1
|
Torresan V, Dedroog LM, Deschaume O, Koos E, Lettinga MP, Gandin A, Pelosin M, Zanconato F, Brusatin G, Bartic C. Nanocellulose-collagen composites as advanced biomaterials for 3D in-vitro neuronal model systems. Carbohydr Polym 2025; 348:122901. [PMID: 39567136 DOI: 10.1016/j.carbpol.2024.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
Studying brain diseases and developing therapies requires versatile in vitro systems for long-term neuronal cultures. SH-SY5Y neuroblastoma cells are ideal for modeling neurodegenerative diseases. Although SH-SY5Y cells are commonly used in 2D cultures, 3D systems offer more physiologically relevant models. Studies have shown 3D culturing up to 7 days, but a simple, reproducible, and tunable system has yet to be identified. Cellulose holds potential to fulfill these needs. Cellulose and its derivatives are sustainable, cytocompatible, and ideal for synthesizing biocompatible hydrogels. Its abundance and ease of chemical modification make it a highly attractive biomaterial. This study explored nanocellulose-based hydrogels for promoting neuronal growth and morphogenesis. To enhance cell adhesion, a small amount of collagen was added to the hydrogel, and the resulting cell morphologies were analyzed and compared with those cultured in collagen and Matrigel. By chemically oxidizing cellulose and adjusting the blend, we developed composites that maintained neuronal viability for over 14 days in 3D cultures. Our findings show that nanocellulose-collagen composites offer superior cytocompatibility, promoting neuronal viability and neurite outgrowth more effectively than Matrigel and collagen. These tunable biomaterials support long-term 3D neuronal cultures, making them valuable for creating standardized models for disease research and drug development.
Collapse
Affiliation(s)
- Veronica Torresan
- Department of Industrial Engineering, University of Padova and INSTM, via Marzolo 9, 35131 Padova, Italy
| | - Lens Martijn Dedroog
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Olivier Deschaume
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Erin Koos
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Minne Paul Lettinga
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; Biological Information Processing IBI-4, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alessandro Gandin
- Department of Industrial Engineering, University of Padova and INSTM, via Marzolo 9, 35131 Padova, Italy
| | - Margherita Pelosin
- Department of Industrial Engineering, University of Padova and INSTM, via Marzolo 9, 35131 Padova, Italy
| | - Francesca Zanconato
- Department of Molecular Medicine, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giovanna Brusatin
- Department of Industrial Engineering, University of Padova and INSTM, via Marzolo 9, 35131 Padova, Italy.
| | - Carmen Bartic
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Kim M, Yeo M, Lee K, Park MJ, Han G, Lee C, Park J, Jung B. Extraction and Characterization of Human Adipose Tissue-Derived Collagen: Toward Xeno-Free Tissue Engineering. Tissue Eng Regen Med 2024; 21:97-109. [PMID: 38079100 PMCID: PMC10764687 DOI: 10.1007/s13770-023-00612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Collagen is a key component of connective tissue and has been frequently used in the fabrication of medical devices for tissue regeneration. Human-originated collagen is particularly appealing due to its low immune response as an allograft biomaterial compared to xenografts and its ability to accelerate the regeneration process. Ethically and economically, adipose tissues available from liposuction clinics are a good resource to obtain human collagen. However, studies are still scarce on the extraction and characterization of human collagen, which originates from adipose tissue. The aim of this study is to establish a novel and simple method to extract collagen from human adipose tissue, characterize the collagen, and compare it with commercial-grade porcine collagen for tissue engineering applications. METHODS We developed a method to extract the collagen from human adipose tissue under quasi-Good Manufacturing Practice (GMP) conditions, including freezing the tissue, blood removal, and ethanol-based purification. Various techniques, including protein quantification, decellularization assessment, SDS-PAGE, FTIR, and CD spectroscopy analysis, were used for characterization. Amino acid composition was compared with commercial collagen. Biocompatibility and cell proliferation tests were performed, and in vitro tests using collagen sponge scaffolds were conducted with statistical analysis. RESULTS Our results showed that this human adipose-derived collagen was equivalent in quality to commercially available porcine collagen. In vitro testing demonstrated high cell attachment and the promotion of cell proliferation. CONCLUSION In conclusion, we developed a simple and novel method to extract and characterize collagen and extracellular matrix from human adipose tissue, offering a potential alternative to animal-derived collagen for xeno-free tissue engineering applications.
Collapse
Affiliation(s)
- Minseong Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea.
- Medical Device Development Center, KBIO HEALTH OSONG Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Cheongju-si, 28160, Republic of Korea.
| | - MyungGu Yeo
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - KyoungHo Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Min-Jeong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Gyeongyeop Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Chansong Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jihyo Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Bongsu Jung
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea.
