1
|
Xu T, Liu F, He J, Xu P, Qu J, Wang H, Yue J, Yang Q, Wu W, Zeng G, Sun D, Chen X. Leveraging zebrafish models for advancing radiobiology: Mechanisms, applications, and future prospects in radiation exposure research. ENVIRONMENTAL RESEARCH 2025; 266:120504. [PMID: 39638026 DOI: 10.1016/j.envres.2024.120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Ionizing radiation (IR) represents a significant risk to human health and societal stability. To effectively analyze the mechanisms of IR and enhance protective strategies, the development of more sophisticated animal models is imperative. The zebrafish, with its high degree of genomic homology to humans and the capacity for whole-body optical visualization and high-throughput screening, represents an invaluable model for the study of IR. This review examines the benefits of utilizing zebrafish as a model organism for research on IR, emphasizing recent advancements and applications. It presents a comprehensive overview of the methodologies for establishing IR models in zebrafish, addresses current challenges, and discusses future development trends. This paper provide theoretical support for elucidating the mechanisms of IR injury and developing effective treatment strategies.
Collapse
Affiliation(s)
- Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China; Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China
| | - Fan Liu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Junying Qu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jinghui Yue
- Nuclear Power Institute of China, Chengdu, 610200, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Guoming Zeng
- Intelligent Construction Technology Application Service Center, School of Architecture and Engineering, Chongqing City Vocational College, Chongqing, 402160, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China; Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Qualhato G, Cirqueira Dias F, Rocha TL. Hazardous effects of plastic microfibres from facial masks to aquatic animal health: Insights from zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175555. [PMID: 39168327 DOI: 10.1016/j.scitotenv.2024.175555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Facial masks are a source of plastic microfibres (PMFs) in the aquatic environment, an emerging risk factor for aquatic organisms. However, little is known concerning its impact during the early developmental stages of fish. Thus, the current study aimed to evaluate the potential interaction and developmental toxicity of PMFs derived from leachate of surgical masks (SC-Msk) and N-95 facial masks (N95-Msk) using a multi-biomarker approach in developing zebrafish (Danio rerio). PMFs from both facial masks were obtained and characterized by multiple techniques. Zebrafish embryos were exposed to environmentally relevant concentrations of PMFs from both facial masks (1000, 10,000, and 100,000 particle L-1), and the toxicity was analysed in terms of mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological changes, reactive oxygen species (ROS) levels, cell viability, and behavioural impairments. The results showed that both facial masks can release PMFs, but the N95-Msk produced a higher concentration of PMFs than SC-Msk. Both PMFs can interact with zebrafish chorion and don't cause effects on embryo mortality and hatching; however, zebrafish embryos showed cardiotoxic effects, and larvae showed increased agitation, average speed, and distance travelled, indicating the behavioural impairments induced by PMFs derived from facial masks. Overall, results showed the risk of PMFs to the health of freshwater fish, indicating the need for greater attention to the disposal and ecotoxicological effects of facial masks on aquatic organisms.
