1
|
Mokrá D, Adamčáková J, Bálentová S, Barošová R, Hanusrichterová J, Žideková N, Mikolka P, Mokrý J, Kertys M. Novel pilot study on plasma metabolites and biomarkers in a rat model of silica-induced lung inflammation and fibrosis. Biochim Biophys Acta Gen Subj 2024:130729. [PMID: 39447776 DOI: 10.1016/j.bbagen.2024.130729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Silica-induced lung damage may be associated with changes in distinct metabolites potentially serving as biomarkers. Due to the lack of metabolomic data from animal models, this pilot study aimed to evaluate changes in markers of inflammation and fibrosis, as well as plasma metabolites in rats at 14 and 28 days after silica instillation. Adult male Wistar rats were administered a single oropharyngeal intratracheal dose of silica suspension or sterile saline in controls. Selected markers of inflammation, oxidative stress, fibrosis, and cell counts in blood and bronchoalveolar lavage fluid have been evaluated. Finally, plasma metabolites were detected using a targeted metabolomics approach with an MxP® Quant 500 kit. Silica instillation induced noticeable inflammatory, oxidative, and fibrotic changes in lung tissue within the first 14 days. During the next two weeks, the shifts in some markers were further accentuated. After exposure to silica, the metabolomic analysis identified significant changes in metabolites associated with lipid metabolism, biogenic amines, amino acid derivatives, carboxylic acids, bile acids, putrescine, glycosylceramides, and acylcarnitines. This pilot study provides initial evidence that significant alterations in plasma metabolite profiles accompany silica-induced lung injury in rats. These findings suggest a possible systemic impact, particularly on lipid metabolism, and indicate the urgent need for a deeper understanding of the metabolic reprogramming associated with silica-induced lung injury to pave the way for the discovery of novel biomarkers.
Collapse
Affiliation(s)
- Daniela Mokrá
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Adamčáková
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Soňa Bálentová
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Romana Barošová
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juliana Hanusrichterová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Nela Žideková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokrý
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kertys
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
2
|
da Silva HT, Magalhães TS, Pires SA, Santos APR, Rodrigues JL, Faria MCDS. Artisanal Gem Mining in Brazil: Evaluation of Oxidative Stress and Genotoxicity Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:871. [PMID: 39063448 PMCID: PMC11277206 DOI: 10.3390/ijerph21070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
This study was carried out in the district of Taquaral de Minas, in the municipality of Itinga, located in Jequitinhonha Valley, state of Minas Gerais, which is considered one of the largest yolk-producing regions in Brazil. Miners in gem extraction areas are prone to severe oxidative damage due to their increased exposure to toxic metals, as well as chemical, physical, and biological agents, resulting in diseases such as silicosis. Thus, this work aimed to evaluate occupational exposure in prospectors through biomonitoring techniques using a variety of biomarkers for oxidative stress, genotoxicity, and mutagenicity. Twenty-two miners and seventeen workers who were not occupationally exposed were recruited, totaling thirty-nine participants. The study was approved by the Research Ethics Committee of the Federal University of the Jequitinhonha and Mucuri Valleys. In this study, the levels of total peroxides, catalase activity, and microelements in plasma were evaluated. Additionally, environmental analysis was carried out through the Ames and Allium cepa tests. The results of the lipoperoxidation assessment were significant, with increased frequencies in exposed individuals compared to controls (p < 0.05), as determined by the Mann-Whitney test. Micronutrients in the blood showed lower concentrations in the group exposed to Fe and Se than in individuals not exposed to these elements. The results of the Ames test and Allium cepa test were statistically significant compared to the controls (p < 0.05), as determined by the Mann-Whitney test for genotoxicity and cytotoxicity. Thus, the results of the present study indicate possible environmental contamination and a potential risk to the health of miners, which suggests that further studies are important in the region.