| |
Collapse
|
3
|
Farasati Far B, Naimi-Jamal MR, Jahanbakhshi M, Rostamani H, Karimi M, Keihankhadiv S. Synthesis and characterization of chitosan/collagen/polycaprolactone hydrogel films with enhanced biocompatibility and hydrophilicity for artificial tendon applications. Int J Biol Macromol 2023; 253:127448. [PMID: 37844811 DOI: 10.1016/j.ijbiomac.2023.127448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Regenerative medicine confronts various obstacles, such as creating and advancing biomaterials. Besides being safe, such materials should promote cellular activity. Polycaprolactone (PCL) has numerous medical applications as an engineering material. However, these polymers lack hydrophilicity. Herein, chitosan (CS)/collagen (COL)/polycaprolactone hydrogel films (CSCPs) were synthesized with different weight ratios of PCL; specifically, CS/COL (CSC): PCL content of 1:3, 1:6, and 1:9. For this purpose, novel COL immobilization on CS was performed via covalent attachment. Following the addition of PCL to CSC hydrogel, the resulting CSCP hydrogel films were characterized using tensile measurements, TGA, XRD, FTIR, and FE-SEM. A greater PCL content increases the elongation at break from 134.8 to 369.5 % and the tensile strength of the hydrogel films from 4.8 to 18.4 MPa. The hydrophobicity of prepared specimens was assessed through water absorption and contact-angle tests. For CSCP3 to CSCP9, the water contact angle increased from 61.03° to 70.82°. After 48 days, CSCP6 and CSCP9 hydrogel films demonstrated a slow rate of degradation, losing <15 % of their weight. Moreover, all three types of hydrogel films exhibited high biocompatibility (higher than 95 % after three days), as confirmed by the MTT assay. The hemolysis rates of CSCP hydrogel films were <2 %, which could be deemed safe for contact with a blood environment. The presence of no costly and bio-based crosslinking agents and desired characteristics for tissue engineering applications suggest that CSCP hydrogel films may be promising candidates for use in artificial tendons.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Mehdi Jahanbakhshi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Faculty of Engineering, Islamic Azad University, Mashhad, Iran
| | - Mahsa Karimi
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, USA
| | - Shadi Keihankhadiv
- Department of physical chemistry and Technology of polymers, Faculty of Chemistry, Silesian University of Technology, 44_100 Gliwice, Poland
| |
Collapse
|
4
|
Hu YD, Xi QH, Kong J, Zhao YQ, Chi CF, Wang B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from the Collagens of Monkfish ( Lophius litulon) Swim Bladders: Isolation, Characterization, Molecular Docking Analysis and Activity Evaluation. Mar Drugs 2023; 21:516. [PMID: 37888451 PMCID: PMC10608021 DOI: 10.3390/md21100516] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were -7.3, -10.9 and -9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.
Collapse
Affiliation(s)
- Yu-Dong Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Hao Xi
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Kong
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
5
|
Wang Y, Song L, Guo C, Ji R. Proteomic Identification and Characterization of Collagen from Bactrian Camel ( Camelus bactrianus) Hoof. Foods 2023; 12:3303. [PMID: 37685234 PMCID: PMC10486769 DOI: 10.3390/foods12173303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
With the development of camel-derived food and pharmaceutical cosmetics, camel hoof, as a unique by-product of the camel industry, has gradually attracted the attention of scientific researchers in the fields of nutrition, health care, and biomaterial development. In this study, the protein composition and collagen type of Bactrian camel hoof collagen extract (CHC) were analyzed by LC-MS/MS, and the functional properties of CHC were further investigated, including its rheological characteristics, emulsification and emulsion stability, and hygroscopicity and humectancy. Proteomic identification confirmed that CHC had 13 collagen subunits, dominated by type I collagen (α1, α2), with molecular weights mainly in the 100-200 KDa range and a pI of 7.48. An amino acid study of CHC revealed that it carried the standard amino acid profile of type I collagen and was abundant in Gly, Pro, Glu, Ala, and Arg. Additionally, studies using circular dichroism spectroscopy and Fourier transform infrared spectroscopy revealed that CHC contains a collagen-like triple helix structure that is stable and intact. Different concentrations of CHC solutions showed shear-thinning flow behavior. Its tan δ did not differ much with increasing concentration. The CHC has good emulsifying ability and stability, humectancy, and hygroscopicity. This study provides a basis for utilizing and developing Bactrian camel hoof collagen as a functional ingredient.
Collapse
Affiliation(s)
- Yingli Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Le Song
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Chengcheng Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Rimutu Ji
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
- Inner Mongolia Institute of Camel Research, Alxa 737300, China
| |
Collapse
|
6
|
Chen NF, Lin YY, Yao ZK, Tseng CC, Liu YW, Hung YP, Jean YH, Wen ZH. Oral Administration of Protease-Soluble Chicken Type II Collagen Ameliorates Anterior Cruciate Ligament Transection-Induced Osteoarthritis in Rats. Nutrients 2023; 15:3589. [PMID: 37630779 PMCID: PMC10459594 DOI: 10.3390/nu15163589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
This study investigated whether oral supplementation with protease-soluble chicken type II collagen (PSCC-II) mitigates the progression of anterior cruciate ligament transection (ACLT)-induced osteoarthritis (OA) in rats. Eight-week-old male Wistar rats were randomly assigned to the following groups: control, sham, ACLT, group A (ACLT + pepsin-soluble collagen type II collagen (C-II) with type I collagen), group B (ACLT + Amano M-soluble C-II with type I collagen), group C (ACLT + high-dose Amano M-soluble C-II with type I collagen), and group D (ACLT + unproteolyzed C-II). Various methods were employed to analyze the knee joint: nociceptive tests, microcomputed tomography, histopathology, and immunohistochemistry. Rats treated with any form of C-II had significant reductions in pain sensitivity and cartilage degradation. Groups that received PSCC-II treatment effectively mitigated the ACLT-induced effects of OA concerning cancellous bone volume, trabecular number, and trabecular separation compared with the ACLT alone group. Furthermore, PSCC-II and unproteolyzed C-II suppressed ACLT-induced effects, such as the downregulation of C-II and upregulation of matrix metalloproteinase-13, tumor necrosis factor-α, and interleukin-1β. These results indicate that PSCC-II treatment retains the protective effects of traditional undenatured C-II and provide superior benefits for OA management. These benefits encompass pain relief, anti-inflammatory effects, and the protection of cartilage and cancellous bone.