Collapse
Affiliation(s)
- Gabriel Qualhato
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Zhao W, Yao J, Liu Y, Mao L, He C, Long D. Protective role of melatonin against radiation-induced disruptions in behavior rhythm of zebrafish (danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107106. [PMID: 39317138 DOI: 10.1016/j.aquatox.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Ionizing radiation, as an increasingly serious environmental pollutant, has aroused widespread public concern. Melatonin, as an indole heterocyclic compound, is known to have anti-inflammatory and antioxidant effects. However, few studies have considered the comprehensive impact of melatonin on radiation damage. In this study, we used zebrafish as experimental materials and employed methods such as acridine orange staining, enzyme-linked immunosorbent assay (ELISA), video tracking for automated behavior analysis, microscope imaging, and real-time fluorescence quantitative analysis. Zebrafish embryos at 2 h post-fertilization (hpf) were treated under four different experimental conditions to assess their growth, development, and metabolic consequences. Our findings indicate that 0.10 Gy gamma radiation significantly augments body length, eye area, spine width, and tail fin length in zebrafish, along with a marked increase in oxidative stress (P < 0.05). Moreover, it enhances cumulative swimming distance, time, and average speed, suggesting elevated activity levels. We observed circadian rhythm phase shifts, peak increases, and cycle shortening, accompanied by abnormal expression of genes pivotal to biological rhythms, exercise, melatonin synthesis, apoptosis/anti-apoptosis, and oxidation/antioxidant balance. The inclusion of melatonin (1 × 10-5 mol/L MLT) ameliorated these radiation-induced anomalies, while its independent effect on zebrafish was negligible. Melatonin can regulate oxidative stress responses, hinders apoptosis responses, and reprogramming the expression of rhythm-related genes in zebrafish embryos after reprogramming radiation stimulation. Overall, our research highlights melatonin's critical role in countering the biological damage inflicted by gamma radiation, proposing its potential as a therapeutic agent in radiation protection.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Jing Yao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yu Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Liang Mao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Chuqi He
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
4
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
5
|
Kang J, Ai Q, Zhao A, Wang H, Zhang X, Liu Y, Zhang L, Liu Y. Neurotoxicological mechanisms of carbon quantum dots in a new animal model Dugesia japonica. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:711-719. [PMID: 37386302 DOI: 10.1007/s10646-023-02671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/01/2023]
Abstract
As luminescent nanomaterials, the carbon quantum dots (CQDs) research focused on emerging applications since their discovery. However, their toxicological effects on the natural environment are still unclear. The freshwater planarian Dugesia japonica is distributed extensively in aquatic ecosystems and can regenerate a new brain in 5 days after amputation. Therefore it can be used as a new model organism in the field of neuroregeneration toxicology. In our study, D. japonica was cut and incubated in medium treated with CQDs. The results showed that the injured planarian lost the neuronal ability of brain regeneration after treatment with CQDs. Its Hh signalling system was interfered with at Day 5, and all cultured pieces died on or before Day 10 due to head lysis. Our work reveals that CQDs might affect the nerve regeneration of freshwater planarians via the Hh signalling pathway. The results of this study improve our understanding of CQD neuronal development toxicology and can aid in the development of warning systems for aquatic ecosystem damage.
Collapse
Affiliation(s)
- Jing Kang
- College of Life Science, Xinxiang Medical University, Xinxiang, China.
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.
| | - Qing Ai
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Ang Zhao
- College of Life Science, Xinxiang Medical University, Xinxiang, China
| | - Haijiao Wang
- College of Life Science, Xinxiang Medical University, Xinxiang, China
| | - Xiangpeng Zhang
- Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- College of Life Science, Xinxiang Medical University, Xinxiang, China
| | | | - Yuqing Liu
- College of Life Science, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
6
|
Zhao W, Mao L, He C, Ding D, Hu N, Song X, Long D. Effects of low dose radiation on behavior rhythm of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114779. [PMID: 36924557 DOI: 10.1016/j.ecoenv.2023.114779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Biological rhythm refers to the internal regulation of various life activities of an organism, which are determined by the specific time structure sequences of each individual. Behavior rhythm is the most intuitive embodiment of biological rhythm. To study the effect of low dose radiation on behavioral rhythm, zebrafish (Danio rerio) was used as a model organism in this study. The early embryos of zebrafish were irradiated at doses of 0.01, 0.1, and 1 Gy to observe the changes in zebrafish development, circadian rhythm, key clock genes, related RNA and protein expression, and melatonin. The results revealed that 0.1 and 1 Gy radiation could lead to different degrees of telencephalic nerve cell apoptosis and the formation of vacuolar structures. 0.1 and 1 Gy radiation could reduce the hatching rate of zebrafish embryos at 72 hpf and delay embryo hatching. The analysis of circadian behavior at 120 hpf demonstrated that 1 Gy dose of radiation altered the circadian rhythm of zebrafish, as well as decreased the distance, amplitude, and phase of movement. RT-PCR analysis of the key clock genes (bmal1b, clock1a, per1b, per2, cry2, and nr1d1) involved in regulating circadian rhythm was performed. The results showed that 1 Gy radiation could interfere with the expression of clock genes in zebrafish embryos and upregulate bmal1b, clock1a, and per1b. Western blot experiments further verified the protein expression of key clock genes, bmal1b and clock. Detection of melatonin secretion at different time points over 24 h showed that radiation doses of 0.1 and 1 Gy could increase melatonin secretion. Based on these findings, it is speculated that a certain dose of radiation may affect melatonin secretion, which impacts the telencephalon structure and ontogeny of zebrafish, delays hatching, and changes the circadian rhythm. This effect is thought to be achieved through upregulating the expression of circadian rhythm genes, clock1a and per1b and related proteins, which may be responsible for the abnormal circadian rhythm caused by radiation.