Collapse
Affiliation(s)
- Heberson Teixeira da Silva
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| | - Thainá Sprícido Magalhães
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| | - Sumaia Araújo Pires
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Ana Paula Rufino Santos
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| | - Márcia Cristina da Silva Faria
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil; (H.T.d.S.); (T.S.M.); (S.A.P.); (A.P.R.S.); (M.C.d.S.F.)
| |
Collapse
|
3
|
Blanco-Pérez J, Salgado-Barreira Á, Blanco-Dorado S, González Bello ME, Caldera Díaz AC, Pérez-Gonzalez A, Pallarés Sanmartín A, Fernández Villar A, Gonzalez-Barcala FJ. Clinical usefulness of serum angiotensin converting enzyme in silicosis. Pulmonology 2024; 30:370-377. [PMID: 36280590 DOI: 10.1016/j.pulmoe.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Silicosis is an irreversible and incurable disease. Preventive measures to eliminate exposure are the only effective way to reduce morbidity and mortality. In such situations, having a biomarker for early diagnosis or to predict evolution would be very useful in order to improve control of the disease. The elevation of serum angiotensin-converting enzyme (sACE) in silicosis has been described in previous studies, although its relationship with severity and prognosis is not clear. AIMS To determine the levels of sACE in a cohort of patients with exposure to silica dust with and without silicosis, and to assess their impact on the prognosis of the aforementioned patients. METHOD Prospective observational study on patients treated in a silicosis clinic from 2009 to 2018. sACE levels and pulmonary function tests were performed. Radiological progression was assessed in patients who had already had 2 X-rays of the thorax and / or two CT scans with at least a 1-year interval, from the time of inclusion in the study. RESULTS A total of 413 cases of silicosis were confirmed, as well as 73 with exposure to silica dust but without silicosis. The mean sACE level for healthy subjects was 27.5±7.3U/L, for exposed patients without silicosis it was 49.6±24.2U/L, for simple silicosis it was 57.8±31,3U/L and for complicated silicosis it was 74.5±38.6U/L. Patients with a higher sACE generally progressed radiologically during follow-up (73.3±38.0 vs. 60.4±33.7; p<.001) and so the category of silicosis changed (73,9±38.1 vs. 62.5±34.6; p<.021). CONCLUSIONS sACE was elevated in patients with silicosis, and the greater its severity, the higher it was, which is associated with disease progression measured radiologically or as a category change of silicosis.
Collapse
Affiliation(s)
- J Blanco-Pérez
- Pneumology Department, University Hospital Complex of Vigo, Spain..
| | - Á Salgado-Barreira
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain.; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Carlos III Health Institute, Madrid, Spain..
| | - S Blanco-Dorado
- Pharmacy Department, University Hospital Complex of Santiago de Compostela, Spain
| | | | - A C Caldera Díaz
- Radiology Department, University Hospital Complex of Vigo, Spain
| | - A Pérez-Gonzalez
- Internal Medicine Department, University Hospital Complex of Vigo, Spain
| | | | | | - F J Gonzalez-Barcala
- Pneumology Department, University Hospital Complex of Vigo, Spain.; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.; Pneumology Department, University Hospital Complex of Santiago de Compostela; Spanish Biomedical Research Networking Centre-CIBERES, Spain
| |
Collapse
|
4
|
Xie L, Zhang X, Gao X, Wang L, Cheng Y, Zhang S, Yue J, Tang Y, Deng Y, Zhang B, He X, Tang M, Yang H, Zheng T, You J, Song X, Xiong J, Zuo H, Pei X. Microbiota and mycobiota in bronchoalveolar lavage fluid of silicosis patients. J Occup Med Toxicol 2023; 18:10. [PMID: 37430310 DOI: 10.1186/s12995-023-00377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The contribution of bronchoalveolar lavage fluid (BALF) microbiota and mycobiota to silicosis has recently been noticed. However, many confounding factors can influence the accuracy of BALF microbiota and mycobiota studies, resulting in inconsistencies in the published results. In this cross-sectional study, we systematically investigated the effects of "sampling in different rounds of BALF" on its microbiota and mycobiota. We further explored the relationship between silicosis fatigue and the microbiota and mycobiota. METHODS After obtaining approval from the ethics board, we collected 100 BALF samples from 10 patients with silicosis. Demographic data, clinical information, and blood test results were also collected from each patient. The characteristics of the microbiota and mycobiota were defined using next-generation sequencing. However, no non-silicosis referent group was examined, which was a major limitation of this study. RESULTS Our analysis indicated that subsampling from different rounds of BALF did not affect the alpha- and beta-diversities of microbial and fungal communities when the centrifuged BALF sediment was sufficient for DNA extraction. In contrast, fatigue status significantly influenced the beta-diversity of microbes and fungi (Principal Coordinates Analysis, P = 0.001; P = 0.002). The abundance of Vibrio alone could distinguish silicosis patients with fatigue from those without fatigue (area under the curve = 0.938, 95% confidence interval [CI] 0.870-1.000). Significant correlations were found between Vibrio and haemoglobin levels (P < 0.001, ρ = -0.64). CONCLUSIONS Sampling in different rounds of BALF showed minimal effect on BALF microbial and fungal diversities; the first round of BALF collection was recommended for microbial and fungal analyses for convenience. In addition, Vibrio may be a potential biomarker for silicosis fatigue screening.