Collapse
Affiliation(s)
- Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Yen-You Lin
- Department of Sports Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Zhi-Kang Yao
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chung-Chih Tseng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Yu-Wei Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Ya-Ping Hung
- R&D Department, Taiyen Biotech Co., Ltd., Tainan 70263, Taiwan;
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung 90059, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
7
|
Kaewbangkerd K, Hamzeh A, Yongsawatdigul J. Ultrasound-assisted extraction of collagen from broiler chicken trachea and its biochemical characterization. ULTRASONICS SONOCHEMISTRY 2023; 95:106372. [PMID: 36944278 PMCID: PMC10036945 DOI: 10.1016/j.ultsonch.2023.106372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Broiler chicken tracheas are a co-product from chicken slaughterhouses which are normally turned into low value animal feed despite their high levels of collagen. Typical collagen extraction by acid and/or pepsin usually results in relatively low yield. Ultrasound-assisted extraction (UAE) could be a means to improve collagen yield. The objectives of this study were to investigate the effects of ultrasonic parameters on the yield and biochemical properties of trachea collagen (TC). Conventional extraction using acetic acid and pepsin for 48 h resulted in acid-soluble (AS) and pepsin-soluble (PS) collagen with a yield of 0.65% and 3.10%, respectively. When an ultrasound with an intensity of 17.46 W·cm-2 was applied for 20 min, followed by acid extraction for 42 h (U-AS), the collagen yield increased to 1.58%. A yield of 6.28% was obtained when the ultrasound treatment was followed by pepsin for 36 h (U-PS). PS and U-PS contained collagen of 82.84% and 85.70%, respectively. Scanning electron microscopy images revealed that the ultrasound did not affect the collagen microstructure. All collagen samples showed an obvious triple helix structure as measured by circular dichroism spectroscopy. Fourier transform infrared spectroscopy indicated that the ultrasound did not disturb the secondary structure of the protein in which approximately 30% of the α-helix content was a major structure for all collagen samples. Micro-differential scanning calorimetry demonstrated that the denaturation temperature of collagen in the presence of deionized water was higher than collagen solubilized in 0.5 M acetic acid, regardless of the extraction method. All collagen comprised of α1 and α2-units with molecular weights of approximately 135 and 116 kDa, respectively, corresponding to the type I characteristic. PS and U-PS collagen possessed higher imino acids than their AS and U-AS counterparts. Based on LC-MS/MS peptide mapping, PS and U-PS collagen showed a high similarity to type I collagen. These results suggest that chicken tracheas are an alternative source of type I collagen. UAE is a promising technique that could increase collagen yield without damaging its structure.
Collapse
Affiliation(s)
- Kitsanapong Kaewbangkerd
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
8
|
Biochemical and Microstructural Characteristics of Collagen Biopolymer from Unicornfish ( Naso reticulatus Randall, 2001) Bone Prepared with Various Acid Types. Polymers (Basel) 2023; 15:polym15041054. [PMID: 36850337 PMCID: PMC9964761 DOI: 10.3390/polym15041054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Biopolymer-like collagen has great industrial potential in terms of its excellent properties, such as strong biocompatibility, high degradability, and low antigenicity. Collagen derived from fish by-products is preferable as it is safer (free from transmittable diseases) and acceptable to most religious beliefs. This study aimed to characterize the unicornfish (Naso reticulatus Randall, 2001) bone collagens prepared with different type of acids, i.e., acetic acid, lactic acid, and citric acid. A higher yield (Y) (p < 0.05) was obtained in the citric-acid-soluble collagen (CASC) (Y = 1.36%), followed by the lactic-acid-soluble collagen (LASC) (Y = 1.08%) and acetic-acid-soluble collagen (AASC) (Y = 0.40%). All extracted collagens were classified as type I due to the presence of 2-alpha chains (α1 and α2). Their prominent absorption spectra were located at the wavelengths of 229.83 nm to 231.17 nm. This is similar to wavelengths reported for other fish collagens. The X-ray diffraction (XRD) and infrared (IR) data demonstrated that the triple-helical structure of type I collagens was still preserved after the acid-extraction process. In terms of thermal stability, all samples had similar maximum transition temperatures (Tmax = 33.34-33.51 °C). A higher relative solubility (RS) of the unicornfish bone collagens was observed at low salt concentration (0-10 g/L) (RS > 80%) and at acidic condition (pH 1.0 to pH 3.0) (RS > 75%). The extracted collagen samples had an irregular and dense flake structure with random coiled filaments. Overall, bones of unicornfish may be used as a substitute source of collagen.
Collapse
|
9
|
Matarsim NN, Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Type I Collagen from the Skin of Barracuda ( Sphyraena sp.) Prepared with Different Organic Acids: Biochemical, Microstructural and Functional Properties. J Funct Biomater 2023; 14:jfb14020087. [PMID: 36826886 PMCID: PMC9958788 DOI: 10.3390/jfb14020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
This study was carried out to compare the extractability and characteristics of barracuda (Sphyraena sp.) skin collagen using various organic acids. Acetic-solubilized collagen (ASBS), lactic-solubilized collagen (LSBS) and citric-solubilized collagen (CSBS) yielded 6.77 g/100 g, 10.06 g/100 g and 8.35 g/100 g, respectively, and those yields were significantly different (p < 0.05). All acid-solubilized collagens were considered as type I because of their two alpha chains (α1 and α2) detected in acrylamide gel after electrophoresis. Ultraviolet-visible (UV-vis) analysis confirmed that ASBS, LSBS and CSBS had similar absorption peaks (230.5 nm) and the results were in accordance with other fish collagens. Under infrared (IR) and X-ray diffraction (XRD) analysis, the triple helical structure of type I collagens extracted from barracuda skin was maintained. From a thermostability study, all type I collagens showed a higher maximum transition temperature (Tmax = 40.16 to 41.29 °C) compared to other fish skin collagens. In addition, the functional properties of the extracted collagens revealed the ASBS had higher water and oil absorption capacities than the CSBS and LSBS samples. The highest level of the emulsion ability index (EAI) (>200 m2/g) was detected under acidic conditions (pH 4), while lower EAIs were recorded under the alkaline (pH 10) and neutral treatments (pH 7). All type I collagens had a higher relative solubility (>60%) at a low pH test but the solubility level sharply decreased at a neutral pH. In addition to this, a lower concentration of NaCl (0-20 g/L) showed the higher percentage of solubility (>60%) while adding over 30 g/L of NaCl decreased solubility (>40%). From a microstructural test, all type I samples had an irregular and dense flake structure with random coiled filaments. Overall, collagen extracted from the barracuda skin may be applied as an alternative collagen from an industry perspective.