Collapse
Affiliation(s)
- Weichao Zhao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Liang Mao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Chuqi He
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dexin Ding
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy,University of South China, Hengyang, Hunan 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy,University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaohua Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dingxin Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
7
|
Pradhoshini KP, Priyadharshini M, Santhanabharathi B, Ahmed MS, Parveen MHS, War MUD, Musthafa MS, Alam L, Falco F, Faggio C. Biological effects of ionizing radiation on aquatic biota - A critical review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104091. [PMID: 36870406 DOI: 10.1016/j.etap.2023.104091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Ionizing radiation from radionuclides impacts marine aquatic biota and the scope of investigation must be wider than just invertebrates. We intend to detail and illustrate numerous biological effects that occur in both aquatic vertebrates and invertebrates, at various dose rates from all three kinds of ionizing radiation. The characteristics of radiation sources and dosages that would most effectively generate the intended effects in the irradiated organism were assessed once the biological differentiation between vertebrates and invertebrates was determined through multiple lines of evidence. We contend that invertebrates are still more radiosensitive than vertebrates, due to their small genome size, rapid reproduction rates and lifestyle, which help them to compensate for the effects of radiation induced declines in fecundity, life span and individual health. We also identified various research gaps in this field and suggest future directions to be investigated to remedy the lack of data available in this area.
Collapse
Affiliation(s)
- Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Marckasagayam Priyadharshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Munawar Suhail Ahmed
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamat Hanifa Shafeeka Parveen
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mehraj Ud Din War
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Franscesca Falco
- National Research Council, Institute for Biological Resources and Marine Biotechnology (IRBIM), Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
8
|
Wang Y, Gao Z, Liu C, Mao L, Liu X, Ren J, Lu Z, Yao J, Liu X. Mixture toxicity of pyraclostrobine and metiram to the zebrafish (Danio rerio) and its potential mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44400-44414. [PMID: 36692725 DOI: 10.1007/s11356-023-25518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
The interplay between pesticides plays a critical role in ecotoxicology since these chemicals rarely emerge as single substances but rather in mixtures with other chemicals. In the present work, we purposed to clarify the combined toxic impacts of pyraclostrobine (PYR) and metiram (MET) on the zebrafish by using numerous indicators. Results exhibited that the 4-day LC50 value of MET to fish embryos was 0.0025 mg a.i. L-1, which was lower compared with PYR (0.019 mg a.i. L-1). Combinations of PYR and MET presented a synergetic impact on fish embryos. Contents of POD, CYP450, and VTG were drastically increased in the plurality of the single and joint treatments relative to the baseline value. Three genes, including vtg1, crh, and il-8, related to the endocrine and immune systems, were also surprisingly up-regulated when fish were challenged by the individual and mixture pesticides compared with the baseline value. These results afforded valuable information on the latent toxicity mechanisms of co-exposure for PYR and MET in the early growth stage of fish. Moreover, our data also revealed that frequent application of these two pesticides might exert a potentially ecotoxicological hazard on aquatic ecosystems. Collectively, the present study provided valuable guidance for the risk evaluation of chemical combinations.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zhongwen Gao
- College of Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuande Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Jindong Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zeqi Lu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Jie Yao
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xuan Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China.
