1
|
Nagarajan K, Thamarai R, Kamaraj C, Al-Ghanim KA, Subramaniam K, Malafaia G. Green synthesis and evaluation of dual herb-extracted DHM-AgNPs: Antimicrobial efficacy and low ecotoxicity in agricultural and aquatic systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122849. [PMID: 39405879 DOI: 10.1016/j.jenvman.2024.122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Uncontrolled applications of weedicide and fertilizer can harm the soil ecology, and most significantly, earthworms are hazardous soil engineers. Thus, we aimed at the toxicity and histopathological alterations in the earthworm Eudrilus euginae following exposure to glyphosate (weedicide), urea (fertilizer), and environmentally friendly dual herb-mixed silver nanoparticles (DHM-AgNPs). The DHM-AgNPs were synthesized using a blend of Alfinia officinarum and Curcuma longa aqueous leaf extracts with 1 mM silver nitrate. The color change from yellow to brown after an hour of incubation was a significant indicator of successful DHM-AgNP synthesis. Characterization of the DHM-AgNPs using UV-Vis spectra indicated a surface plasmon resonance (SPR) peak at 430 nm. In addition to FT-IR spectroscopy and XRD analysis, SEM, TEM, and SEM investigations were performed to identify the DHM-AgNPs. The XPS analysis revealed the oxidation state and surface chemical composition, and Ag NP's specific surface area and degree of porosity were measured using BET. Furthermore, different concentrations of urea and glyphosate were administered to Artemia nauplii and E. euginae to assess their toxicity. The mortality rate for E. euginae exposed to a higher urea concentration (10 g/kg of soil) was 100%. In contrast, a % mortality rate of 83% was noted at 0.5 g/kg of soil. The maximum mortality (90 ± 0.64%) was observed at a 10 mL/kg/L concentration for glyphosate. In contrast, low mortality was noted in E. euginae and A. nauplii exposed with gradient concentrations of DHM-AgNPs compared to glyphosate and urea. As aquaculture and foodborne diseases are widespread, DHM-AgNPs showed significant anti-Vibrio activity against pathogenic Vibrio-related bacteria, inhibiting 80% at 100,100 μg/L, which is of great concern. This study suggests the potential use of DHM-AgNPs in field aqua and crops culture for eco-friendly pest control and anti-Vibrio activity without causing soil and environmental pollution. Further research is warranted to determine the efficacy, safety, and cost-effectiveness of DHM-AgNPs in aqua and agricultural practices.
Collapse
Affiliation(s)
- Kalimuthu Nagarajan
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Rajkumar Thamarai
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia.
| | - Kalidass Subramaniam
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, And Biodiversity, Federal University of Uberl^andia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biology of the Parasite-Host Relationship (PPGBRPH), Institute of Tropical Pathology and Public Health, Federal University of Goiás, Brazil.
| |
Collapse
|
2
|
Singh K, Malla MA, Kumar A, Yadav S. Biological monitoring of soil pollution caused by two different zinc species using earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57789-57803. [PMID: 39292303 DOI: 10.1007/s11356-024-34900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are commonly used in both commercial and agricultural sectors. As a result, ZnO-NPs are extensively discharged into soil ecosystems, creating a significant environmental issue. Therefore, it is crucial to assess their influence on the soil ecology to ensure its secure and enduring utilization in the future. The exact degree of toxicity associated with ZnO-NPs and their ionic form is still uncertain. To address the challenges, the study used the soil bioindicator earthworm species Eudrilus eugeniae as an experimental model to evaluate the effects of two zinc species (ZnO-NPs and ZnCl2) at 100, 250, 500, and 750 mg kg-1 and control (0 mg kg-1) in garden soil over 28 days. The investigation also examined the impact of exposure on survival, reproduction, neuro-biomarker, avoidance behavior, and accumulation. The highest avoidance rates were 27.5% for ZnO-NP and 37.5% for ZnCl2 at 750 mg kg-1. ZnCl2 treatment reduced juvenile production by 3.73 ± 1.73, while ZnO-NPs showed 4.67 ± 1.15. At 750 mg kg-1, soils with ZnCl2 (63.3%) demonstrated lower survival rates than those with ZnO-NPs (53.3%), likely because of higher Zn ion levels. After 28 days of exposure, ZnCl2 (536.32 ± 11 mol min-1) activated AChE enzymes more than ZnO-NPs (497.7 ± 59 mol min-1) at the same dose, compared to control (145.88 ± 28 to 149.41 ± 23 mol min-1). Nanoparticles and zinc ions bioaccumulated and reacted negatively with the neurotoxic marker AChE, affecting earthworm reproduction and behavior. However, earthworms exposed to ZnCl2 exhibited less intestinal Zn than those exposed to NPs. The present work contradicts the finding that ZnO-NPs have hazardous effects on soil organisms. The results indicate that earthworm E. eugeniae may significantly affect soil metal uptake from metallic nanoparticles (NPs). This may help design NP soil pollution mitigation strategies. The study offers valuable information for establishing a relationship between the environmental toxicity of ZnO-NPs and soil ecosystems.