Collapse
Affiliation(s)
- Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaosi Gao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Linyao Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiyang Cheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shirong Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ji Yue
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingru Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yufeng Deng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Baochao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyuan Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianli Zheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia You
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| |
Collapse
|
5
|
Milovanović APS, Milovanović A, Srebro D, Pajic J, Stanković S, Petrović T. Serum Concentration of Prostaglandin E2 as a Diagnostic Biomarker in Patients With Silicosis: A Case-Control Study. J Occup Environ Med 2023; 65:546-552. [PMID: 36977359 DOI: 10.1097/jom.0000000000002848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Silicosis is a prevalent incurable pneumoconiosis caused by inhalation of silica dust. Study aimed to investigate inflammatory, hematological, and biochemical parameters as additional biomarkers for diagnosing or monitoring silicosis. METHODS Research enrolled 14 workers with silicosis and 7 healthy controls (without exposure and silicosis). The serum level of prostaglandin E2, C-reactive protein, fibrinogen, biochemical, and hematological parameters were measured. The receiver operating characteristic curve was used to determine diagnostic sensitivity of each biomarker. RESULTS Patients with silicosis have a significantly higher level of prostaglandin E2, erythrocyte, hemoglobin, and hematocrit than patients without silicosis. Prostaglandin E2, hemoglobin, and the erythrocyte count are significant in separating the silicosis cases from healthy controls. CONCLUSIONS Prostaglandin E2 might be an adjuvant peripheral diagnostic biomarker for silicosis, while hematological parameters (erythrocytes, hemoglobin, and hematocrit) might be prognostic biomarkers.
Collapse
Affiliation(s)
- Aleksandar P S Milovanović
- From the University of Belgrade, Faculty of Medicine; Belgrade, Serbia (A.P.S.M., A.M., D.S., T.P.); Serbian Institute of Occupational Health "Dr Dragomir Karajovic," Belgrade, Serbia (A.P.S.M. J.P., T.P.); Clinic for Rehabilitation, University Clinical Center of Serbia, Belgrade, Serbia (A.M.); University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia (S.S.); and Center for Medical Biochemistry, University Clinical Center of Serbia, Belgrade, Serbia (S.S.)