| |
Collapse
|
9
|
Hu G, Wang H, Shi H, Wan Y, Zhu J, Li X, Wang Q, Wang Y. Mixture toxicity of cadmium and acetamiprid to the early life stages of zebrafish (Danio rerio). Chem Biol Interact 2022; 366:110150. [PMID: 36084721 DOI: 10.1016/j.cbi.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Aquatic organisms are often exposed to contaminants that occur in the natural environment. Nevertheless, the toxic effects of chemical combinations on aquatic animals and their underlying toxic mechanisms for dealing with such exposures are still not fully understood. In this study, we investigated the combined effects of cadmium (Cd) and acetamiprid (ACE) on zebrafish (Danio rerio) using various endpoints. Cd exhibited a 96-h LC50 value of 4.77 mg a.i. L-1 against zebrafish embryos, which was lower than that of ACE (152.6 mg a.i. L-1). In contrast, the 96-h LC50 value of the mixture of Cd and ACE was 157.4 mg a.i. L-1. The mixture of Cd and ACE had a synergetic effect on the organisms. The activities of T-SOD, POD, and CarE were significantly changed in most exposures compared with the control group. In addition, five genes (TRα, crh, Tnf, IL, and P53) involved in oxidative stress, cellular apoptosis, the immune system, and the endocrine system exhibited more remarkable changes when exposed to chemical mixtures relative to their individual counterparts, demonstrating variations in the cellular and mRNA expression levels induced by the mixture exposure of ACE and Cd during the embryonic development of zebrafish. Therefore, these results indicated that the combined pollution of ACE and Cd could be a potentially hazardous factor, and further investigation is necessary for the safety evaluation and application of ACE. Moreover, further investigation on the combined toxicities of various chemicals must be performed to determine the chemical mixtures with synergistic responses.
Collapse
Affiliation(s)
- Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, Jiangsu, China
| | - Yujie Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiahong Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
10
|
Zou D, Qin J, Hu W, Wei Z, Zhan Y, He Y, Zhao C, Li L. Macrophages Rapidly Seal off the Punctured Zebrafish Larval Brain through a Vital Honeycomb Network Structure. Int J Mol Sci 2022; 23:ijms231810551. [PMID: 36142462 PMCID: PMC9503817 DOI: 10.3390/ijms231810551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
There is accumulating evidence that macrophages play additional important roles in tissue damage besides their typical phagocytosis. Although the aggregation of macrophages on injured sites has long been observed, few researchers have focused on the role of the overall structure of macrophage aggregation. In this study, we developed a standardized traumatic brain injury (TBI) model in zebrafish larvae to mimic edema and brain tissue spillage symptoms after severe brain trauma. Using time-lapse imaging, we showed that macrophages/microglia in zebrafish larvae responded rapidly and dominated the surface of injured tissue, forming a meaningful honeycomb network structure through their compact aggregation and connection. Disrupting this structure led to fatal edema-like symptoms with severe loss of brain tissue. Using the RNA-Seq, together with the manipulation of in vitro cell lines, we found that collagen IV was indispensable to the formation of honeycomb network structures. Our study thus revealed a novel perspective regarding macrophages forming a protective compact structure with collagen IV. This honeycomb network structure acted as a physical barrier to prevent tissue loss and maintain brain homeostasis after TBI. This study may provide new evidence of macrophages’ function for the rapid protection of brain tissue after brain injury.
