j.marpolbul.2019.04.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 05/20/2023]
Abstract
As small pieces of plastics known as microplastics pollute even the remotest parts of Earth, research currently focuses on unveiling how this pollution may affect biota. Despite increasing awareness, one potentially major consequence of chronic exposure to microplastics has been largely neglected: the impact of the disruption of the symbiosis between host and the natural community and abundance pattern of the gut microbiota. This so-called dysbiosis might be caused by the consumption of microplastics, associated mechanical disruption within the gastrointestinal tract, the ingestion of foreign and potentially pathogenic bacteria, as well as chemicals, which make-up or adhere to microplastics. Dysbiosis may interfere with the host immune system and trigger the onset of (chronic) diseases, promote pathogenic infections, and alter the gene capacity and expression of gut microbiota. We summarize how chronically exposed species may suffer from microplastics-induced gut dysbiosis, deteriorating host health, and highlight corresponding future directions of research.
Collapse
Affiliation(s)
- Gloria Fackelmann
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
28
|
Ju H, Zhu D, Qiao M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:890-897. [PMID: 30735918 DOI: 10.1016/j.envpol.2019.01.097] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Microplastics (MPs) are an emerging contaminant and are confirmed to be ubiquitous in the environment. Adverse effects of MPs on aquatic organisms have been widely studied, whereas little research has focused on soil invertebrates. We exposed the soil springtail Folsomia candida to artificial soils contaminated with polyethylene MPs (<500 μm) for 28 d to explore the effects of MPs on avoidance, reproduction, and gut microbiota. Springtails exhibited avoidance behaviors at 0.5% and 1% MPs (w/w in dry soil), and the avoidance rate was 59% and 69%, respectively. Reproduction was inhibited when the concentration of MPs reached 0.1% and was reduced by 70.2% at the highest concentration of 1% MPs compared to control. The half-maximal effective concentration (EC50) value based on reproduction for F. candida was 0.29% MPs. At concentrations of 0.5% dry weight in the soil, MPs significantly altered the microbial community and decreased bacterial diversity in the springtail gut. Specifically, the relative abundance of Wolbachia significantly decreased while the relative abundance of Bradyrhizobiaceae, Ensifer and Stenotrophomonas significantly increased. Our results demonstrated that MPs exerted a significant toxic effect on springtails and can change their gut microbial community. This can provide useful information for risk assessment of MPs in terrestrial ecosystems.
Collapse
Affiliation(s)
- Hui Ju
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|