1
|
Zaman R, Shah A, Ishangulyyeva G, Erbilgin N. Exploring behavioural and physiological adaptations in mountain pine beetle in response to elevated ozone concentrations. CHEMOSPHERE 2024; 362:142751. [PMID: 38960047 DOI: 10.1016/j.chemosphere.2024.142751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Elevated ozone (eO3) concentrations pose a threat to insect populations by potentially altering their behaviour and physiology. This study investigates the effects of eO3 concentrations on the mountain pine beetle which is a major tree-killing species of conifers in northwestern North America. We are particularly interested in understanding the effects of eO3 concentrations on beetle behaviour and physiology and possible transgenerational impacts on bark beetle broods. We conducted O3-enrichment experiments in a controlled laboratory setting using different O3 concentrations (100-200 ppb; projected for 2050-2100) and assessed various beetle responses, including CO2 respiration, mating behaviour, survival probability, locomotion, and attraction behaviour. Transgenerational impacts on the first and second generations were also analyzed by studying brood morphology, mating behaviour, survival, and pheromone production. We found that beetles exposed to eO3 concentrations had shorter oviposition galleries and reduced brood production. Beetle pheromones were also degraded by eO3 exposure. However, exposure to eO3 also prompted various adaptive responses in beetles. Despite reduced respiration, eO3 improved locomotor activity and the olfactory response of beetles. Surprisingly, beetle survival probability was also improved both in the parents and their broods. We also observed transgenerational plasticity in the broods of eO3-exposed parents, suggesting potential stress resistance mechanisms. This was evident by similar mating success, oviposition gallery length, and brood numbers produced in both control and eO3 concentration treatments. This study demonstrates the sensitivity of mountain pine beetles to increased O3 concentrations, contributing crucial insights into the ecological implications of eO3 concentrations on their populations. Overall, the outcome of this study contributes to informed climate change mitigation strategies and adaptive management practices for the development of resilient forests in response to emerging forest insect pests worldwide.
Collapse
Affiliation(s)
- Rashaduz Zaman
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| | - Ateeq Shah
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
2
|
Agathokleous E, Feng Z, Oksanen E, Sicard P, Wang Q, Saitanis CJ, Araminiene V, Blande JD, Hayes F, Calatayud V, Domingos M, Veresoglou SD, Peñuelas J, Wardle DA, De Marco A, Li Z, Harmens H, Yuan X, Vitale M, Paoletti E. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. SCIENCE ADVANCES 2020; 6:eabc1176. [PMID: 32851188 PMCID: PMC7423369 DOI: 10.1126/sciadv.abc1176] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Elina Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, POB 111, 80101 Joensuu, Finland
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, 06410 Biot, France
| | - Qi Wang
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Costas J. Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Valda Araminiene
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys 53101 Kaunas District, Lithuania
| | - James D. Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Felicity Hayes
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna, Valencia 46980, Spain
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972 São Paulo, Brazil
| | - Stavros D. Veresoglou
- Freie Universität Berlin-Institut für Biologie, Dahlem Center of Plant Sciences, Plant Ecology, Berlin, Germany
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia E-08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia E-08193, Spain
| | - David A. Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome I-00123, Italy
| | - Zhengzhen Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Harry Harmens
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China
| | - Marcello Vitale
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Does Ozone Alter the Attractiveness of Japanese White Birch Leaves to the Leaf Beetle Agelastica coerulea via Changes in Biogenic Volatile Organic Compounds (BVOCs): An Examination with the Y-Tube Test. FORESTS 2020. [DOI: 10.3390/f11010058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Elevated ground-level ozone (O3) reduced C-based defense chemicals; however, severe grazing damages were found in leaves grown in the low O3 condition of a free air O3-concentration enrichment (O3-FACE) system. To explain this phenomenon, this study investigates the role of BVOCs (biogenic volatile organic compounds) as signaling compounds for insect herbivores. BVOCs act as scents for herbivore insects to locate host plants, while some BVOCs show high reactivity to O3, inducing changes in the composition of BVOCs in atmospheres with elevated O3. To assess the aforementioned phenomenon, profiles of BVOCs emitted from birch (Betula platyphylla var. japonica Hara) leaves were analyzed ex situ, and Y-tube insect preference tests were conducted in vitro to study the insect olfactory response. The assays were conducted in June and August or September, according to the life cycle of the adult alder leaf beetle Agelastica coerulea Baly (Coleoptera: Chrysomelidae). The Y-tube tests revealed that the leaf beetles were attracted to BVOCs, and O3 per se had neither an attractant nor a repellent effect. BVOCs became less attractant when mixed with highly concentrated O3 (>80 ppb). About 20% of the total BVOCs emitted were highly O3-reactive compounds, such as β-ocimene. The results suggest that BVOCs emitted from the birch leaves can be altered by elevated O3, thus potentially reducing the attractiveness of leaves to herbivorous insects searching for food.
Collapse
|
4
|
Sugai T, Okamoto S, Agathokleous E, Masui N, Satoh F, Koike T. Leaf defense capacity of Japanese elm (Ulmus davidiana var. japonica) seedlings subjected to a nitrogen loading and insect herbivore dynamics in a free air ozone-enriched environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3350-3360. [PMID: 31845267 DOI: 10.1007/s11356-019-06918-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/30/2019] [Indexed: 05/03/2023]
Abstract
Japanese elm (Ulmus davidiana var. japonica) is a native species in cool-temperate forests in Japan. We investigated growth, physiological reactions, and leaf defense capacity of Japanese elm seedlings under nitrogen (N) loading (45.3 kg N ha-1 year-1) and seasonal insect dynamics in a free-air ozone (O3)-enriched environment (about 54.5 nmol O3 mol-1) over a growing season. Higher leaf N content and lower condensed tannin content in the presence of N loading and lower condensed tannin content in elevated O3 were observed, suggesting that both N loading and elevated O3 decreased the leaf defense capacity and that N loading further enhanced the leaf quality as food resource of insect herbivores. Two major herbivores were observed on the plants, elm leaf beetle (Pyrrhalta maculicollis) and elm sawfly (Arge captiva). The peak number of observed insects was decreased by N loading. Visible foliar injury caused by N loading might directly induce the reduction of number of the observed elm sawfly individuals. While elevated O3 slightly suppressed the chemical defense capacity, significantly lower number of elm leaf beetle was observed in elevated O3. We conclude that N loading and elevated O3 can alter not only the leaf defense capacity of Japanese elm seedlings but also the dynamics of elm leaf beetle and sawfly herbivores.
Collapse
Affiliation(s)
- Tetsuto Sugai
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, 060-8589, Japan
- Plant Nutrient Ecology Laboratory, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shota Okamoto
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, 060-8589, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Noboru Masui
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, 060-8589, Japan
| | - Fuyuki Satoh
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809, Japan
| | - Takayoshi Koike
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|