Collapse
Affiliation(s)
- Dandan Zou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jie Qin
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Wenlong Hu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Zongfang Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yandong Zhan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yuepeng He
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Biomedical Engineering and Informatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Correspondence:
| |
Collapse
|
11
|
Sayed AEDH, Nagata K, Nakazawa T, Mitani H, Kobayashi J, Oda S. Low Dose-Rate Irradiation of Gamma-Rays-Induced Cytotoxic and Genotoxic Alterations in Peripheral Erythrocytes of p53-Deficient Medaka (Oryzias latipes). FRONTIERS IN MARINE SCIENCE 2021. [DOI: 10.3389/fmars.2021.773481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Morphological alterations and nuclear abnormalities in fish erythrocytes have been used in many studies as bioindicators of environmental mutagens including ionizing radiation. In this study, adult Japanese medaka (Oryzias latipes) were irradiated with gamma rays at a low dose rate (9.92 μGy/min) for 7 days, giving a total dose of 100 mGy; and morphological alterations, nuclear abnormalities, and apoptotic cell death induced in peripheral erythrocytes were investigated 8 h and 7 days after the end of the irradiation. A variety of abnormalities, such as tear-drop cell, crenated cell, acanthocyte, sickled cell, micronucleated cell, eccentric nucleus, notched nucleus, and schistocyte, were induced in the peripheral erythrocytes of the wild-type fish, and a less number of abnormalities and apoptotic cell death were induced in the p53-deficient fish. These results indicate that low dose-rate chronic irradiation of gamma rays can induce cytotoxic and genotoxic effects in the peripheral erythrocytes of medaka, and p53-deficient medaka are tolerant to the gamma-ray irradiation than the wild type on the surface.
Collapse
|
12
|
Xue H, Zhang Y, Chen N, Gao H, Zhang Q, Li S, Yu W, Wang T, Luo F, Cui F, Wan J, Tu Y, Sun L. Monte Carlo determination of dose coefficients at different developmental stages of zebrafish (Danio rerio) in experimental condition. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106667. [PMID: 34116456 DOI: 10.1016/j.jenvrad.2021.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The release of liquid effluent of nuclear power into aquatic system increases with the rapid development of nuclear facilities in coastal and inland regions. Aquatic model animals are very important for the study of the radiation hazards to non-human biota in water environment and its extrapolation of dose-effect relationship to human models. However, the study of the radiation dose rate calculation model of the aquatic animal zebrafish is still on the homogeneous isotropic model used for the protection of the environment. A series of zebrafish models (including adults, larvae and embryos, named zebrafish-family: ZF-family) with multiple internal organs are established in this study to investigate the mechanism of radiation damage effect in order to protect non-human species. The internal and external dose coefficients (DCs) of the whole body, heart and gonads of zebrafishes are calculated in water environment with the combination of the real experimental culture condition, using Monte Carlo application package GATE (Geant4 Application for Emission Tomography) and eight nuclides, i.e., 3H, 14C, 90Sr, 60Co, 110mAg, 134Cs, 137Cs, 131I, which are commonly found in the liquid effluent of nuclear power plants, as the source items, The results show that the level of nuclide γ energy determines the external DCs (DCext), and 90Sr plays the most important role in internal DCs (DCint). The comparison between the external DCs of the heart and gonad and that of the whole body shows that DCs (DCext) of heart and gonad for females are 80% and 43% lower than that of whole body, respectively, while for males, the DCs (DCext) of heart is 44% lower than that of the whole body, and DCs (DCext) of gonad is slightly higher than that of the whole body for most nuclides (up to 25%).The dose of internal radiation makes greater contribution than that of external radiation to pure beta emitter (3H, 14C, 90Sr). This internal DCs of ZF-family model with complex internal structure turns out to demonstrate more sensitive DCs change trend and higher calculation values compared with the internal DCs of the simple ellipsoid model. In this model, the photon emitter with strong penetrating power has higher internal DCs, while the low-energy pure beta nuclide does not alter much. In conclusion, it is vital to carry out refined systematic modeling for model organisms, and the determination of DCs of model organs can promote the evaluation of the radiation effects on non-human species.