Collapse
Affiliation(s)
- Nur Nadiah Matarsim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | | | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan 90509, Malaysia
- Correspondence:
| |
Collapse
|
10
|
Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Extraction and Characterization of Type I Collagen from Parrotfish ( Scarus sordidus Forsskål, 1775) Scale solubilized with the Aid of Acetic Acid and Pepsin. Int J Biomater 2023; 2023:7312447. [PMID: 37151379 PMCID: PMC10156459 DOI: 10.1155/2023/7312447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
Waste from marine fish processing is an important source of valuable products. Fish collagen is considered a alternative biomaterial due to its excellent properties, and it is widely used for industrial purposes. Thus, this present study aimed to characterize acid and pepsin-soluble collagens from the waste of parrotfish (Scarus sordidus Forsskål, 1775) scales. The yields (p > 0.05) of acid-soluble collagen (ASC-PFS) and pepsin-soluble collagen (PSC-PFS) were 1.17 g/100 g and 1.00 g/100 g, respectively. Both collagen samples were categorized as type I owing to the presence of two alpha chain subunits (α1 and α1) after being confirmed by a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Under the fourier transform infrared (FTIR) test, the triple helical structure of type I collagens from the ASC-PFS and PSC-PFS was maintained. Moreover, the study of UV visible spectra and X-ray diffraction (XRD) showed the similarity of collagens derived from different fish species, and the thermostability (T max) evaluation of all extracted collagens was in the range of 36.22-37.78°C, and their values were comparable to previous research on the fish scale collagens. The effect of various pH and sodium chloride (NaCl) treatments on solubility exhibited that the ASC-PFS and PSC-PFS were highly soluble in an acidic condition (pH < 5.0) and low concentration of sodium chloride (<30 g/L). Taken together, collagens extracted from parrotfish scale waste can be an alternative source for industries.
Collapse
Affiliation(s)
- Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | | | | | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
11
|
Gelatins and antioxidant peptides from Skipjack tuna (Katsuwonus pelamis) skins: Purification, characterization, and cytoprotection on ultraviolet-A injured human skin fibroblasts. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Chen B, Yu L, Wu J, Qiao K, Cui L, Qu H, Su Y, Cai S, Liu Z, Wang Q. Effects of Collagen Hydrolysate From Large Hybrid Sturgeon on Mitigating Ultraviolet B-Induced Photodamage. Front Bioeng Biotechnol 2022; 10:908033. [PMID: 35832410 PMCID: PMC9271680 DOI: 10.3389/fbioe.2022.908033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet B (UVB) radiation leads to the excessive accumulation of reactive oxygen species (ROS), which subsequently promote inflammation, degradation of the extracellular matrix, and photoaging in skin. Thus antioxidant activity is particularly important when screening for active substances to prevent or repair photodamage. Marine fish-derived bioactive peptides have become a trend in cosmetics and functional food industries owing to their potential dermatological benefits. In this study, 1-diphenyl- 2-pycryl-hydrazyl (DPPH) scavenging activity was selected to optimize the hydrolysis conditions of sturgeon skin collagen peptides with antioxidant activity. The optimal hydrolysis conditions for sturgeon skin collagen hydrolysate (SSCH) were determined by response surface methodology, which comprised an enzyme dosage of flavorzyme at 6,068.4 U/g, temperature of 35.5°C, pH of 7, and hydrolysis time of 6 h. SSCH showed good radical-scavenging capacities with a DPPH scavenging efficiency of 95%. Then, the effect of low-molecular-weight SSCH fraction (SSCH-L) on UVB irradiation-induced photodamage was evaluated in mouse fibroblast L929 cells and zebrafish. SSCH-L reduced intracellular ROS levels and the malondialdehyde content, thereby alleviating the oxidative damage caused by UVB radiation. Moreover SSCH-L inhibited the mRNA expression of genes encoding the pro-inflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2. SSCH-L treatment further increased the collagen Ⅰα1 content and had a significant inhibitory effect on matrix metalloproteinase expression. The phosphorylation level of JNK and the expression of c-Jun protein were significantly reduced by SSCH-L. Additionally, SSCH-L increased the tail fin area at 0.125 and 0.25 mg/ml in a zebrafish UVB radiation model, which highlighted the potential of SSCH-L to repair UVB-irradiated zebrafish skin damage. Peptide sequences of SSCH-L were identified by liquid chromatography-tandem mass spectrometry. Based on the 3D-QSAR modeling prediction, six total peptides were selected to test the UVB-protective activity. Among these peptides, DPFRHY showed good UVB-repair activity, ROS-scavenging activity, DNA damage-protective activity and apoptosis inhibition activity. These results suggested that DPFRHY has potential applications as a natural anti-photodamage material in cosmetic and functional food industries.
Collapse
Affiliation(s)
- Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lei Yu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingna Wu
- Xiamen Medical College, Xiamen, China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lulu Cui
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Haidong Qu
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Shuilin Cai
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| |
Collapse
|
13
|
Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar Drugs 2022; 20:md20060372. [PMID: 35736175 PMCID: PMC9228671 DOI: 10.3390/md20060372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.
Collapse
|
14
|
Novel Antioxidant Collagen Peptides of Siberian Sturgeon (Acipenser baerii) Cartilages: The Preparation, Characterization, and Cytoprotection of H2O2-Damaged Human Umbilical Vein Endothelial Cells (HUVECs). Mar Drugs 2022; 20:md20050325. [PMID: 35621976 PMCID: PMC9146044 DOI: 10.3390/md20050325] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
For making full use of aquatic by-products to produce high value-added products, Siberian sturgeon (Acipenser baerii) cartilages were degreased, mineralized, and separately hydrolyzed by five kinds of proteases. The collagen hydrolysate (SCH) generated by Alcalase showed the strongest 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) and hydroxide radical (HO·) scavenging activity. Subsequently, thirteen antioxidant peptides (SCP1-SCP3) were isolated from SCH, and they were identified as GPTGED, GEPGEQ, GPEGPAG, VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE, GFIGFNG, PSVSLT, IELFPGLP, LRGEAGL, and RGEPGL with molecular weights of 574.55, 615.60, 583.60, 554.60, 640.64, 660.64, 885.04, 700.70, 710.79, 602.67, 942.12, 714.82, and 627.70 Da, respectively. GEYGFE, PSVSLT, and IELFPGLP showed the highest scavenging activity on DPPH· (EC50: 1.27, 1.05, and 1.38 mg/mL, respectively) and HO· (EC50: 1.16, 0.97, and 1.63 mg/mL, respectively), inhibiting capability of lipid peroxidation, and protective functions on H2O2-damaged plasmid DNA. More importantly, GEYGFE, PSVSLT, and IELFPGLP displayed significant cytoprotection on HUVECs against H2O2 injury by regulating the endogenous antioxidant enzymes of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Therefore, the research provided better technical assistance for a higher-value utilization of Siberian sturgeon cartilages and the thirteen isolated peptides—especially GEYGFE, PSVSLT, and IELFPGLP—which may serve as antioxidant additives for generating health-prone products to treat chronic diseases caused by oxidative stress.
