1
|
Wroński M, Trawiński J, Skibiński R. Antifungal drugs in the aquatic environment: A review on sources, occurrence, toxicity, health effects, removal strategies and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133167. [PMID: 38064946 DOI: 10.1016/j.jhazmat.2023.133167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Fungal infections pose a significant global health burden, resulting in millions of severe cases and deaths annually. The escalating demand for effective antifungal treatments has led to a rise in the wholesale distribution of antifungal drugs, which consequently has led to their release into the environment, posing a threat to ecosystems and human health. This article aims to provide a comprehensive review of the presence and distribution of antifungal drugs in the environment, evaluate their potential ecological and health risks, and assess current methods for their removal. Reviewed studies from 2010 to 2023 period have revealed the widespread occurrence of 19 various antifungals in natural waters and other matrices at alarmingly high concentrations. Due to the inefficiency of conventional water treatment in removing these compounds, advanced oxidation processes, membrane filtration, and adsorption techniques have been developed as promising decontamination methods.In conclusion, this review emphasizes the urgent need for a comprehensive understanding of the presence, fate, and removal of antifungal drugs in the environment. By addressing the current knowledge gaps and exploring future prospects, this study contributes to the development of strategies for mitigating the environmental impact of antifungal drugs and protecting ecosystems and human health.
Collapse
Affiliation(s)
- Michał Wroński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
2
|
Li J, Chen Q, Sha T, Liu Y. Significant Promotion of Light Absorption Ability and Formation of Triplet Organics and Reactive Oxygen Species in Atmospheric HULIS by Fe(III) Ions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16652-16664. [PMID: 36342346 DOI: 10.1021/acs.est.2c05137] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal ions are key components in atmosphere that potentially affect the optical properties and photochemical reactivity of atmospheric humic-like substances (HULIS), while this mechanism is still unclear. In this study, we demonstrated that atmospheric HULIS coupled with Fe3+, Cu2+, Zn2+, and Al3+ exhibited distinct optical properties and reactive intermediates from that of HULIS utilizing three-dimensional fluorescence spectroscopy and electron paramagnetic resonance spectroscopy. The HULIS components showed light absorption that increased by 56% for the HULIS-Fe3+ system, fluorescence blue shift, and fluorescence quenching, showing a certain dose-effect relationship. These are mainly attributed to the fact that the highly oxidative HULIS chromophores have a stronger complexing ability with Fe3+ ions than the other metal ions. In addition, triplet organics (promoting ratio: 53%) and reactive oxygen species (promoting ratio: 82.6%) in the HULIS-Fe3+ system showed obvious generation promotion. Therefore, the main assumption of the photochemical mechanisms of atmospheric HULIS in the HULIS-Fe3+ system is that Fe3+ ions can form 3HULIS*-Fe3+ complexation with photoexcited 3HULIS* and then transition to the ground state through energy transfer, electron transfer, or nonradiative transition, accompanied by the formation of singlet oxygen and hydroxyl radicals. Our results provide references for evaluating the radiative forcing and aging effect of metal ions on atmospheric aerosols.
Collapse
Affiliation(s)
- Jinwen Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tong Sha
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Xu J, Wu Y, Ma M, Luo T, Xia J, Zhang X. A novel transformation pathway of p-arsanilic acid in water by colloid ferric hydroxide under UVA light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5043-5051. [PMID: 34415520 DOI: 10.1007/s11356-021-15975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Iron species that occur in natural surface water could affect the photochemical behavior of pollutants. Complexation between iron species and polycarboxylate or heavy metals has been widely reported, where the ligands could be oxidized via ligand-to-metal charge transfer (LMCT) by light inducement. Such complexation and photochemical reactions might also occur for low valance metal-containing organic compounds, which is worthy of investigation. This work studied the phototransformation of p-arsanilic acid (ASA), an organic arsenic compound that is widely used as a feed additive in the poultry industry, by colloidal ferric hydroxide (CFH) using black light lamps (λ = 365 nm) as the light source. The results revealed the contribution to ASA transformation at circumneutral conditions by CFH through an LMCT process, which is the same as that for As(III). The complexation between ASA and CFH was investigated using UV-vis spectroscopy. The estimated equilibrium constant for the CFH-ASA complex was log Kf271 = 4.22. The analysis of the photoproducts found the generation of both inorganic and organic arsenic. Our findings confirmed the similarities in the photochemical mechanisms of ASA and As(III) in the presence of CFH. The results help in further understanding the fate of organoarsenicals in the surface water environment.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Yi Wu