Collapse
Affiliation(s)
- Huiyuan Xue
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Yefeng Zhang
- School of Public Health, Medical Department, Soochow University, Suzhou, 215123, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Han Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Qixuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Shengri Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Wentao Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Tianzi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Fajian Luo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Jun Wan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions.
| |
Collapse
|
13
|
He CQ, Mao L, Yao J, Zhao WC, Huang B, Hu N, Long DX. The Threshold Effects of Low-Dose-Rate Radiation on miRNA-Mediated Neurodevelopment of Zebrafish. Radiat Res 2021; 196:633-646. [PMID: 34399425 DOI: 10.1667/rade-20-00265.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/29/2021] [Indexed: 11/03/2022]
Abstract
The biological effects and regulatory mechanisms of low-dose and low-dose-rate radiation are still rather controversial. Therefore, in this study we investigated the effects of low-dose-rate radiation on zebrafish neurodevelopment and the role of miRNAs in radiation-induced neurodevelopment. Zebrafish embryos received prolonged gamma-ray irradiation (0 mGy/h, 0.1 mGy/h, 0.2 mGy/h, 0.4 mGy/h) during development. Neurodevelopmental indicators included mortality, malformation rate, swimming speed, as well as the morphology changes of the lateral line system and brain tissue. Additionally, spatiotemporal expression of development-related miRNAs (dre-miR-196a-5p, dre-miR-210-3p, dre-miR-338) and miRNA processing enzymes genes (Dicer and Drosha) were assessed by qRT-PCR and whole mount in situ hybridization (WISH). The results revealed a decline in mortality, malformation and swimming speed, with normal histological and morphological appearance, in zebrafish that received 0.1 mGy/h; however, increased mortality, malformation and swimming speed were observed, with pathological changes, in zebrafish that received 0.2 mGy/h and 0.4 mGy/h. The expression of miRNA processing enzyme genes was altered after irradiation, and miRNAs expression was downregulated in the 0.1 mGy/h group, and upregulated in the 0.2 mGy/h and 0.4 mGy/h groups. Furthermore, ectopic expression of dre-miR-210-3p, Dicer and Drosha was also observed in the 0.4 mGy/h group. In conclusion, the effect of low-dose and low-dose-rate radiation on neurodevelopment follows the threshold model, under the regulation of miRNAs, excitatory effects occurred at a dose rate of 0.1 mGy/h and toxic effects occurred at a dose rate of 0.2 mGy/h and 0.4 mGy/h.
Collapse
Affiliation(s)
- Chu-Qi He
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Liang Mao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Jin Yao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Wei-Chao Zhao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Ding-Xin Long
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| |
Collapse
|
14
|
Gagnaire B, Arcanjo C, Cavalié I, Camilleri V, Simon O, Dubourg N, Floriani M, Adam-Guillermin C. Effects of gamma ionizing radiation exposure on Danio rerio embryo-larval stages - comparison with tritium exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124866. [PMID: 33429147 DOI: 10.1016/j.jhazmat.2020.124866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The objective was to investigate the effects of ionizing radiation induced in zebrafish early life stages by coupling responses obtained at the molecular (genotoxicity, ROS production, gene expression) and phenotypic (tissue alteration, embryo-larval development) levels. Here we present results obtained after exposure of 3 hpf larvae to 10 days of gamma irradiation at 3.3 × 101, 1.3 × 102 and 1.2 × 103 µGy/h, close to and higher than the benchmark for protection of ecosystems towards ionizing radiations of 101 µGy/h. Dose rates used in these studies were chosen to be in the 'derived consideration reference level' (DCRL) for gamma irradiation where deleterious effects can appear in freshwater fish. Also, these dose rates were similar to the ones already tested on tritium (beta ionizing radiation) in our previous work, in order to compare both types of ionizing radiation. Results showed that gamma irradiation did not induce any effect on survival and hatching. No effect was observed on DNA damages, but ROS production was increased. Muscle damages were observed for all tested dose rates, similarly to previous results obtained with tritium (beta ionizing radiation) at similar dose rates. Some molecular responses therefore appeared to be relevant for the study of gamma ionizing radiation effects in zebrafish.
