1
|
Zhang Z, Li B, Wicaksana F, Yu W, Young B. Comparison of struvite and K-struvite for Pb and Cr immobilisation in contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116570. [PMID: 36308964 DOI: 10.1016/j.jenvman.2022.116570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Struvite is a value-added by-product recovered from phosphorus-rich wastewater treatment by adding magnesium. Struvite is mainly used as slow-release fertilisers containing phosphate that can form insoluble salts with certain heavy metals. Hence, struvite may have potential application as a phosphate remediation agent for the immobilisation of heavy metals in contaminated soil, while the related study is limited. Similarly, an analogue compound of struvite, K-struvite, may also have this value but has not been reported elsewhere. This study investigated the effect of struvite and K-struvite on the remediation of Cr-spiked and Pb-spiked soil. To evaluate the feasibility, the agent dosage and two quality parameters (particle size and purity) of struvite and K-struvite were considered for the experimental design and statically analysed by principal component analysis (PCA) and partial least squares (PLS). The results show that the dosage significantly impacts the immobilisation process, while the effect of particle size and purity are negligible. Struvite and K-struvite have similar performance on heavy metals immobilisation, and both are significant in Pb immobilisation (up to 96% of F5, stable fraction) and are beneficial for reducing the most mobilised fractions (F1 and F2) of Cr to lesser than 3%. Struvite and K-struvite share similar performance due to their similar atomic radius, and the different performance between Cr and Pb immobilisation can be explained by the strong hydrolysis trend of chromium ion, which may inhibit the binding of the phosphate and chromium. The kinetic study finds that all three variables positively impact the free chromium ion, and the immobilisation process is fast so unlikely to be kinetically limited. These findings of this project will provide insight into how the immobilisation process changes in response to the dosage and quality of struvite compounds.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Bing Li
- Water Research Centre, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Filicia Wicaksana
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Wei Yu
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Brent Young
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
2
|
Chemical Structures and Antioxidant Activities of Polysaccharides from Carthamus tinctorius L. Polymers (Basel) 2022; 14:polym14173510. [PMID: 36080585 PMCID: PMC9460231 DOI: 10.3390/polym14173510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2023] Open
Abstract
Two polysaccharides from Carthamus tinctorius L. (CTLP-1 and CTLP-2) were purified, and their structures were analyzed by physical and chemical testing. CTLP-1 had a mass of 5900 Da that was composed of arabinose, glucose, and galactose with a mass molar ratio of 6.7:4.2:1. The backbone of CTLP-1 was →1)-α-GalAp-(1→4)-α-Arap-(1→2)-α-Glup-(4→. CTLP-2 had a mass of 8200 Da that was composed of arabinose, glucose, and galactose with a mass molar ratio of 16.76:4.28:1. The backbone of CTLP-2 was →1)-α-Galp-(2,6 →1)-α-Arap-(4,6 →1)-α-Glup-(3→. Both of them exhibited a high reducing power, hydroxyl radical scavenging activity, DPPH radical scavenging activity and ABTS radical scavenging activity, moderate Fe2+ chelating activity and superoxide anion scavenging activity, implying that they might be potential antioxidants.
Collapse
|
3
|
Wang P, Li Q, Ge F, Li F, Liu Y, Deng S, Zhang D, Tian J. Correlation of bacterial community with phosphorus fraction drives discovery of Actinobacteria involved soil phosphorus transformation during the trichlorfon degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119043. [PMID: 35217138 DOI: 10.1016/j.envpol.2022.119043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during the TCF degradation in soils is unknown. In this study, we investigated soil TCF degradation behavior at different contents of 50, 100 and 200 mg/kg, and analyzed residual TCF contents and metabolites by gas chromatography mass spectrometry after 216-h incubation. Our results suggested that TCF was gradually degraded in soils and was be initially hydrolyzed to dichlorvos via P-C bond cleavage and then other P-containing metabolites. By analyzing different P fractions and soil microbial community composition, we found significant increases of soil available phosphorus contents from 2.76 mg/kg (control) to 3.23 mg/kg (TCF-50), 5.12 mg/kg (TCF-100) and 5.72 mg/kg (TCF-200), respectively. Inorganic CaCl2-P was easily and instantly transformed to primary mineral inorganic P (Pi) forms of HCl-P and citrate-P, while the proportion of enzyme-P (a labile organic P) fluctuated throughout TCF degradation process. Soil available P contents and Pi fractions were significantly correlated with the relative abundance of Actinobacteria. These results highlighted that Actinobacteria is the dominant soil species utilizing TCF as P sources to increase its community richness, and subsequently affect the transformation of P fractions to regulate soil P cycle. Our study gives new understanding on the microorganisms can involve soil P transformation during organophosphorus pesticides degradation in soils, highlighting the importance of bacteria in P transformation and pesticides soil decontamination.