Collapse
|
15
|
Yuan L, Chu Q, Wu X, Yang B, Zhang W, Jin W, Gao R. Anti-inflammatory and Antioxidant Activity of Peptides From Ethanol-Soluble Hydrolysates of Sturgeon ( Acipenser schrenckii) Cartilage. Front Nutr 2021; 8:689648. [PMID: 34179062 PMCID: PMC8225940 DOI: 10.3389/fnut.2021.689648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Research has shown that cartilage containing chondroitin sulfate and protein presents versatile bioactivities. Chondroitin sulfate in cartilage is beneficial to activate the immune system while the protein/peptide has not been fully understood. The current study investigated the antioxidant and anti-inflammatory properties of ethanol-soluble hydrolysates of sturgeon cartilage (ESCH) prepared through hot-pressure, enzymatic hydrolysis and ethanol extraction. UV spectrum, IR and agarose gel electrophoresis results suggested the successful exclusion of chondroitin sulfate from peptides. Nitric oxide (NO) floods in cells activated by inflammation. It was inhibited when administrated with ESCH. To further explain the observed anti-inflammatory activity, ESCH was separated with Sephadex G-15 into 3 components, among which F3 showed a higher NO inhibition rate and significantly reduced the production of the proinflammatory cytokine IL-6. In addition, the yield of IL-10 increased. Western blotting suggested that F3 downregulated the NO content and IL-6 level by suppressing Mitogen-activated protein kinases (MAPK) channels. Moreover, both ESCH and F3 showed DPPH and ABTS free radical scavenging abilities which was possibly related to the anti-inflammatory property. These results indicated that ESCH behaved anti-inflammatory and antioxidant activities. Cartilage may be a good source to produce anti-inflammatory peptides.
Collapse
Affiliation(s)
- Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qian Chu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoyun Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wengang Jin
- Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Bio-Resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
16
|
Chen X, Jin W, Chen D, Dong M, Xin X, Li C, Xu Z. Collagens made from giant salamander (Andrias davidianus) skin and their odorants. Food Chem 2021; 361:130061. [PMID: 34023689 DOI: 10.1016/j.foodchem.2021.130061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Two collagens were made from giant salamander (Andrias davidianus) skin by using acid and pepsin extraction methods. The yields of acid-soluble and pepsin-soluble collagens were 26.9 and 58.7%, respectively. The results of spectrum, electrophoresis and amino acid analysis showed that they were type 1 collagen with two α and one β peptides and high imino acid content. They had low solubility at a pH above 6 or salt concentration over 5%. The pepsin-soluble collagen had a better emulsion activity index. The odorants in raw skin and collagens were identified and evaluated using gas-chromatography mass-spectrometer and olfactometry methods and sensory analysis. The fishy and fatty off-odors in skin were not perceivable in the collagens. Sour, ammonia-like, and acrid off-odors were found in the collagens due to acid and enzymatic hydrolysis and protein degradation. The off-odor intensity of pepsin-soluble collagen was low. It could be considered a good and safe collagen material.
Collapse
Affiliation(s)
- Xiaohua Chen
- School of Biological Science and Engineering Shaanxi Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, China
| | - Wengang Jin
- School of Biological Science and Engineering Shaanxi Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, China
| | - Dejing Chen
- School of Biological Science and Engineering Shaanxi Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, China.
| | - Mengrao Dong
- School of Biological Science and Engineering Shaanxi Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, China
| | - Xi Xin
- School of Biological Science and Engineering Shaanxi Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, China
| | - Chongyong Li
- Inspection and Testing Center of Food and Drug of Hanzhong, Hanzhong, China
| | - Zhimin Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, United States
| |
Collapse
|
17
|
Saeed A, Murshed MN, Al-Shahari EA. Effect of low-dose fast neutrons on the protein components of peripheral blood mononuclear cells of whole-body irradiated Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40443-40455. [PMID: 32666461 DOI: 10.1007/s11356-020-10085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The immune system is exposed to extremely low doses of neutrons under different circumstances, such as through exposure to cosmic rays, nuclear accidents, and neutron therapy. Peripheral blood mononuclear cells (PBMCs) are the primary immune cells that exhibit selective immune responses. Changes in the functions of the protein components of PBMC can be induced by structural modifications of these proteins themselves. Herein, we have investigated the effect of low-dose fast neutrons on PBMC proteins at 0, 2, 4, and 8 days post-whole body irradiation. 64 Wistar rats were used in this study of which, 32 were exposed to fast neutrons at a total dose of 10 mGy (241Am-Be, 0.2 mGy/h), and the other 32 were used as controls. Blood samples were drawn, and PBMCs were isolated from whole blood. Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy were used to estimate the changes in the proteins of PBMCs. An alkaline comet assay was performed to assess DNA damage. Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were utilized to discriminate between irradiated and non-irradiated samples. FTIR and fluorescence spectra of the tested samples revealed alterations in the amides and tryptophan, and therefore protein structure at time intervals of 2 and 4 days post-irradiation. No changes were recorded in samples tested at time intervals of 0 and 8 days post-irradiation. The FTIR band intensities of the PBMC proteins of the irradiated samples decreased slightly and were statistically significant. Curve fitting of the amide I band in the FTIR spectra showed changes in the secondary structure of the proteins. At 2 days post-irradiation, fluorescence spectra of the tested samples revealed decreases in the band tryptophan. The comet assay revealed low levels of DNA damage. In conclusion, low-dose fast neutrons can affect the proteins of PBMC.