| | | | | | | | | | | |
Collapse
|
6
|
Aun AG, Damasceno DC, Sinzato YK, Nogueira FR, Souza KM, Lawi YSA, Guedes JL, Silva MAP, de Carvalho LR, Braz LG, Braz MG. High anesthetic exposure leads to oxidative damage and gene expression changes in physicians during medical residency: a cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27577-y. [PMID: 37184787 DOI: 10.1007/s11356-023-27577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Evaluation of the possible toxic effects of occupational exposure to anesthetics is of great importance, and the literature is limited in assessing the possible association between occupational exposure to anesthetics and oxidative stress and genetic damage. To contribute to the gap of knowledge in relation to cause-effect, this cohort study was the first to monitor exposure assessment and to evaluate oxidative stress, DNA damage, and gene expression (OGG1, NRF2, HO-1, and TP53) in young adult physicians occupationally exposed to the most modern halogenated anesthetics (currently the commonly used inhalational anesthetics worldwide) in addition to nitrous oxide gas during the medical residency period. Therefore, the physicians were evaluated before the beginning of the medical residency (before the exposure to anesthetics-baseline), during (1 1/2 year) and at the end (2 1/2 years) of the medical residency. Anesthetic air monitoring was performed in operating rooms without adequate ventilation/scavenging systems, and biological samples were analyzed for lipid peroxidation, protein carbonyl content, primary and oxidative DNA damage, antioxidant enzymes and plasma antioxidant capacity, and expression of some key genes. The results showed induction of lipid peroxidation, DNA damage, glutathione peroxidase activity, and NRF2 and OGG1 expression up to the end of medical residency. Plasma antioxidant capacity progressively increased throughout medical residency; oxidative DNA damage levels started to increase during medical residency and were higher at the end of residency than at baseline. Protein carbonyls increased during but not at the end of medical residency compared to baseline. The antioxidant enzyme superoxide dismutase activity remained lower than baseline during and at the end of medical residency, and HO-1 (related to antioxidant defense) expression was downregulated at the end of medical residency. Additionally, anesthetic concentrations were above international recommendations. In conclusion, high concentrations of anesthetic in the workplace induce oxidative stress, gene expression modulation, and genotoxicity in physicians during their specialization period.
Collapse
Affiliation(s)
- Aline G Aun
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Débora C Damasceno
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Yuri K Sinzato
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Flávia R Nogueira
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Kátina M Souza
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Youssef S A Lawi
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Júlia L Guedes
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Mariane A P Silva
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Lídia R de Carvalho
- Department of Biostatistics, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, São Paulo State, Brazil
| | - Leandro G Braz
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil
| | - Mariana G Braz
- UNIPEX, Botucatu Medical School, São Paulo State University-UNESP, Professor Mário Rubens G. Montenegro Av., Botucatu, São Paulo, 18618-687, Brazil.
| |
Collapse
|
7
|
Hussein AM, Attia DI, Zayed BEDM, Rashed LA, El-Sherif GHED. Pulmonary Functions and Oxidative Stress Biomarkers Among Silica-Exposed Foundry Workers. J Occup Environ Med 2023; 65:437-442. [PMID: 36821727 DOI: 10.1097/jom.0000000000002815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
OBJECTIVE To investigate the changes of the ventilatory function tests and the oxidative stress biomarkers among silica-exposed foundry workers. METHODS The exposed group included 70 workers in an iron foundry. The nonexposed group included 40 subjects from Kasralainy outpatient clinic. Both groups were subjected to history taking, clinical examination, chest radiograph, spirometry, urinary silica, serum malondialdehyde (MDA), glutathione peroxidase (GPx), and 8-hydroxydeoxyguanosine (8-HdG). RESULTS Higher urinary silica, serum MDA and serum 8-HdG, whereas lower serum GPx and ventilatory functions were detected in the exposed group compared with the controls. All parameters correlated with urinary silica. The exposed silicotic subgroup had increased work duration, urinary silica, serum MDA, and serum 8-HdG, and decreased serum GPx and ventilatory functions compared with non-silicotic subgroup. CONCLUSION Oxidative stress biomarkers were abnormal with impairment of ventilatory functions among silica-exposed workers.
Collapse
Affiliation(s)
- Asmaa Mohamed Hussein
- From the Department of Occupational and Environmental Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt (A.M.H., D.I.A., G.H.E.-D.E.-S.); Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt (B.E.-D.M.Z.); and Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt (L.A.R.)