Collapse
Affiliation(s)
- Peiying Wang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Qiqiang Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China.
| |
Collapse
|
4
|
Zhang Z, Li B, Wicaksana F, Yu W, Young B. Effect of saline water ionic strength on phosphorus recovery from synthetic swine wastewater. J Environ Sci (China) 2022; 113:81-91. [PMID: 34963552 DOI: 10.1016/j.jes.2021.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 06/14/2023]
Abstract
Declining worldwide phosphate rock reserves has driven a growing interest in exploration of alternative phosphate supplies. This study involved phosphorus recovery from swine wastewater through precipitation of struvite, a valuable slow-release fertiliser. The economic feasibility of this process is highly dependent on the cost of magnesium source. Two different magnesium sources were used for phosphorus recovery: pure magnesium chloride and nanofiltration (NF) saline water retentate. The paper focuses on the impact of ionic strength on phosphorus recovery performance that has not been reported elsewhere. Experimental design with five numerical variables (Mg/P molar ratio, pH, PO43--P, NH4+-N, and Ca2+ levels) and one categorical variable (type of magnesium source) was used to evaluate the effect of ionic strength on phosphorus removal and struvite purity. The experimental data were analysed using analysis of variance (ANOVA) and principal component analysis (PCA). Results indicated that a magnesium source obtained from NF retentate was as effective as MgCl2 for struvite precipitation. It was also revealed that ionic strength had a more positive effect on struvite purity than on phosphorus removal. Within the range of parameters studied in this research, high ionic strength, high pH and wastewater with high phosphate, high ammonium and low calcium contents were found to be the most favourable conditions for struvite precipitation. Findings from this study will be beneficial to determine the feasibility of using high ionic strength saline water, such as NF seawater retentate, as a magnesium source for phosphorus recovery from wastewater that is rich in ammonium-nitrogen and phosphate.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Bing Li
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Filicia Wicaksana
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand.
| | - Wei Yu
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| | - Brent Young
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Zhang Z, Li B, Briechle MG, Wicaksana F, Yu W, Young B. Effect of acetic acid on struvite precipitation: An exploration of product purity, morphology and reaction kinetics using central composite design. CHEMOSPHERE 2021; 285:131486. [PMID: 34273697 DOI: 10.1016/j.chemosphere.2021.131486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus recovery has attracted increasing interest due to the potential depletion of phosphorus resources. One promising solution is to recover phosphorus via struvite precipitation from wastewater or other waste that is in rich of phosphate. However, product quality control during such process is always challenging due to the variation and complexity of wastewater compositions. For example, subcritical wet oxidation (SCWO) effluent is rich in phosphorus and nitrogen but contains a large amount of acetic acid, while its effect on struvite recovery is hardly known. Therefore, central composite design (CCD), considering pH, acetic acid level, Mg level and Ca level, was used to evaluate the effect of acetic acid on struvite purity, phosphorus removal, morphology and reaction kinetics. The experimental data were statistically analysed by analysis of variance (ANOVA) and principal components analysis (PCA). The results indicate that pH and Mg level have a significant impact on phosphorus removal (pH: p-value < 0.0001, Mg: p-value < 0.0001) and struvite purity (pH: p-value = 0.0410, Mg: p-value < 0.0001), Ca level only affects the struvite purity (p-value = 0.0333). The presence of acetic acid, within the studied range (8.77-34.53 mM), has a negligible effect on struvite morphology, phosphorus removal and reaction kinetics, but a slightly positive effect on struvite purity. Findings of this research would be beneficial to determine the feasibility of acetic acid-rich wastewater as a phosphorus source for struvite recovery.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Bing Li
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand; Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Maximilian G Briechle
- Faculty of Process Engineering, Nuremberg Institute of Technology Georg Simon Ohm, Nuremberg, 90489, Germany
| | - Filicia Wicaksana
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Wei Yu
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Brent Young
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
6
|
Formation of chemical heterojunctions between ZnO nanoparticles and single-walled carbon nanotubes for synergistic enhancement of photocatalytic activity. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Tan X, Yu R, Yang G, Wei F, Long L, Shen F, Wu J, Zhang Y. Phosphate recovery and simultaneous nitrogen removal from urine by electrochemically induced struvite precipitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5625-5636. [PMID: 32974825 DOI: 10.1007/s11356-020-10924-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The direct discharge of urine into water bodies leads to environmental pollution, and an increase in the water treatment cost, whereas recycling of the nutrients in urine is of significant economic value. A single-compartment reactor was investigated for the recycling of phosphate and simultaneous removal of nitrogen from urine wastewater by electrochemical magnesium induction, and electrochemical oxidation for the removal of residual nitrogen from the supernatant. The results demonstrated that phosphate recovery capacity was greater than 11 mg P cm-2 h-1 at a current density of 15 m A cm-2 and anodizing time of 20 min; the removal rates of ammonium and total nitrogen in the synchronous electrochemical oxidation were 80% and 75%, respectively, at a current density of 45 m A cm-2 and anodizing time of 60 min. The anodizing time and initial pH were determined to be critical control factors in the electrochemical struvite induction and nitrogen electrochemical oxidation. The on-site electrochemical nitrogen oxidation could rapidly utilize the alkaline supernatant following phosphate recovery. Thus, the integration of the single-compartment reactor, electrochemical magnesium dosage, and simultaneous nitrogen electrochemical oxidation demonstrates potential for application to decentralized reactors to treat source-separated urine.