Collapse
Affiliation(s)
- Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Department of Physics, Thamar University, Thamar, Yemen.
| | - Mohammad N Murshed
- Department of Physics, Faculty of Science and Arts, Mohayel Aser, King Khalid University, Abha, Saudi Arabia
- Department of Physics, Faculty of Science, Ibb University, Ibb, Yemen
| | - Eman Abdulqader Al-Shahari
- Department of Biology, Faculty of Science and Arts, Mohayel Aser, King Khalid University, Abha, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| |
Collapse
|
18
|
Type II Collagen from Cartilage of Acipenser baerii Promotes Wound Healing in Human Dermal Fibroblasts and in Mouse Skin. Mar Drugs 2020; 18:md18100511. [PMID: 33050593 PMCID: PMC7601416 DOI: 10.3390/md18100511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Type II collagen is an important component of cartilage; however, little is known about its effect on skin wound healing. In this study, type II collagen was extracted from the cartilage of Acipenser baerii and its effect on in vitro and in vivo wound healing was compared to type I collagen derived from tilapia skin. Sturgeon cartilage collagen (SCC) was composed of α1 chains and with a thermal denaturation (Td) at 22.5 and melting temperature (Tm) at 72.5 °C. Coating SCC potentiated proliferation, migration, and invasion of human dermal fibroblast adult (HDFa) cells. Furthermore, SCC upregulated the gene expression of extracellular matrix (ECM) components (col Iα1, col IIIα1, elastin, and Has2) and epithelial-mesenchymal transition (EMT) molecules (N-cadherin, Snail, and MMP-1) in HDFa. Pretreatment with Akt and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated the HDFa invasion caused by SCC. In mice, the application of SCC on dorsal wounds effectively facilitated wound healing as evidenced by 40–59% wound contraction, whereas the untreated wounds were 18%. We observed that SCC reduced inflammation, promoted granulation, tissue formation, and ECM deposition, as well as re-epithelialization in skin wounds. In addition, SCC markedly upregulated the production of growth factors in the dermis, and dermal and subcutaneous white adipose tissue; in contrast, the administration of tilapia skin collagen (TSC) characterized by typical type I collagen was mainly expressed in the epidermis. Collectively, these findings indicate SCC accelerated wound healing by targeting fibroblast in vitro and in vivo.
Collapse
|
19
|
Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers (Basel) 2020; 12:E2230. [PMID: 32998331 PMCID: PMC7601392 DOI: 10.3390/polym12102230] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized.
Collapse
Affiliation(s)
- Hafez Jafari
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Alberto Lista
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy;
| | - Manuela Mafosso Siekapen
- Department of Chemical Engineering and Industrial Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Brussels, Belgium;
| | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Amin Shavandi
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
20
|
Tian Z, Wang Y, Wang H, Zhang K. Regeneration of native collagen from hazardous waste: chrome-tanned leather shavings by acid method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31300-31310. [PMID: 32483716 DOI: 10.1007/s11356-020-09183-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The collagens (COL2, COL4, and COL5) were extracted from chrome-tanned leather shavings via three distinctive routes of acid method. The dechroming degree of COL2 extracted with the easiest operation was the highest (95.6% ± 1.2%) and the yield exceeded 90%; however, the total amount of acid was the most and the cost was the highest. In the second route, although the three-step dechroming process brought cumbersome operation, the dechroming degree and yield of COL4 were 90.5% ± 0.8% and 92.2% ± 0.6%, respectively, and the acid amount was less than that in the first route. For COL5, the dechroming degree and yield was the lowest; nevertheless, this route had the advantages of lowest cost and simpler operation. Electrophoretic patterns showed that all the collagens contained α1, α2, and β chains without low molecular weight components and were close to those of type I collagen. Compared with native collagen extracted from fresh calf skin, the regenerated collagens also maintained unique triple helix conformation determined via ultraviolet, infrared spectra and X-ray diffraction, confirmed by the similar values of AIII/A1455 and Δν. Additionally, the collagens existed in the form of fibrils with D-period pattern of ~ 67 nm. Furthermore, the denaturation temperatures of COL2, COL4, and COL5 were 71.2, 79.1, and 85.4 °C, respectively, which were relevant to the tighter arrangement of fibrils with the increased chromium content.
Collapse
Affiliation(s)
- Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China.
| | - Ying Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China
| | - Hao Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China
| | - Kang Zhang
- Key Laboratory of Additives of Chemistry & Technology for Chemical Industry, Shaanxi University of Science & Technology, 710021, Xi'an, People's Republic of China
| |
Collapse
|
21
|
Luo J, Yang X, Cao Y, Li G, Meng Y, Li C. Structural characterization and in vitro immunogenicity evaluation of amphibian-derived collagen type II from the cartilage of Chinese Giant Salamander ( Andrias davidianus). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1941-1960. [PMID: 32584658 DOI: 10.1080/09205063.2020.1786882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Collagen type II (CT-II) has unique biological activities and functions, yet the knowledge on amphibian-derived CT-II is rare. Herein, acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were successfully isolated and characterized from the cartilage of Chinese Giant Salamander (CGS). The in vitro immunogenicity of collagen was then evaluated and compared with that of the standard bovine CT-II (SCT-II) by T-lymphocyte cell proliferation activity. Results demonstrated that ASC and PSC were predominantly CT-II along with minor collagen type I and maintained intact triple-helical structure of nature collagen. Compared with SCT-II, higher glycine content (337.80 and 339.93 residues/1000 residues) and lower degree of proline hydroxylation (51.81% and 52.52%) were observed in ASC and PSC. Additionally, PSC showed comparable T d (63 °C) and higher T m (109 °C) than SCT-II (64 °C and 103 °C, respectively), indicating its high thermal and structural stability. SEM revealed that the lyophilized ASC and PSC had interconnected porous network structures of collagen-based materials. Moreover, different from SCT-II, both ASC and PSC presented no immunogenicity because they did not cause obvious proliferation of murine T-lymphocyte regardless of the induced concentration of collagen increased from 8 to 417 μg/mL. These data suggested that the amphibian-derived CGS cartilage collagens avoid the immunogenic risk of terrestrial animal collagen, and show high thermal stability and potential advantage in biomedical application.