Collapse
Affiliation(s)
- Beatrice Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - Caroline Arcanjo
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Olivier Simon
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Magali Floriani
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache, Saint-Paul-lez-Durance 13115, France
| |
Collapse
|
15
|
Saeed A, Murshed MN, Al-Shahari EA. Effect of low-dose fast neutrons on the protein components of peripheral blood mononuclear cells of whole-body irradiated Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40443-40455. [PMID: 32666461 DOI: 10.1007/s11356-020-10085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The immune system is exposed to extremely low doses of neutrons under different circumstances, such as through exposure to cosmic rays, nuclear accidents, and neutron therapy. Peripheral blood mononuclear cells (PBMCs) are the primary immune cells that exhibit selective immune responses. Changes in the functions of the protein components of PBMC can be induced by structural modifications of these proteins themselves. Herein, we have investigated the effect of low-dose fast neutrons on PBMC proteins at 0, 2, 4, and 8 days post-whole body irradiation. 64 Wistar rats were used in this study of which, 32 were exposed to fast neutrons at a total dose of 10 mGy (241Am-Be, 0.2 mGy/h), and the other 32 were used as controls. Blood samples were drawn, and PBMCs were isolated from whole blood. Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy were used to estimate the changes in the proteins of PBMCs. An alkaline comet assay was performed to assess DNA damage. Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were utilized to discriminate between irradiated and non-irradiated samples. FTIR and fluorescence spectra of the tested samples revealed alterations in the amides and tryptophan, and therefore protein structure at time intervals of 2 and 4 days post-irradiation. No changes were recorded in samples tested at time intervals of 0 and 8 days post-irradiation. The FTIR band intensities of the PBMC proteins of the irradiated samples decreased slightly and were statistically significant. Curve fitting of the amide I band in the FTIR spectra showed changes in the secondary structure of the proteins. At 2 days post-irradiation, fluorescence spectra of the tested samples revealed decreases in the band tryptophan. The comet assay revealed low levels of DNA damage. In conclusion, low-dose fast neutrons can affect the proteins of PBMC.
Collapse
Affiliation(s)
- Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Department of Physics, Thamar University, Thamar, Yemen.
| | - Mohammad N Murshed
- Department of Physics, Faculty of Science and Arts, Mohayel Aser, King Khalid University, Abha, Saudi Arabia
- Department of Physics, Faculty of Science, Ibb University, Ibb, Yemen
| | - Eman Abdulqader Al-Shahari
- Department of Biology, Faculty of Science and Arts, Mohayel Aser, King Khalid University, Abha, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| |
Collapse
|
16
|
Wang B, Dong J, Xiao H, Li Y, Jin Y, Cui M, Zhang SQ, Fan SJ. Metformin fights against radiation-induced early developmental toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139274. [PMID: 32438158 DOI: 10.1016/j.scitotenv.2020.139274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Nuclear pollution intertwined accidental irradiation not only triggers acute and chronic radiation syndromes, but also endangers embryonic development in sight of uncontrollable gene mutation. Metformin (MET), a classic hypoglycemic drug, has been identified to possess multiple properties. In this study, we explored the radioprotective effects of MET on the developmental abnormalities and deformities induced by irradiation among three "star drugs". Specifically, zebrafish (Danio rerio) embryos exposed to 5.2 Gy gamma irradiation at 4 h post fertilization (hpf) showed overt developmental toxicity, including hatching delay, hatching rate decrease, developmental indexes reduction, morphological abnormalities occurrence and motor ability decline. However, MET treatment erased the radiation-induced phenotypes. In addition, MET degraded inflammatory reaction, hinders apoptosis response, and reprograms the development-related genes expression, such as sox2, sox3, sox19a and p53, in zebrafish embryos following radiation challenge. Together, our findings provide novel insights into metformin, and underpin that metformin might be employed as a promising radioprotector for radiation-induced early developmental toxicity in pre-clinical settings.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuxiao Jin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Shu-Qin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