Collapse
Affiliation(s)
- Xin Tan
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rongtai Yu
- School of Materials Science and Engineering Institution, Jingdezhen Ceramic Institute, Jingdezhen, 333403, Jiangxi, China.
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Feng Wei
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Shen
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanzong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
8
|
Zhao N, Li B, Huang H, Lv X, Zhang M, Cao L. Modification of kelp and sludge biochar by TMT-102 and NaOH for cadmium adsorption. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. SUSTAINABILITY 2020. [DOI: 10.3390/su12187538] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The abatement of nutrient compounds from aqueous waste and wastewater is currently a priority issue. Indeed, the uncontrolled discharge of high levels of nutrients into water bodies causes serious deteriorations of environmental quality. On the other hand, the increasing request of nutrient compounds for agronomic utilizations makes it strictly necessary to identify technologies able to recover the nutrients from wastewater streams so as to avoid the consumption of natural resources. In this regard, the removal and recovery of nitrogen and phosphorus from aqueous waste and wastewater as struvite (MgNH4PO4·6H2O) represents an attractive approach. Indeed, through the struvite precipitation it is possible to effectively remove the ammonium and phosphate content of many types of wastewater and to produce a solid compound, with only a trace of impurities. This precipitate, due to its chemical characteristics, represents a valuable multi-nutrients slow release fertilizer for vegetables and plants growth. For these reasons, the struvite precipitation technology constantly progresses on several aspects of the process. This manuscript provides a comprehensive review on the recent developments in this technology for the removal and recovery of nutrients from aqueous waste and wastewater. The theoretical background, the parameters, and the operating conditions affecting the process evolution are initially presented. After that, the paper focuses on the reagents exploitable to promote the process performance, with particular regard to unconventional low-cost compounds. In addition, the development of reactors configurations, the main technologies implemented on field scale, as well as the recent works on the use of struvite in agronomic practices are presented.
Collapse
|
10
|
Ren L, Meng Z, Wang X, Lu R, Yang LT. A Wide-Deep-Sequence Model-Based Quality Prediction Method in Industrial Process Analysis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:3721-3731. [PMID: 32584772 DOI: 10.1109/tnnls.2020.3001602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Product quality prediction, as an important issue of industrial intelligence, is a typical task of industrial process analysis, in which product quality will be evaluated and improved as feedback for industrial process adjustment. Data-driven methods, with predictive model to analyze various industrial data, have been received considerable attention in recent years. However, to get an accurate prediction, it is an essential issue to extract quality features from industrial data, including several variables generated from supply chain and time-variant machining process. In this article, a data-driven method based on wide-deep-sequence (WDS) model is proposed to provide a reliable quality prediction for industrial process with different types of industrial data. To process industrial data of high redundancy, in this article, data reduction is first conducted on different variables by different techniques. Also, an improved wide-deep (WD) model is proposed to extract quality features from key time-invariant variables. Meanwhile, an long short-term memory (LSTM)-based sequence model is presented for exploring quality information from time-domain features. Under the joint training strategy, these models will be combined and optimized by a designed penalty mechanism for unreliable predictions, especially on reduction of defective products. Finally, experiments on a real-world manufacturing process data set are carried out to present the effectiveness of the proposed method in product quality prediction.
Collapse
|
11
|
Moragaspitiya C, Rajapakse J, Millar GJ. Effect of Ca:Mg ratio and high ammoniacal nitrogen on characteristics of struvite precipitated from waste activated sludge digester effluent. J Environ Sci (China) 2019; 86:65-77. [PMID: 31787191 DOI: 10.1016/j.jes.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/10/2023]
Abstract
This study revealed the relationship between the presence of calcium impurities and ammoniacal nitrogen concentration upon crystallization of struvite. The research hypothesis was that the presence of both calcium and high concentrations of ammoniacal nitrogen (328-1000 mg/L) in waste activated sludge may influence the struvite quality and acid stability. Hence, we studied the impact of Ca:Mg ratio upon morphology, particle size, purity and dissolution of struvite, in the presence of varying levels of excess ammoniacal nitrogen. X-ray diffraction revealed that up to 31.4% amorphous material was made which was assigned to hydroxyapatite. Increasing the ammoniacal nitrogen concentration and elevation of the Mg:Ca ratio maximized the presence of struvite. Struvite particle size was also increased by ammoniacal nitrogen as was twinning of the crystals. Tests with dilute solutions of organic acid revealed the sensitivity of struvite dissolution to the physical characteristics of the struvite. Smaller particles (21.2 μm) dissolved at higher rates than larger particles (35.86 μm). However, struvite dissolved rapidly as the pH was further reduced irrespective of the physical characteristics. Therefore, addition of struvite to low pH soils was not viewed as beneficial in terms of controlled nutrient release. Overall, this study revealed that waste activated sludge effluent with high ammoniacal nitrogen was prospective for synthesis of high quality struvite material.
Collapse
Affiliation(s)
- Chathurani Moragaspitiya
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jay Rajapakse
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia.
| | - Graeme J Millar
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| |
Collapse
|