Collapse
Affiliation(s)
- Jianlin Luo
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Xiaojing Yang
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yu Cao
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Guoyong Li
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yonglu Meng
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Can Li
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| |
Collapse
|
22
|
Zhang W, Zheng J, Tian X, Tang Y, Ding G, Yang Z, Jin H. Pepsin-Soluble Collagen from the Skin of Lophius litulo: A Preliminary Study Evaluating Physicochemical, Antioxidant, and Wound Healing Properties. Mar Drugs 2019; 17:md17120708. [PMID: 31888163 PMCID: PMC6950534 DOI: 10.3390/md17120708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
The structure of pepsin-solubilized collagen (PSC) obtained from the skin of Lophius litulon was analyzed using the sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). SDS-PAGE results showed that PSC from Lophius litulon skin was collagen type I and had collagen-specific α1, α2, β, and γ chains. FTIR results indicated that the infrared spectrum of PSC ranged from 400 to 4000 cm-1, with five main amide bands. SEM revealed the microstructure of PSC, which consisted of clear fibrous and porous structures. In vitro antioxidant studies demonstrated that PSC revealed the scavenging ability for 2,2-diphenyl-1-picrylhydrazyl (DPPH), HO·, O2-·, and ABTS·. Moreover, animal experiments were conducted to evaluate the biocompatibility of PSC. The collagen sponge group showed a good biocompatibility in the skin wound model and may play a positive role in the progression of the healing process. The cumulative results suggest that collagen from the skin of Lophius litulon has potential applications in wound healing due to its good biocompatibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huoxi Jin
- Correspondence: ; Tel.: +86-0580-226-0600; Fax: +86-0580-254-781
| |
Collapse
|
23
|
Qiu YT, Wang YM, Yang XR, Zhao YQ, Chi CF, Wang B. Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna ( Katsuwonus pelamis) Scales: Preparation, Identification and Activity Evaluation. Mar Drugs 2019; 17:md17100565. [PMID: 31623339 PMCID: PMC6836156 DOI: 10.3390/md17100565] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
For full use of fish by-products, scale gelatin (TG) and antioxidant peptides (APs) of skipjack tuna (Katsuwonus pelamis) were prepared, and their properties were characterized using an amino acid analyzer, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), electrospray ionization mass spectrometers (ESI-MS), and radical scavenging assays. The results indicate that TG with a yield of 3.46 ± 0.27% contained Gly (327.9 ± 5.2 residues/1000 residues) as the major amino acid and its imino acid content was 196.1 residues/1000 residues. The structure of TG was more unstable than that of type I collagen from scales of skipjack tuna (TC) and TG was more suitable for preparation of hydrolysate by protease than mammalian gelatins. Therefore, TG was separately hydrolyzed under five proteases (pepsin, papain, trypsin, neutrase, and alcalase) and ten APs (TGP1–TGP10) were isolated from the alcalase-hydrolysate. Among them, TGP5, TGP7, and TGP9 with high antioxidant activity were identified as His-Gly-Pro-Hyp-Gly-Glu (TGP5), Asp-Gly-Pro-Lys-Gly-His (TGP7) and Met-Leu-Gly-Pro-Phe-Gly-Pro-Ser (TGP9), respectively. Furthermore, TGP5, TGP7, and TGP9 exhibited a high radical scavenging capability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (EC50 values of 1.34, 0.54, and 0.67 mg/mL, respectively), hydroxyl radical (EC50 values of 1.03, 0.41, and 0.74 mg/mL, respectively), and superoxide anion radical (EC50 values of 1.19, 0.71, and 1.59 mg/mL, respectively). These results suggest that three APs (TGP5, TGP7, and TGP9), especially TGP7, have a strong antioxidant activity and could act as potential antioxidant ingredients applied in functional products.
Collapse
Affiliation(s)
- Yi-Ting Qiu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xiu-Rong Yang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
24
|
Shen Q, Zhang C, Jia W, Qin X, Cui Z, Mo H, Richel A. Co-production of chondroitin sulfate and peptide from liquefied chicken sternal cartilage by hot-pressure. Carbohydr Polym 2019; 222:115015. [PMID: 31320074 DOI: 10.1016/j.carbpol.2019.115015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 01/04/2023]
Abstract
Co-production of chondroitin sulfate (CS) and peptides was realized from the liquid fraction of chicken sternal cartilage subjected to hot-pressure (HP) by membrane combination separation technology. Cartilage was liquefied via the HP treatment at 110 °C (0.07 MPa) and 120 °C (0.1 MPa) for 0.5 - 2.5 h, respectively. The optimized co-production procedure was as follows: enzymolysis temperature, 61.2 °C; the enzyme ratio of trypsin and papain, 1.3:1 (W/W); enzymolysis time ratio, 2:2 (h/h), under which the highest yields of CS and peptides were 18.85% and 67.99%, and the recoveries were 93.63% and 92.69%. The average molecular weight of CS sample was 67.79 kDa. CS sample was confirmed using agarose-gel electrophoresis, and the structure was analyzed by Fourier transform infrared spectroscopy, chromatography and nuclear magnetic resonance. Taken together, HP can be as a pretreatment method to liquefy cartilage for the industrial co-production of CS and peptides with eco-friendly.