Collapse
Affiliation(s)
- Kiran Singh
- Molecular Biology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Muneer Ahmad Malla
- Molecular Biology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Uttar Pradesh, Prayagraj, 211002, India
| | - Shweta Yadav
- Molecular Biology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
3
|
Chen L, Wu C, Jia F, Xu M, Liu X, Wang Y. Combined toxicity of abamectin and carbendazim on enzymatic and transcriptional levels in the soil-earthworm microcosm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44815-44827. [PMID: 38955968 DOI: 10.1007/s11356-024-34177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Fangzhao Jia
- Zunyi City Company Suiyang Branch, Guizhou Province Tobacco Company, Suiyang, 563300, Guizhou, China
| | - Mingfei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
4
|
Duan Z, Huang K, Huang W, Wang B, Shi J, Xia H, Li F. Bacterial dispersal enhances the elimination of active fecal coliforms during vermicomposting of fruit and vegetable wastes: The overlooked role of earthworm mucus. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134280. [PMID: 38636233 DOI: 10.1016/j.jhazmat.2024.134280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.
Collapse
Affiliation(s)
- Zihao Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Wenqi Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bangchi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiwei Shi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
5
|
Du Y, Shang G, Zhai J, Wang X. Effects of soybean oil exposure on the survival, reproduction, biochemical responses, and gut microbiome of the earthworm Eisenia fetida. J Environ Sci (China) 2023; 133:23-36. [PMID: 37451786 DOI: 10.1016/j.jes.2022.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 07/18/2023]
Abstract
With increasing production of kitchen waste, cooking oil gradually enters the soil, where it can negatively affect soil fauna. In this study, we explored the effects of soybean oil on the survival, growth, reproduction, tissue structure, biochemical responses, mRNA expression, and gut microbiome of earthworms (Eisenia fetida). The median lethal concentration of soybean oil was found to be 15.59%. Earthworm growth and reproduction were significantly inhibited following exposure to a sublethal concentration of soybean oil (1/3 LC50, 5.2%). The activity of the antioxidant enzymes total superoxide dismutase (T-SOD), peroxidase (POD), and catalase (CAT) were affected under soybean oil exposure. The glutathione (GSH) content decreased significantly, whereas that of the lipid peroxide malondialdehyde (MDA) increased significantly after soybean oil exposure. mRNA expression levels of the SOD, metallothionein (MT), lysenin and lysozyme were significantly upregulated. The abundance of Bacteroides species, which are related to mineral oil repair, and Muribaculaceae species, which are related to immune regulation, increased within the earthworm intestine. These results indicate that soybean oil waste is toxic to earthworms. Thus, earthworms deployed defense mechanisms involving antioxidant system and gut microbiota for protection against soybean oil exposure-induced stress.
Collapse
Affiliation(s)
- Yating Du
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Organic Recycling Research Institute (Suzhou), China Agricultural University, Suzhou 215100, China
| | - Guangshen Shang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China.