| | | | | | | | | |
Collapse
|
8
|
Wu MY, Shi XC, Shan J, Wang R, Wang Y, Li J, Tian DN, Xu HM. Role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in A549 cells induced by coal particles. Heliyon 2022; 8:e11751. [DOI: 10.1016/j.heliyon.2022.e11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
|
9
|
Díaz de León-Martínez L, Grimaldo-Galeana JM, Alcántara-Quintana LE, Díaz-Barriga F, Pérez-Vázquez FJ, Flores-Ramírez R. Evaluation of cytokines in exhaled breath condensate in an occupationally exposed population to pneumotoxic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59872-59884. [PMID: 35397024 DOI: 10.1007/s11356-022-20101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The quarrying is considered a precarious occupation with high toxicity, is an informal economic activity that employs low technology, limited protection, and poses a risk to workers and their families. In quarrying, silica dust is generated and there is also occupational exposure to significant mixtures of pneumotoxic pollutants, including mineral dust (crystalline silica, carbon or cement, polycyclic aromatic hydrocarbons (PAHs), solvents, and others, which are aggravated by the lack of use of protective equipment, causing irreversible damage to the worker's respiratory health. Thus, the objective of this work focused on the evaluation of the respiratory health of artisan stonemasons in San Luis Potosí, Mexico through the study of exhaled breath condensate (EBC) (pH, pro-inflammatory cytokines) as well as the study of the exposure to pollutants present in the work area (PAHs, toluene, and 2.5 µm particulate matter) through biomarkers of exposure (hippuric acid and hydroxylated metabolites of PAHs). The results show the presence of crystalline SiO2 in 100% of the samples analyzed; the PM2.5 concentrations were 5 to 10 times the permitted levels. Regarding exposure to PAHs, all the stonemasons presented urine concentrations of at least 5 of the OH-PAHs evaluated; 9-OH-FLU occurred at higher concentrations of 171.2 (122.7-279.4) µg L-1; hippuric acid, which was present in 100% of the workers evaluated in concentrations of 283.4 (27.72-1119) mg L-1, 100% of which were above the values established for occupational scenarios. The pH values obtained for the EBC samples were presented at an average of 7.07 (6.33-7.66). Pro-inflammatory cytokines were present in 86.1% of the study population. The cytokine that was found in higher concentrations was IL-2, with a mean of 178.01 pg mL-1 and 3124.01 pg mL-1 for the pH < 7 and pH > 7 groups, respectively. Some correlations between the cytokines and the exposure biomarkers were presented. Stonemasons are highly exposed to pneumotoxic pollutants and markers of inflammation at the pulmonary level; in addition, a high risk of developing silicosis. Quarrying should be addressed as a carcinogenic activity, which would imply the design of monitoring and control strategies for these pollutants that our country currently lacks, particularly in precarious occupations. It is necessary to develop strategies to protect the health of precarious workers.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico
| | - José Moisés Grimaldo-Galeana
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico
| | - Luz Eugenia Alcántara-Quintana
- Unidad de Innovación en Diagnóstico Celular Y Molecular, Coordinación Para La Innovación Y La Aplicación de La Ciencia Y Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, 78120, San Luis Potosi, Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico
| | - Francisco Javier Pérez-Vázquez
- Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico
| | - Rogelio Flores-Ramírez
- Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, CP, Mexico.
| |
Collapse
|
10
|
Li XY, Wei JL, Xie YX, Zhao J, Ma LY, Zhang N, Yang HF. Serum Levels of Mitochondrial Fission- and Fusion-Related Genes of Coal Workers' Pneumoconiosis and Risk Factor Analysis Based on a Generalized Linear Model. Appl Bionics Biomech 2022; 2022:8629583. [PMID: 35401788 PMCID: PMC8993577 DOI: 10.1155/2022/8629583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Objective We aimed to explore the risk factors for coal workers' pneumoconiosis and to further explore the significance of mitochondrial fission and fusion factors in CWP and verify the feasibility of mitochondrial fission and fusion factors as diagnostic and therapeutic targets. Methods The data of 168 cases were collected, and they were divided into a healthy control group (40 cases), dust exposure control group (61 cases), and CWP group (67 cases) and entered into SPSS 24.0. The statistical data were analyzed by the chi-square test or Fisher's exact probability method. The variables with statistically significant differences of the univariate analysis results were included in the generalized linear model. Test level was α = 0.05. Blood samples were collected to detect the ROS content, MDA content, and SOD activity. The mRNA expression levels of OPA1, Drp1, MFN2, Fis1, Col I, Col III, and α-SMA were determined by q-PCR. The protein expression levels of OPA1, Drp1, MFN2, Fis1, Col I, Col III, and α-SMA were detected by western blot. Results Generalized linear regression analysis showed that lower school education, no respiratory protective measures, the working age beyond 15 years, and the type of work like coal mine drillers were the risk factors for CWP. With the aggravation of CWP, the degree of fibrosis and inflammation increased oxidative damage, increased mitochondrion division, and decreased fusion, which were more sensitive in the second and third stages of CWP. Conclusion The results in this found that mitochondria are injured by fission and fusion in the CWP patients. Detection of the mitochondria fission and fusion factors provides the application value to evaluate the injury degree and progress of CWP and the clues for finding the real and effective screening and diagnosis biomarkers.