Collapse
Affiliation(s)
- Qingshan Shen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Department of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China; University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030, Gembloux, Belgium
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wei Jia
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaojie Qin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhenkun Cui
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Haizhen Mo
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Aurore Richel
- University of Liege-Gembloux Agro-Bio Tech, Laboratory of Biomass and Green Technologies, Passage des déportés 2, B-5030, Gembloux, Belgium
| |
Collapse
|
25
|
Pan XY, Wang YM, Li L, Chi CF, Wang B. Four Antioxidant Peptides from Protein Hydrolysate of Red Stingray ( Dasyatis akajei) Cartilages: Isolation, Identification, and In Vitro Activity Evaluation. Mar Drugs 2019; 17:E263. [PMID: 31058809 PMCID: PMC6562685 DOI: 10.3390/md17050263] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
In the work, water-soluble proteins of red stingray (Dasyatis akajei) cartilages were extracted by guanidine hydrochloride and hydrolyzed using trypsin. Subsequently, four antioxidant peptides (RSHP-A, RSHP-B, RSHP-C, and RSHP-D) were isolated from the water-soluble protein hydrolysate while using ultrafiltration and chromatographic techniques, and the amino acid sequences of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were identified as Val-Pro-Arg (VPR), Ile-Glu-Pro-His (IEPH), Leu-Glu-Glu--Glu-Glu (LEEEE), and Ile-Glu-Glu-Glu-Gln (IEEEQ), with molecular weights of 370.46 Da, 494.55 Da, 647.64 Da, and 646.66 Da, respectively. VPR, IEPH, LEEEE, and IEEEQ exhibited good scavenging activities on the DPPH radical (EC50 values of 4.61, 1.90, 3.69, and 4.01 mg/mL, respectively), hydroxyl radical (EC50 values of 0.77, 0.46, 0.70, and 1.30 mg/mL, respectively), superoxide anion radical (EC50 values of 0.08, 0.17, 0.15, and 0.16 mg/mL, respectively), and ABTS cation radical (EC50 values of 0.15, 0.11, 0.19, and 0.18 mg/mL, respectively). Among the four isolated antioxidant peptides, IEPH showed the strongest reducing power and lipid peroxidation inhibition activity, but LEEEE showed the highest Fe2+-chelating ability. The present results suggested that VPR, IEPH, LEEEE, and IEEEQ might have the possibility of being an antioxidant additive that is used in functional food and pharmaceuticals.
Collapse
Affiliation(s)
- Xiao-Yang Pan
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Li Li
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
26
|
Wu J, Guo X, Liu H, Chen L. Isolation and Comparative Study on the Characterization of Guanidine Hydrochloride Soluble Collagen and Pepsin Soluble Collagen from the Body of Surf Clam Shell ( Coelomactra antiquata). Foods 2019; 8:E11. [PMID: 30609640 PMCID: PMC6352192 DOI: 10.3390/foods8010011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to characterize the collagens from the body of surf clam shell (Coelomactra antiquata). Guanidine hydrochloride and pepsin were used to extract collagens. Guanidine hydrochloride soluble collagen (GSC) and pepsin soluble collagen (PSC) were separately isolated from the body of surf clam shell. Results showed that the moisture, protein, carbohydrate, and ash contents of the body of surf clam shell were 82.46%, 11.56%, 3.05%, and 2.38%, respectively, but the fat content was only 0.55%. The yields were 0.59% for GSC and 3.78% for PSC. Both GSC and PSC were composed of α₁ and α₂ chains and a β chain, however, GSC and PSC showed distinct differences from each other and the type I collagen from grass carp muscle on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). GSC and PSC contained glycine as the major amino acid and had imino acid of 150 and 155 residues/1000 residues, respectively. Fourier transform infrared spectroscopy (FTIR) spectra of GSC and PSC revealed the presence of a triple helix. The GSC appeared to have a dense sheet-like film linked by random-coiled filaments and PSC had fine globular filaments under scanning electron microscopy (SEM). The maximum transition temperature (Tmax) of GSC and PSC was 33.05 °C and 31.33 °C, respectively. These results provide valuable scientific information for the texture study and development of surf clam shell or other bivalve mollusks.
Collapse
Affiliation(s)
- Jiulin Wu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Xiaoban Guo
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Hui Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Li Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Li LY, Zhao YQ, He Y, Chi CF, Wang B. Physicochemical and Antioxidant Properties of Acid- and Pepsin-Soluble Collagens from the Scales of Miiuy Croaker ( Miichthys Miiuy). Mar Drugs 2018; 16:E394. [PMID: 30347803 PMCID: PMC6213086 DOI: 10.3390/md16100394] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
In this report, acid-soluble collagen (ASC-MC) and pepsin-soluble collagen (PSC-MC) were extracted from the scales of miiuy croaker (Miichthys miiuy) with yields of 0.64 ± 0.07% and 3.87 ± 0.15% of dry weight basis, respectively. ASC-MC and PSC-MC had glycine as the major amino acid with the contents of 341.8 ± 4.2 and 344.5 ± 3.2 residues/1000 residues, respectively. ASC-MC and PSC-MC had lower denaturation temperatures (32.2 °C and 29.0 °C for ASC-MC and PSC-MC, respectively) compared to mammalian collagen due to their low imino acid content (197.6 and 195.2 residues/1000 residues for ASC-MC and PSC-MC, respectively). ASC-MC and PSC-MC were mainly composed of type I collagen on the literatures and results of amino acid composition, SDS-PAGE pattern, ultraviolet (UV) and Fourier-transform infrared spectroscopy (FTIR) spectra. The maximum solubility of ASC-MC and PSC-MC was appeared at pH 1⁻3 and a sharp decrease in solubility was observed when the NaCl concentration was above 2%. Zeta potential studies indicated that ASC-MC and PSC-MC exhibited a net zero charge at pH 6.66 and 6.81, respectively. Furthermore, the scavenging capabilities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical, superoxide anion radical and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical of ASC-MC and PSC-MC were positively correlated with their tested concentration ranged from 0 to 5 mg/mL and PSC-MC showed significantly higher activity than that of ASC-MC at most tested concentrations (p < 0.05). In addition, the scavenging capability of PSC-MC on hydroxyl radical and superoxide anion radical was higher than those of DPPH radical and ABTS radical, which suggested that ASC-SC and PSC-SC might be served as hydroxyl radical and superoxide anion radical scavenger in cosmeceutical products for protecting skins from photoaging and ultraviolet damage.
Collapse
Affiliation(s)
- Long-Yan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu He
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|