| |
Collapse
|
6
|
Roques O, Bayard R, Le Maux J, Patureau D, Nélieu S, Lamy I, Bedell JP. Assessing the chronic toxicity of spreading organic amendments on agricultural soil: Tests on earthworms and plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115504. [PMID: 37742581 DOI: 10.1016/j.ecoenv.2023.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Recycling organic wastes on agricultural soils improves the soil quality, but the environmental and health impact of these organic amendments closely depends on their origins, their bio-physicochemical characteristics and the considered organisms potentially affected. The aim of this study was to assess the potential chronic ecotoxicity of spreading organic amendments on agricultural soils. To do this, we characterized three different organic amendments: sewage sludge from an urban wastewater treatment plant, cow manure and liquid dairy manure. Their chronic ecotoxicity was studied through assays exposing earthworms of the species Eisenia fetida and two plants: Medicago sativa and Sinapis alba. Of the three amendments, the sewage sludge presented the highest concentrations of micropollutants and a considerable fraction of available and biodegradable organic matter. The cow manure and liquid dairy manure had lower chemical contamination and similar characteristics with lower biodegradable fractions of their organic matter. No chronic phytotoxicity was evidenced: on the contrary, particularly with sewage sludge, the germination rate and aerial and root biomass of the two plants increased. Considering earthworms, their biomass increased considerably during the reproduction assays in soil amended with sewage sludge, which contained the more bioavailable organic matter. Nonetheless, the earthworms presented an inhibition close to 78% of the production of juveniles when exposed to sewage sludge exceeding 20 g.kg-1 DW (that means 2 times the agronomic dose). This reprotoxic effect was also observed in the presence of liquid dairy manure, but not with cow manure. At the end of the assays, the glycogen and protein reserves in earthworms exposed to sewage sludge were inferior to that of control earthworms, respectively around 50% and 30%. For the earthworms exposed to liquid dairy manure, protein and lipid reserves increased. In the case of liquid dairy manure, this reprotoxic effect did not appear to be linked to the presence of micropollutants. In conclusion, our results confirm the need to use several ecotoxicity assays at different biological levels and with different biological models to assess the ecotoxic impacts of soil amendments. Indeed, although certain organic wastes present a strong nutritional potential for both plants and earthworms, a not inconsiderable risk was apparent for the reproduction of the latter. An integrated ecotoxicity criterion that takes into account a weighted sum of the different results would guide the utilization of organic amendments while ensuring the good health of agricultural ecosystems.
Collapse
Affiliation(s)
- Olivier Roques
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518 Vaulx-en-Velin, France; Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - Rémy Bayard
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - Julia Le Maux
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - Dominique Patureau
- INRAe, Université de Montpellier, LBE, 102 Avenue des étangs, 11100 Narbonne, France
| | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120 Palaiseau, France
| | - Isabelle Lamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120 Palaiseau, France
| | - Jean-Philippe Bedell
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518 Vaulx-en-Velin, France.
| |
Collapse
|
7
|
Zhang Y, Zhao J, Sa N, Huang C, Yu W, Ma T, Yang H, Ma F, Sun S, Tang C, Sang W. Multi-omics analysis reveals copper-induced growth inhibition mechanisms of earthworm (Eisenia fetida). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120862. [PMID: 36549452 DOI: 10.1016/j.envpol.2022.120862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Exposure to high concentrations of copper can cause toxic effects on the growth and development of organisms, but the relevant toxic mechanisms are far from fully understood. This study investigated the changes of metabolites, genes, and gut microorganisms in earthworms (Eisenia fetida) exposed to 0 (control), 67.58 (low), 168.96 (medium), and 337.92 (high) mg/kg of Cu in soil for 60 days. Differentially expressed genes (DEGs) and differential metabolites (DMs) at the low-, medium-, and high-level Cu exposure groups were identified and introduced into Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Integrated metabolomic and transcriptomic analysis revealed that amino acid metabolism, lipid metabolism, and carbohydrate metabolism are the major metabolic pathways disturbed by Cu exposure. Furthermore, Cu exposure significantly decreased the diversity of the intestinal bacterial community and affected the relative abundance (increased or decreased) of intestinal colonizing bacteria. This resulted in high energy expenditure, inhibited nutrient absorption and fatty acid synthesis, and weakened antioxidant and detoxification abilities, ultimately inhibiting the growth of E. fetida. These findings offer important clues and evidence for understanding the mechanism of Cu-induced growth and development toxicity in E. fetida and provide further data for risk assessment in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yanliang Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Jinqi Zhao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Na Sa
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Chenyu Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Wenyu Yu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Tianxiao Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Hongjun Yang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong Province, 256600, China
| | - Fang Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Siqi Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | | | - Weiguo Sang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China.