Collapse
Affiliation(s)
- Xiao-Yu Li
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jing-Lin Wei
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Yong-Xin Xie
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Ji Zhao
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Li-Ya Ma
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Na Zhang
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Hui-Fang Yang
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
11
|
Peruzzi CP, Brucker N, Bubols G, Cestonaro L, Moreira R, Domingues D, Arbo M, Olivo Neto P, Knorst MM, Garcia SC. Occupational exposure to crystalline silica and peripheral biomarkers: An update. J Appl Toxicol 2021; 42:87-102. [PMID: 34128557 DOI: 10.1002/jat.4212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/20/2022]
Abstract
Peripheral biomarkers are important tools for detecting occupational exposures to prevent the onset and/or progression of diseases. Studies that reveal early peripheral biomarkers are highly important to preserve the health of workers and can potentially contribute to diagnosing and/or prognosing occupational pathologies. Exposure to crystalline silica is a problem in several workplaces because it increases the risk of chronic obstructive pulmonary disease (COPD), tuberculosis, cancer, and pulmonary fibrosis, clinically defined as silicosis. Silicosis is diagnosed by chest radiography and/or lung tomography in advanced stages when there is a severe loss of lung function. Peripheral biomarkers can help in diagnosing early changes prior to silicosis and represent a highly important technical-scientific advance that is minimally invasive. This review aimed to investigate the biomarkers studied for evaluating occupational exposure to crystalline silica and to understand the recent advances in this area. Potential oxidative, inflammatory, and immunological biomarkers were reviewed, as well as routine biomarkers such as biochemical parameters. It was found that biomarkers of effect such as serum CC16 and l-selectin levels could represent promising alternatives. Additionally, studies have shown that neopterin levels in urine and serum can be used to monitor worker exposure. However, further studies are needed that include a greater number of participants, different times of exposure to crystalline silica, and a combination of silicosis patients and healthy volunteers. Evaluating the concentration of crystalline silica in occupational environments, its impact on biomarkers of effect, and alterations in lung function could contribute to revealing early health alterations in workers in a more robust manner.
Collapse
Affiliation(s)
- Caroline Portela Peruzzi
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Guilherme Bubols
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Larissa Cestonaro
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moreira
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daiane Domingues
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Olivo Neto
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marli Maria Knorst
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Division of Pulmonology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Xue C, Wu N, Fan Y, Ma J, Ye Q. Distinct metabolic features in the plasma of patients with silicosis and dust-exposed workers in China: a case-control study. BMC Pulm Med 2021; 21:91. [PMID: 33731064 PMCID: PMC7971960 DOI: 10.1186/s12890-021-01462-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/09/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Silicosis is a progressive pneumoconiosis characterized by interstitial fibrosis following exposure to silica dust. The role of metabolic dysregulation in the pathogenesis of silicosis has not been investigated in detail. This study aimed to identify different metabolic features in the plasma of patients with silicosis and dust-exposed workers without silicosis in metabolomics studies. METHODS Patients with silicosis, dust-exposed workers (DEWs) without silicosis and age-matched healthy controls were recruited in a case-control study. The metabolomics analyses by ultra-high performance liquid chromatography-mass spectrometry were conducted. Distinct metabolic features (DMFs) were identified in the pilot study and were validated in the validation study. The enriched signalling pathways of these DMFs were determined. The ability of DMFs to discriminate among the groups was analysed through receiver operating characteristic (ROC) curves. The correlations between DMFs and clinical features were also explored. RESULTS Twenty-nine DMFs and 9 DMFs were detected and had the same trend in the pilot study and the validation study in the plasma of the DEW and silicosis groups, respectively. Sphingolipid metabolism was the major metabolic pathway in the DEWs, and arginine and proline metabolism was associated with silicosis. Twenty DMFs in the DEWs and 3 DMFs in the patients with silicosis showed a discriminatory ability with ROC curve analysis. The abundance of kynurenine was higher in Stage III silicosis than in Stage I or Stage II silicosis. L-arginine and kynurenine were both negatively correlated with the percentage of forced vital capacity predicted in silicosis. CONCLUSIONS Distinct metabolic features in the plasma of DEWs and the patients with silicosis were found to be different. Sphingolipid metabolism and arginine and proline metabolism were identified as the major metabolic pathway in the DEW and silicosis groups, respectively. L-arginine and kynurenine were correlated with the severity of silicosis.
