1
|
Zhang J, Wang S, Wang X, Jiao W, Zhang M, Ma F. A review of functions and mechanisms of clay soil conditioners and catalysts in thermal remediation compared to emerging photo-thermal catalysis. J Environ Sci (China) 2025; 147:22-35. [PMID: 39003042 DOI: 10.1016/j.jes.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 07/15/2024]
Abstract
High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shuo Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghua Zhang
- College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Liu Y, Zhou Q, Li Z, Zhang A, Zhan J, Miruka AC, Gao X, Wang J. Effectiveness of chelating agent-assisted Fenton-like processes on remediation of glucocorticoid-contaminated soil using chemical and biological assessment: performance comparison of CaO 2 and H 2O 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67310-67320. [PMID: 34245411 PMCID: PMC8271340 DOI: 10.1007/s11356-021-15150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Glucocorticoids (GCs) have drawn great concern due to widespread contamination in the environment and application in treating COVID-19. Most studies on GC removal mainly focused on aquatic environment, while GC behaviors in soil were less mentioned. In this study, degradation of three selected GCs in soil has been investigated using citric acid (CA)-modified Fenton-like processes (H2O2/Fe(III)/CA and CaO2/Fe(III)/CA treatments). The results showed that GCs in soil can be removed by modified Fenton-like processes (removal efficiency gt; 70% for 24 h). CaO2/Fe(III)/CA was more efficient than H2O2/Fe(III)/CA at low oxidant dosage (< 0.28-0.69 mmol/g) for long treatment time (> 4 h). Besides the chemical assessment with GC removal, effects of Fenton-like processes were also evaluated by biological assessments with bacteria and plants. CaO2/Fe(III)/CA was less harmful to the richness and diversity of microorganisms in soil compared to H2O2/Fe(III)/CA. Weaker phytotoxic effects were observed on GC-contaminated soil treated by CaO2/Fe(III)/CA than H2O2/Fe(III)/CA. This study, therefore, recommends CaO2-based treatments to remediate GC-contaminated soils.
Collapse
Affiliation(s)
- Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Quan Zhou
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zhenyu Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| | - Jiaxun Zhan
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaoting Gao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, Shanghai, 200092, China
| |
Collapse
|
3
|
O'Connor J, Nguyen TBT, Honeyands T, Monaghan B, O'Dea D, Rinklebe J, Vinu A, Hoang SA, Singh G, Kirkham MB, Bolan N. Production, characterisation, utilisation, and beneficial soil application of steel slag: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126478. [PMID: 34323725 DOI: 10.1016/j.jhazmat.2021.126478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/30/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Slags are a co-product produced by the steel manufacturing industry and have mainly been utilised for aggregates in concreting and road construction. The increased utilisation of slag can increase economic growth and sustainability for future generations by creating a closed-loop system, circular economy within the metallurgical industries. Slags can be used as a soil amendment, and slag characteristics may reduce leachate potential of heavy metals, reduce greenhouse gas emissions, as well as contain essential nutrients required for agricultural use and environmental remediation. This review aims to examine various slag generation processes in steel plants, their physicochemical characteristics in relation to beneficial utilisation as a soil amendment, and environmental implications and risk assessment of their utilisation in agricultural soils. In relation to enhancing recycling of these resources, current and emerging techniques to separate iron and phosphorus slag compositions are also outlined in this review. Although there are no known immediate direct threats posed by slag on human health, the associated risks include potential heavy metal contamination, leachate contamination, and bioaccumulation of heavy metals in plants, thereby reaching the food chain. Further research in this area is required to assess the long-term effects of slag in agricultural soils on animal and human health.