17
|
Lerebours A, Robson S, Sharpe C, Smith JT. Subtle effects of radiation on embryo development of the 3-spined stickleback. CHEMOSPHERE 2020; 248:126005. [PMID: 32032873 DOI: 10.1016/j.chemosphere.2020.126005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The Chernobyl and Fukushima nuclear power plant (NPP) accidents that occurred in 1986 and 2011 respectively have led to many years of chronic radiation exposure of wildlife. However, controversies remain on the dose threshold above which an impact on animal health occurs. Fish have been highly exposed immediately after both accidents in freshwater systems around Chernobyl and in freshwater and marine systems around Fukushima. The dose levels decreased during the years after the accidents, however, little is known about the effects of environmental low doses of radiation on fish health. The present laboratory study assesses the effects of an environmentally relevant dose range of radiation (0.1, 1 and 10 mGy/day) on early life stages of the 3-spined stickleback, Gasterosteus aculeatus. The cardiac physiology and developmental features (head width, diameter, area) of high exposed embryos (10 mGy/day) showed no significant change when compared to controls. Embryos exposed to the medium and high dose were slower to hatch than the controls (between 166 and 195 h post-fertilization). After 10 days of exposure (at 240 h post-fertilization), larvae exposed to the high dose displayed comparable growth to controls. High-throughput sequence analysis of transcriptional changes at this time point revealed no significant changes in gene regulation compared to controls regardless of exposure conditions. Our results suggest that exposure of fish embryos to environmental radiation elicits subtle delays in hatching times, but does not impair the overall growth and physiology, nor the gene expression patterns in the recently hatched larvae.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom; School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom.
| | - Samuel Robson
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Colin Sharpe
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Jim T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom
| |
Collapse
|
18
|
Kuang L, Lei M, Li C, Guo Z, Ren Y, Zhang X, Zheng J, Zhang C, Yang C, Mei X, Tang L, Ji Y, Deng X, Yang R, Xie X. Whole transcriptome sequencing reveals that non-coding RNAs are related to embryo morphogenesis and development in rabbits. Genomics 2020; 112:2203-2212. [DOI: 10.1016/j.ygeno.2019.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
|
19
|
Al-malky HS, Damanhouri ZA, Al Aama JY, Al Qahtani AA, Ramadan WS, AlKreathy HM, Al Harthi SE, Osman AMM. Diltiazem potentiation of doxorubicin cytotoxicity and cellular uptake in human breast cancer cells. BREAST CANCER MANAGEMENT 2019. [DOI: 10.2217/bmt-2019-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Breast cancer is the most common cancer among Arab women and also around the world. Chronic cardiotoxicity and multidrug resistance are potential limiting factors of doxorubicin (DOX), a known anthracycline antibiotic. Materials & methods: DOX cytotoxicity was evaluated by the sulforhodamine method. DOX cellular uptake, detection of P-glycoprotein activity and the photomicrograph of MCF-7 cells were also determined. Results: Diltiazem (DIL) treatment improved DOX cytotoxic activity and increased the cellular uptake of DOX significantly and aggregation of rhodamine 123, reflecting inhibition of P-glycoprotein pump. Cytopathological investigation of MCF-7 cells revealed marked cytotoxic activity of DOX in the presence of DIL. Conclusion: DIL treatment enhanced DOX cytotoxic effect and reduced multidrug resistance, which increased the drug accumulation intracellularly.
Collapse
Affiliation(s)
- Hamdan S Al-malky
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Zoheir A Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Jumana Y Al Aama
- Department of Genetics, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Ali A Al Qahtani
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Wafaa S Ramadan
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Egypt
| | - Huda M AlKreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Sameer E Al Harthi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Abdel-Moneim M Osman
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
- Pharmacology Unit, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|