| |
Collapse
|
8
|
Singh K, Thakur SS, Ahmed N, Alharby HF, Al-Ghamdi AJ, Al-Solami HM, Bahattab O, Yadav S. Ecotoxicity assessment for environmental risk and consideration for assessing the impact of silver nanoparticles on soil earthworms. Heliyon 2022; 8:e11167. [PMID: 36339990 PMCID: PMC9626949 DOI: 10.1016/j.heliyon.2022.e11167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Silver nanoparticles (AgNPs) are found in a range of commercial products due to their proven antibacterial properties. The unused silver nanoparticles (AgNPs) may make its way into the soil via biosolids that come from wastewater treatment or the effluent that comes from industrialisation processes, where it could be harmful to the organism that live in terrestrial ecosystems. In addition, silver ions are one of the most toxic forms of heavy metal released from dissolved silver nitrate (AgNO3) and AgNPs through dissolution or oxidation. The study examined the effect of engineered AgNPs, and AgNO3 on earthworms which are one of the most important bioindicator for determining toxicity in soil environment. Epigeic earthworm, Eudrilus eugeniae was exposed to soils spiked with equivalent concentrations of AgNPs or AgNO3 at 0, 10, 100, and 200 mg kg−1 in soil for 56 days of experiments. The survival and growth rate was recorded at 7th, 14th, 21st, 28th days and accumulation of Ag in earthworm tissue at 14th and 28th days, antioxidant enzymes at 28th days and reproduction at 56th days of experiment. Further, a short-term exposure of AgNPs and AgNO3 was conducted to observe avoidance behaviour after 48 h of exposure. The result indicated that survivability was relatively low on exposure of AgNO3 (83.3%) than AgNPs (86.7%) in 200 mg kg−1 spiked soils, besides the growth was inhibited in both AgNPs (3.68%) and AgNO3 (3.25%) at 28th days. The uptake of Ag from AgNO3 in the earthworm tissue was slightly higher than uptake of Ag from AgNPs and it showed concentration-dependent inhibitory effects on reproduction. In AgNO3 spiked soil, a high level of the Malondialdehyde (MDA) based lipid peroxidation and increased activity of antioxidant enzyme catalase (CAT) was observed than AgNPs spiked soil. Similarly, glutathione (GSH), a cofactor for GPx and GST enzymes, was lower in AgNO3-spiked soil than in AgNPs-spiked soil. In terms of avoidance behaviour, there was no discernible difference between the distribution of earthworms in AgNPs and AgNO3 after 48 h. The study found E. eugeniae exhibits concentration-dependent alterations in its competence to survive, antioxidant enzymes, and reproduction. AgNO3 was found to be more sensitive than AgNPs in the study. The research investigates the effect of AgNPs on earthworms in the soil ecosystem since this understanding is crucial for a comprehensive evaluation of AgNPs' environmental consequences.
Collapse
Affiliation(s)
- Kiran Singh
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Samrendra Singh Thakur
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Nazeer Ahmed
- Department of Agriculture, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah J. Al-Ghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Habeeb M. Al-Solami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India,Corresponding author.
| |
Collapse
|
9
|
|
10
|
Xu Z, Yang Z, Zhu T, Shu W. Toxicity of soil antimony to earthworm Eisenia fetida (Savingy) before and after the aging process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111278. [PMID: 32979841 DOI: 10.1016/j.ecoenv.2020.111278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Information on soil antimony (Sb) toxicity to earthworm Eisenia fetida (Savingy) is limited. This ecotoxicology study was designed to quantify the soil Sb toxicity to earthworm E. fetida before and after aging process, establishing dose-effect relationship between Sb content and mortality. Results of the avoidance test and acute test showed that the values of net avoidance response, escape rate and mortality were generally decreased in aged treatment compared to that in fresh treatment, respectively from 93.33% to 66.67%, 36.67% to 13.33% and 100% to 53.33% (15 d) taking TL800 (treatment level of 800 mg/kg) for example, meanwhile the values of median lethal content (LC50) at 72 h, 7 d and 15 d were respectively increased from 355.27 mg/kg to 2324.55 mg/kg, 322.19 mg/kg and 1743.19 mg/kg and 282.74 mg/kg to 745.94 mg/kg, indicating that aging process could reduce the Sb acute toxicity to earthworm. According to a three-step sequential extraction procedure, the bioavailable Sb ranged from 24.45% to 43.24% and 16.97% to 27.70% in fresh treatment and aged treatment, respectively, and the mortality of earthworm for 24 h decreased with the decrease of the content of mild acid-soluble antimony (which decreased averagely from 23.09% to 14.00%), which was more suited to assess Sb toxicity. This is the first report that confirms the toxicity of soil Sb to earthworm E. fetida as well as the considering of aging process and speciation.
Collapse
Affiliation(s)
- Zhinan Xu
- School of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Zaifu Yang
- School of Environmental Science and Engineering, Donghua University, Shanghai, China.
| | - Tong Zhu
- School of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Wenjun Shu
- School of Environmental Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|