Collapse
Affiliation(s)
- James O'Connor
- College of Engineering, Science and Enviornment, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Newcastle Institute for Energy and Resources (NIER), University of Newcastle, 70 Vale St, Shortland, NSW 2307, Australia
| | - Thi Bang Tuyen Nguyen
- Newcastle Institute for Energy and Resources (NIER), University of Newcastle, 70 Vale St, Shortland, NSW 2307, Australia
| | - Tom Honeyands
- Newcastle Institute for Energy and Resources (NIER), University of Newcastle, 70 Vale St, Shortland, NSW 2307, Australia.
| | - Brian Monaghan
- University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Damien O'Dea
- BHP, 480 Queen St, Brisbane, QLD 4000, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, NSW, Australia
| | - Son A Hoang
- College of Engineering, Science and Enviornment, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, NSW, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- College of Engineering, Science and Enviornment, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
4
|
Guo J, Gao Q, Chen Y, He Q, Zhou H, Liu J, Zou C, Chen W. Insight into sludge dewatering by advanced oxidation using persulfate as oxidant and Fe 2+ as activator: Performance, mechanism and extracellular polymers and heavy metals behaviors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112476. [PMID: 33827020 DOI: 10.1016/j.jenvman.2021.112476] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
This study established a Fe2+/persulfate oxidation system to dewater sludge in WWTPs. Dewatering performance, persulfate consumption and the variations of sludge pH, TN and TP during dewatering process were monitored. EPS and ζ-potential behaviors for ameliorating sludge dewatering was investigated. Transformation, leaching toxicity and environmental risk of heavy metals in sludge during dewatering were determined. Results demonstrated that after treated by Fe2+/persulfate oxidation system with 0.6 mmol/g-VS of persulfate at Fe2+/persulfate molar ratio 0.6, WC decreased to 53.5% and SCST increased to 4.15, which implied an excellent improvement of sludge dewatering. The fast persulfate consumption, the decrease of sludge pH and the increase of TN illustrated the positive effects of Fe2+ in activating persulfate and the decomposition of EPS by the activation products, SO4•- and •OH. Another product (Fe3+) generated during persulfate activation could decrease the content of phosphorus-containing matter (released from EPS decomposition) through the precipitation reaction with PO43-. The decrease of TOC and UV-254 happened in HPO-A, HPO-N and TPI-A organic substance of EPS (mainly contained in TB-EPS fraction) indicated that the destruction of hydrophobic organic matter of EPS would stimulate the release of bound water, which was beneficial to dewater sludge. The largest protein loss in TB-EPS (from 24.5 to 10.7 mg/L) indicated that the effective decomposition of TB-EPS could significantly ameliorate sludge dewatering. The increase of ζ-potential indicated the degradation of organic matter in EPS with negative charge. To sum up, the destruction of protein-like substances in hydrophobic organic matter of TB-EPS was the main mechanism for improving sludge dewatering by Fe2+/persulfate oxidation system. 3D-EEM fluorescence spectroscopy analysis proved that these protein-like substances were mainly tryptophan protein and humic acid. Moreover, due to the disruption of EPS, the contents of heavy metals in sludge, and their leaching toxicity and environmental risk were reduced. Therefore, Fe2+/persulfate oxidation system has potential and application prospects to improve sludge dewatering and optimize sludge management in WWTPs.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Qifan Gao
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Yihua Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Qianlan He
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Hengbing Zhou
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Jinbao Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Changwu Zou
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Wenjing Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
5
|
Hu E, Yuan H, Du Y, Chen X. LDPE and HDPE Microplastics Differently Affect the Transport of Tetracycline in Saturated Porous Media. MATERIALS 2021; 14:ma14071757. [PMID: 33918359 PMCID: PMC8038232 DOI: 10.3390/ma14071757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
The accumulation of microplastics (MPs) in soil and sediments may influence the penetration of contaminants into subsurface environments. However, little attention has been paid to comparing the different roles of two common polyethylene (PE) types-low-density polyethylene (LDPE) and high-density polyethylene (HDPE). In this study, the transport behaviors of tetracycline in saturated quartz sand columns in the presence and absence of these two MPs were investigated, respectively. The results showed that both types of PE MPs restrained the mobility of tetracycline at neutral conditions, while such detrimental effects were weak at acid and alkaline conditions. The degree of nonequilibrium adsorption was higher, and tetracycline transferred easier to the kinetic site for the existence of LDPE than of HDPE. The increased roughness and Brunauer-Emmett-Teller (BET) surface areas, more negative zeta potentials and the formation of oxygen function groups on the surface of MPs after UV-weathering intensified the retardation of tetracycline transport. This study revealed that the PE type and weathering should be taken into account in risk assessment, along with the solution chemistry.