Collapse
Affiliation(s)
- Changjiang Xue
- Department of Occupational Medicine and Toxicology, Clinical Centre for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chao-Yang District, Beijing, 100020, China
| | - Na Wu
- Department of Occupational Medicine and Toxicology, Clinical Centre for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chao-Yang District, Beijing, 100020, China
| | - Yali Fan
- Department of Occupational Medicine and Toxicology, Clinical Centre for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chao-Yang District, Beijing, 100020, China
| | - Jing Ma
- Department of Occupational Medicine and Toxicology, Clinical Centre for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chao-Yang District, Beijing, 100020, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Centre for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chao-Yang District, Beijing, 100020, China.
| |
Collapse
|
13
|
Nakano-Narusawa Y, Yokohira M, Yamakawa K, Saoo K, Imaida K, Matsuda Y. Single Intratracheal Quartz Instillation Induced Chronic Inflammation and Tumourigenesis in Rat Lungs. Sci Rep 2020; 10:6647. [PMID: 32313071 PMCID: PMC7170867 DOI: 10.1038/s41598-020-63667-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Crystalline silica (quartz) is known to induce silicosis and cancer in the lungs. In the present study, we investigated the relationship between quartz-induced chronic inflammation and lung carcinogenesis in rat lungs after a single exposure to quartz. F344 rats were treated with a single intratracheal instillation (i.t.) of quartz (4 mg/rat), and control rats were treated with a single i.t. of saline. After 52 or 96 weeks, the animals were sacrificed, and the lungs and other organs were used for analyses. Quartz particles were observed in the lungs of all quartz-treated rats. According to our scoring system, the lungs of rats treated with quartz had higher scores for infiltration of lymphocytes, macrophages and neutrophils, oedema, fibrosis, and granuloma than the lungs of control rats. After 96 weeks, the quartz-treated rats had higher incidences of adenoma (85.7%) and adenocarcinoma (81.0%) than control rats (20% and 20%, respectively). Quartz-treated and control rats did not show lung neoplastic lesions at 52 weeks after treatment. The number of lung neoplastic lesions per rat positively correlated with the degree of macrophage and lymphocyte infiltration, oedema, fibrosis, and lymph follicle formation around the bronchioles. In conclusion, single i.t. of quartz may induce lung cancer in rat along with chronic inflammation.
Collapse
Affiliation(s)
- Yuko Nakano-Narusawa
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Masanao Yokohira
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Keiko Yamakawa
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Kousuke Saoo
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
- Kaisei General Hospital, Kagawa, 762-0007, Japan
| | - Katsumi Imaida
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan.
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan.
| |
Collapse
|
14
|
Xu T, Yan W, Wu Q, Xu Q, Yuan J, Li Y, Li P, Pan H, Ni C. MiR-326 Inhibits Inflammation and Promotes Autophagy in Silica-Induced Pulmonary Fibrosis through Targeting TNFSF14 and PTBP1. Chem Res Toxicol 2019; 32:2192-2203. [DOI: 10.1021/acs.chemrestox.9b00194] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tiantian Xu
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiwen Yan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi Xu
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiali Yuan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ping Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Honghong Pan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|