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Mengling Ma
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Tao Luo
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Jun Xia
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Benssassi ME, Mammeri L, Talbi K, Lekikot B, Sehili T, Santaballa JA, Canle M. Removal of paracetamol in the presence of iron(III) complexes of glutamic and lactic acid in aqueous solution under NUV irradiation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Tyutereva YE, Sherin PS, Polyakova EV, Koscheeva OS, Grivin VP, Plyusnin VF, Shuvaeva OV, Pozdnyakov IP. Photodegradation of para-arsanilic acid mediated by photolysis of iron(III) oxalate complexes. CHEMOSPHERE 2020; 261:127770. [PMID: 32731031 DOI: 10.1016/j.chemosphere.2020.127770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Organic arsenicals are important environment pollutants due to wide use in livestock and toxicity of degradation products. In this work we report about the efficient photodegradation of the p-arsanilic acid (p-ASA) and its decomposition products in the Fe(III)-oxalate assisted approach under nature-relevant conditions. At neutral pH under near-visible UV irradiation the Fe(III) oxalate complexes generate the primary oxidizing intermediate, OH radical (the quantum yield of ϕOH ∼ 0.06), which rapidly reacts with p-ASA with high rate constant, (8.6 ± 0.5) × 109 M-1s-1. Subsequent radical reactions result in the complete photooxidation of both p-ASA and basic aromatic photoproducts with the predominant formation of inorganic arsenic species, mainly As(V), under optimal conditions. Comparing with the direct UV photolysis, the presented Fe(III)-oxalate mediated degradation of p-ASA has several advantages: higher efficiency at low p-ASA concentration and complete degradation of organic arsenic by-products without use of short-wavelength UV radiation. The obtained results illustrate that the Fe(III)-oxalate complexes are promising natural photosensitizers for the removal of arsenic pollutants from contaminated waters.
Collapse
Affiliation(s)
- Yuliya E Tyutereva
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Petr S Sherin
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation; International Tomography Center, 3a Institutskaya str., 630090, Novosibirsk, Russian Federation.
| | - Evgeniya V Polyakova
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation; Nikolaev Institute of Inorganic Chemistry, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russian Federation
| | - Olga S Koscheeva
- Nikolaev Institute of Inorganic Chemistry, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russian Federation
| | - Vyacheslav P Grivin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Victor F Plyusnin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Olga V Shuvaeva
- Nikolaev Institute of Inorganic Chemistry, 3 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
6
|
Wan D, Kong Y, Selvinsimpson S, Luo F, Chen Y. Effect of UV 254 disinfection on the photoformation of reactive species from effluent organic matter of wastewater treatment plant. WATER RESEARCH 2020; 185:116301. [PMID: 32818737 DOI: 10.1016/j.watres.2020.116301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
UV254 is one of the main disinfection methods used in wastewater treatment plants (WWTPs) for the inactivation of pathogens in the effluents before being discharged into the receiving waters. The effluent organic matters (EfOM) are well-known photosensitizers for the generation of reactive species, mainly including the triplet states of EfOM (3EfOM*), singlet oxygen (1O2) and hydroxyl radical (•OH), which contribute to the removal of trace pollutants in water. However, the effect of UV254 disinfection on the photoreactivity of EfOM remains unclear. Here we investigated the photophysical and photochemical properties variation of EfOM after UV254 disinfection, along with humic substances (HS) as comparison. The UV254 disinfection caused a decrease of aromaticity, fluorescence intensity and molecular weight for all samples, while a reduction formation of triplet state of these dissolved organic matters (3DOM*), 1O2, hydrogen peroxide (H2O2), and superoxide anions (O2•-) under simulated sunlight was observed. In contrast, the generation of •OH was increased after UV254 disinfection. The quantum yield of 1O2 was positively correlated with triplet quantum yield coefficient (fTMP) in all cases. However, the quantum yield of •OH exhibited positive and negative correlations with fTMP for EfOM and HS, respectively. The quantum yields showed positive correlations with E2/E3 (ratio of the absorbance at 254 to 365 nm) for untreated DOM samples, while for the first time we found the trends differ distinctly after UV254 disinfection. These findings indicate that UV254 disinfection in WWTPs significantly increases the potential of •OH photoproduction from effluents and the cost-effective solar irradiation after UV254 disinfection is expected to be a novel technique for further removal of pathogen and trace organic pollutants in wastewater effluents and receiving waters.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yaqian Kong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | | | - Fan Luo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Advanced Technology Institute of Suzhou, Suzhou, 215123, PR China.
| |
Collapse
|