Collapse
Affiliation(s)
- Enzhu Hu
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang 110819, China; (E.H.); (H.Y.)
| | - Hongbo Yuan
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang 110819, China; (E.H.); (H.Y.)
| | - Yichun Du
- Shaanxi Key Laboratory of Land Consolidation, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Chang‘an University, Xi’an 710054, China
- Correspondence: (Y.D.); (X.C.); Tel.: +86-153-3902-1936 (Y.D.); +86-156-4026-8401 (X.C.)
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Correspondence: (Y.D.); (X.C.); Tel.: +86-153-3902-1936 (Y.D.); +86-156-4026-8401 (X.C.)
| |
Collapse
|
6
|
Guo J, Wen X, Yang J, Fan T. Removal of benzo(a)pyrene in polluted aqueous solution and soil using persulfate activated by corn straw biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111058. [PMID: 32669257 DOI: 10.1016/j.jenvman.2020.111058] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
An activator, corn straw biochar, was produced and applied in persulfate-based oxidation to remove benzo(a)pyrene (BaP) in polluted aqueous solution and soil. Polluted aqueous solution remediation results showed that at pH 7, approximately 88.4% of BaP was removed by 10 mM of persulfate activated by 1.6 g/L of biochar, and degradation played a dominant role. Polluted soil remediation results demonstrated that the activated persulfate solution (at 9 g/L) by biochar (at 3 wt% of soil) can remove 93.2% of BaP. In remediation of BaP-polluted soil, increasing biochar dosage and persulfate concentration accelerated BaP degradation to some extent, while excessive biochar or persulfate inhibited the degradation of BaP probably due to the unnecessary SO4- consumption. The biochar-activated persulfate oxidation reflected a good performance in tolerating the influences of background electrolytes (such as HCO3-, Cl-, and humic acid (HA)) in soil on BaP remediation. In addition, in the removal of BaP by the oxidation systems activated by biochar, persulfate was proved as a superior oxidant compared to peroxymonosulfate and H2O2, and the removal efficiencies of BaP were 93.2%, 86.5%, and 84.4% under the same treatment condition. To sum up, the biochar-activated persulfate oxidation would be a potential application in remediation of BaP-polluted aqueous solution and soil.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Xiaoying Wen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Jiawei Yang
- National Institute of Measurement and Testing Technology, Chengdu, Sichuan, 610021, China
| | - Ting Fan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| |
Collapse
|
7
|
Hu E, Shang S, Fu Z, Zhao X, Nan X, Du Y, Chen X. Cotransport of naphthalene with polystyrene nanoplastics (PSNP) in saturated porous media: Effects of PSNP/naphthalene ratio and ionic strength. CHEMOSPHERE 2020; 245:125602. [PMID: 31864042 DOI: 10.1016/j.chemosphere.2019.125602] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
As emerging contaminants of global concern, nanoplastics are significantly potential carriers of hydrophobic organic compounds in aquatic and soil environment. However, little is known about the interactions between the transports of nanoplastics and organic contaminants in porous media. In this study, the cotransport of naphthalene with polystyrene nanoplastics (PSNP) in saturated sand columns as influenced by the PSNP/naphthalene ratio and ionic strength (IS) was investigated. The presence of PSNP dramatically enhanced the mobility of naphthalene at low IS (0.5 mM), but such effect was prohibited at high IS (5 mM and 50 mM). The mobility of PSNP in the sand column was higher when it was solely exist in the pore-water than that when in the presence of naphthalene, because of the charge-shielding effect. This work showed that the coexistence of PSNP and naphthalene would influence the mobility of each other in the saturated porous media, which highly related to their concentration ratio and IS levels.
Collapse
Affiliation(s)
- Enzhu Hu
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Siyao Shang
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Zhongtian Fu
- School of Resource & Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- School of Resource & Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiangli Nan
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Yichun Du
- Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710054, China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Land and Resources, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China.
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|